
Approximate Counting II:
Constraint Satisfaction Problems

David Richerby

University of Oxford

Counting Complexity and Phase Transitions Boot Camp

David Richerby (Oxford) Approx #CSP 26th January, 2016 1 / 21

Approximate counting (revision)

FPRAS: randomized algorithm for a function f : Σ∗ → R.

Input: Instance x and error tolerance ε.

Output: A value z such that

Pr[e−εf (x) ≤ z ≤ eεf (x)] ≥ 3
4 .

Running time polynomial in |x | and 1/ε.

AP-reducibility: if there’s an FPRAS for f and g is AP-reducible to f ,
there’s an FPRAS for g .

David Richerby (Oxford) Approx #CSP 26th January, 2016 2 / 21

Constraint Satisfaction Problems

Fix a finite domain D and a set Γ of named relations over D.

Instance: A set V of variables and a set of constraints, each of the form
(R, xi , . . . , xk) where R is a k-ary relation in Γ and each xi ∈ V .

An assignment σ : V → D is satisfying if (σ(x1), . . . , σ(xk)) ∈ R for each
constraint.

#CSP(Γ): given an instance with constraints from Γ, how many satisfying
assignments are there? (Γ is a parameter.)

David Richerby (Oxford) Approx #CSP 26th January, 2016 3 / 21

Constraint Satisfaction Problems

Fix a finite domain D and a set Γ of named relations over D.

Instance: A set V of variables and a set of constraints, each of the form
(R, xi , . . . , xk) where R is a k-ary relation in Γ and each xi ∈ V .

An assignment σ : V → D is satisfying if (σ(x1), . . . , σ(xk)) ∈ R for each
constraint.

#CSP(Γ): given an instance with constraints from Γ, how many satisfying
assignments are there? (Γ is a parameter.)

David Richerby (Oxford) Approx #CSP 26th January, 2016 3 / 21

#3-SAT is a counting CSP

Domain D = {0, 1}; Γ = {R0,R1,R2,R3}, where

R0 = {0, 1}3 \ {000} clause x ∨ y ∨ z

R1 = {0, 1}3 \ {100} clause ¬x ∨ y ∨ z

R2 = {0, 1}3 \ {110} clause ¬x ∨ ¬y ∨ z

R3 = {0, 1}3 \ {111} clause ¬x ∨ ¬y ∨ ¬z .

Bad news: no FPRAS for #3-SAT unless NP = RP.

General theme: this talk will be about computational hardness, rather than
approximation algorithms.

David Richerby (Oxford) Approx #CSP 26th January, 2016 4 / 21

#3-SAT is a counting CSP

Domain D = {0, 1}; Γ = {R0,R1,R2,R3}, where

R0 = {0, 1}3 \ {000} clause x ∨ y ∨ z

R1 = {0, 1}3 \ {100} clause ¬x ∨ y ∨ z

R2 = {0, 1}3 \ {110} clause ¬x ∨ ¬y ∨ z

R3 = {0, 1}3 \ {111} clause ¬x ∨ ¬y ∨ ¬z .

Bad news: no FPRAS for #3-SAT unless NP = RP.

General theme: this talk will be about computational hardness, rather than
approximation algorithms.

David Richerby (Oxford) Approx #CSP 26th January, 2016 4 / 21

CSP – alternative view

Can view an instance I and a constraint language Γ as relational
structures, and a satisfying assignment for I is a homomorphism I → Γ.

If there are homomorphisms I1 → I2 and I2 → Γ, then I1 and I2 must both
be “yes” instances.

Non-example: Hamiltonicity is not a CSP.

Corollary: not every #P problem is a #CSP(Γ), so Ladner-like hierarchies
doesn’t necessarily apply to exact or approx #CSP.

David Richerby (Oxford) Approx #CSP 26th January, 2016 5 / 21

CSP – alternative view

Can view an instance I and a constraint language Γ as relational
structures, and a satisfying assignment for I is a homomorphism I → Γ.

If there are homomorphisms I1 → I2 and I2 → Γ, then I1 and I2 must both
be “yes” instances.

Non-example: Hamiltonicity is not a CSP.

Corollary: not every #P problem is a #CSP(Γ), so Ladner-like hierarchies
doesn’t necessarily apply to exact or approx #CSP.

David Richerby (Oxford) Approx #CSP 26th January, 2016 5 / 21

Complexity of exact #CSP(Γ)

Theorem. For every constraint language Γ, #CSP(Γ) is either in FP or is
#P-complete.

Xi Chen’s second talk will have details.

David Richerby (Oxford) Approx #CSP 26th January, 2016 6 / 21

Approximation trichotomy for Boolean #CSP(Γ)

Theorem. Let Γ be a constraint language over domain {0, 1}.

If every relation in Γ is affine, then #CSP(Γ) ∈ FP.

Otherwise, if every relation in Γ can be defined by a conjunction of
predicates xi = 0, xi = 1 and xi → xj , then #CSP(Γ)≡AP #BIS.

Otherwise, #CSP(Γ)≡AP #SAT.

David Richerby (Oxford) Approx #CSP 26th January, 2016 7 / 21

#BIS and #CSP(IMP)

Let IMP = {00, 01, 11}.

Lemma. #BIS≤AP #CSP(IMP).

Proof. Replace every edge (x , y) ∈ VL × VR with the constraint
(IMP, x , y). This forbids x = 1, y = 0 so 1 means “in” on left and 0
means “in” on right. �

Lemma. #CSP(IMP,=0,=1)≤AP #BIS.

Proof. (IMP, x , y) enforces x ≤ y so imposes a partial order on the
variables’ values. Satisfying assignments correspond to downsets and
#DOWNSETS≤AP #BIS. �

David Richerby (Oxford) Approx #CSP 26th January, 2016 8 / 21

#BIS and #CSP(IMP)

Let IMP = {00, 01, 11}.

Lemma. #BIS≤AP #CSP(IMP).

Proof. Replace every edge (x , y) ∈ VL × VR with the constraint
(IMP, x , y). This forbids x = 1, y = 0 so 1 means “in” on left and 0
means “in” on right. �

Lemma. #CSP(IMP,=0,=1)≤AP #BIS.

Proof. (IMP, x , y) enforces x ≤ y so imposes a partial order on the
variables’ values. Satisfying assignments correspond to downsets and
#DOWNSETS≤AP #BIS. �

David Richerby (Oxford) Approx #CSP 26th January, 2016 8 / 21

Gadgets

Knowing that #BIS≤AP #CSP(IMP) isn’t enough.

Our constraint language contains relations built from IMP, =0, =1 but
might not actually contain IMP.

Suppose a relation R ∈ Γ contains n0 tuples t with t1 = 0 and n1 with
t0 = 1. If n0 > n1, simulate the constraint x = 0 by many constraints
R(x , v2, . . . , vk).

Can implement IMP from a relation defined using it.

Can implement OR or NAND from any relation that’s not affine or
defined from IMP, =0 and =1.

David Richerby (Oxford) Approx #CSP 26th January, 2016 9 / 21

Gadgets

Knowing that #BIS≤AP #CSP(IMP) isn’t enough.

Our constraint language contains relations built from IMP, =0, =1 but
might not actually contain IMP.

Suppose a relation R ∈ Γ contains n0 tuples t with t1 = 0 and n1 with
t0 = 1. If n0 > n1, simulate the constraint x = 0 by many constraints
R(x , v2, . . . , vk).

Can implement IMP from a relation defined using it.

Can implement OR or NAND from any relation that’s not affine or
defined from IMP, =0 and =1.

David Richerby (Oxford) Approx #CSP 26th January, 2016 9 / 21

Gadgets

Knowing that #BIS≤AP #CSP(IMP) isn’t enough.

Our constraint language contains relations built from IMP, =0, =1 but
might not actually contain IMP.

Suppose a relation R ∈ Γ contains n0 tuples t with t1 = 0 and n1 with
t0 = 1. If n0 > n1, simulate the constraint x = 0 by many constraints
R(x , v2, . . . , vk).

Can implement IMP from a relation defined using it.

Can implement OR or NAND from any relation that’s not affine or
defined from IMP, =0 and =1.

David Richerby (Oxford) Approx #CSP 26th January, 2016 9 / 21

Approximation trichotomy for Boolean #CSP(Γ)

Theorem. Let Γ be a constraint language over domain {0, 1}.

If every relation in Γ is affine, then #CSP(Γ) ∈ FP.

Otherwise, if every relation in Γ can be defined by a conjunction of
predicates xi = 0, xi = 1 and xi → xj , then #CSP(Γ)≡AP #BIS.

Otherwise, #CSP(Γ)≡AP #SAT.

David Richerby (Oxford) Approx #CSP 26th January, 2016 10 / 21

Weighted #CSP

Extend constraint languages from sets of relations to sets F of functions
Dk → R≥0.

Goal is to compute the partition function of an instance I , given by

Z (I) =
∑

σ : V→D

∏
i

fi (σ(xi ,1), . . . , σ(xi ,k)) .

Unweighted case corresponds to functions Dk → {0, 1}.

David Richerby (Oxford) Approx #CSP 26th January, 2016 11 / 21

Example – Ising model

Ising with no external field is just #CSP({f }) where

f (0, 0) = f (1, 1) = λ

f (0, 1) = f (1, 0) = 1 .

(Mixed) external fields can be implemented by adding unary functions to
the constraint language.

David Richerby (Oxford) Approx #CSP 26th January, 2016 12 / 21

Complexity of exact weighted #CSP(F)

Theorem. For every weighted constraint language F , #CSP(F) is either
in FP or is FP#P-complete.

Xi Chen’s second talk will have details, again.

David Richerby (Oxford) Approx #CSP 26th January, 2016 13 / 21

Functional clones

The computational complexity of #CSP(F) depends on what functions
can be defined from the functions in F .

Constraints f (x , y), g(x , y) together define the function
h(x , y) = f (x , y) · g(x , y).

If z appears in no other constraint, f (x , z) corresponds to the
function h(x) =

∑
z∈D f (x , z).

The constraint f (x , y) can be considered to define a function of any
arity ≥ 2 (e.g., h(x , y , z) = f (x , y)).

Limits.

A clone is a set of functions closed under these operations.

David Richerby (Oxford) Approx #CSP 26th January, 2016 14 / 21

Functional clones

The computational complexity of #CSP(F) depends on what functions
can be defined from the functions in F .

Constraints f (x , y), g(x , y) together define the function
h(x , y) = f (x , y) · g(x , y).

If z appears in no other constraint, f (x , z) corresponds to the
function h(x) =

∑
z∈D f (x , z).

The constraint f (x , y) can be considered to define a function of any
arity ≥ 2 (e.g., h(x , y , z) = f (x , y)).

Limits.

A clone is a set of functions closed under these operations.

David Richerby (Oxford) Approx #CSP 26th January, 2016 14 / 21

Functional clones

The computational complexity of #CSP(F) depends on what functions
can be defined from the functions in F .

Constraints f (x , y), g(x , y) together define the function
h(x , y) = f (x , y) · g(x , y).

If z appears in no other constraint, f (x , z) corresponds to the
function h(x) =

∑
z∈D f (x , z).

The constraint f (x , y) can be considered to define a function of any
arity ≥ 2 (e.g., h(x , y , z) = f (x , y)).

Limits.

A clone is a set of functions closed under these operations.

David Richerby (Oxford) Approx #CSP 26th January, 2016 14 / 21

Functional clones

The computational complexity of #CSP(F) depends on what functions
can be defined from the functions in F .

Constraints f (x , y), g(x , y) together define the function
h(x , y) = f (x , y) · g(x , y).

If z appears in no other constraint, f (x , z) corresponds to the
function h(x) =

∑
z∈D f (x , z).

The constraint f (x , y) can be considered to define a function of any
arity ≥ 2 (e.g., h(x , y , z) = f (x , y)).

Limits.

A clone is a set of functions closed under these operations.

David Richerby (Oxford) Approx #CSP 26th January, 2016 14 / 21

Functional clones

The computational complexity of #CSP(F) depends on what functions
can be defined from the functions in F .

Constraints f (x , y), g(x , y) together define the function
h(x , y) = f (x , y) · g(x , y).

If z appears in no other constraint, f (x , z) corresponds to the
function h(x) =

∑
z∈D f (x , z).

The constraint f (x , y) can be considered to define a function of any
arity ≥ 2 (e.g., h(x , y , z) = f (x , y)).

Limits.

A clone is a set of functions closed under these operations.

David Richerby (Oxford) Approx #CSP 26th January, 2016 14 / 21

Log-supermodular functions

A function {0, 1}k → R≥0 is log-supermodular (LSM) if

f (x ∨ y) f (x ∧ y) ≥ f (x) f (y) for all x, y ∈ {0, 1}k .

All nullary and unary functions are trivially LSM.

IMP is LSM, since, e.g.,

IMP(01 ∨ 10) IMP(01 ∧ 10) = IMP(11) IMP(00) = 1

≥ IMP(01) IMP(10) = 0 .

Ferromagnetic Ising is also LSM, e.g.,

f (00) f (11) = λ2 > f (01) f (10) = 1 .

David Richerby (Oxford) Approx #CSP 26th January, 2016 15 / 21

Log-supermodular functions

A function {0, 1}k → R≥0 is log-supermodular (LSM) if

f (x ∨ y) f (x ∧ y) ≥ f (x) f (y) for all x, y ∈ {0, 1}k .

All nullary and unary functions are trivially LSM.

IMP is LSM, since, e.g.,

IMP(01 ∨ 10) IMP(01 ∧ 10) = IMP(11) IMP(00) = 1

≥ IMP(01) IMP(10) = 0 .

Ferromagnetic Ising is also LSM, e.g.,

f (00) f (11) = λ2 > f (01) f (10) = 1 .

David Richerby (Oxford) Approx #CSP 26th January, 2016 15 / 21

Log-supermodular functions

A function {0, 1}k → R≥0 is log-supermodular (LSM) if

f (x ∨ y) f (x ∧ y) ≥ f (x) f (y) for all x, y ∈ {0, 1}k .

All nullary and unary functions are trivially LSM.

IMP is LSM, since, e.g.,

IMP(01 ∨ 10) IMP(01 ∧ 10) = IMP(11) IMP(00) = 1

≥ IMP(01) IMP(10) = 0 .

Ferromagnetic Ising is also LSM, e.g.,

f (00) f (11) = λ2 > f (01) f (10) = 1 .

David Richerby (Oxford) Approx #CSP 26th January, 2016 15 / 21

Properties of clones

Notation: 〈F〉 is the smallest clone containing F .

A clone is called conservative if it contains U , the set of all unary functions
{0, 1} → R≥0.

If f /∈ 〈NEQ,U〉, then IMP ∈ 〈f ,U〉.

If, also, f is not LSM, then 〈f ,U〉 is all Boolean functions.

David Richerby (Oxford) Approx #CSP 26th January, 2016 16 / 21

Properties of clones

Notation: 〈F〉 is the smallest clone containing F .

A clone is called conservative if it contains U , the set of all unary functions
{0, 1} → R≥0.

If f /∈ 〈NEQ,U〉, then IMP ∈ 〈f ,U〉.

If, also, f is not LSM, then 〈f ,U〉 is all Boolean functions.

David Richerby (Oxford) Approx #CSP 26th January, 2016 16 / 21

Approximating weighted Boolean #CSP

Approximate theorem. Let F be a conservative weighted Boolean
constraint language.

If F ⊆ 〈NEQ,U〉, then there is an FPRAS for #CSP(F).

Otherwise, #CSP(F) is #BIS-hard.

If, in addition, there is a non-LSM f ∈ F , then
#SAT≡AP #CSP(F).

David Richerby (Oxford) Approx #CSP 26th January, 2016 17 / 21

Approximating weighted Boolean #CSP properly

Actual theorem. Let F be a conservative weighted Boolean constraint
language.

If F ⊆ 〈NEQ,U〉 then, for every finite G ⊂ F , there is an FPRAS for
#CSP(G).

Otherwise, there is a finite G ⊂ F such that #CSP(G) is #BIS-hard.

If, in addition, there is a non-LSM f ∈ F , then #SAT≡AP #CSP(G)
for some finite G ⊂ F .

David Richerby (Oxford) Approx #CSP 26th January, 2016 18 / 21

Extending the domain

We can extend to arbitrary finite domains D.

Classification depends on definable binary functions and their behaviour on
2-element subdomains.

A constraint langauge is weakly log-supermodular if, for all definable
binary functions f and all a, b ∈ D,

f (a, a) f (b, b) ≥ f (a, b) f (b, a)

or f (a, a) f (b, b) = 0 .

David Richerby (Oxford) Approx #CSP 26th January, 2016 19 / 21

Extending the domain

We can extend to arbitrary finite domains D.

Classification depends on definable binary functions and their behaviour on
2-element subdomains.

A constraint langauge is weakly log-supermodular if, for all definable
binary functions f and all a, b ∈ D,

f (a, a) f (b, b) ≥ f (a, b) f (b, a)

or f (a, a) f (b, b) = 0 .

David Richerby (Oxford) Approx #CSP 26th January, 2016 19 / 21

Approximating conservative weighted #CSP

Theorem. For any conservative weighted constraint language F ,

If F is weakly log-modular, then #CSP(G) ∈ FP for every finite
G ⊂ F .

Otherwise, if F is weakly log-supermodular then,

for every finite G ⊂ F , #CSP(G)≤AP #CSP(G′) for some finite set G′
of log-supermodular functions, and
#BIS≤AP #CSP(G) for some finite G ⊂ F .

Otherwise, #SAT≤AP #CSP(G) for some finite G ⊂ F .

David Richerby (Oxford) Approx #CSP 26th January, 2016 20 / 21

Why so conservative?

Unary functions used in reductions.

Structure of non-conservative clones not as well understood.

Current area of research.

David Richerby (Oxford) Approx #CSP 26th January, 2016 21 / 21

