Approximate Counting II: Constraint Satisfaction Problems

David Richerby

University of Oxford

Counting Complexity and Phase Transitions Boot Camp

FPRAS: randomized algorithm for a function $f: \Sigma^* \to \mathbb{R}$.

Input: Instance x and error tolerance ϵ .

Output: A value *z* such that

$$\Pr[e^{-\epsilon}f(x) \le z \le e^{\epsilon}f(x)] \ge \frac{3}{4}.$$

Running time polynomial in |x| and $1/\epsilon$.

AP-reducibility: if there's an FPRAS for f and g is AP-reducible to f, there's an FPRAS for g.

Fix a finite domain D and a set Γ of named relations over D.

Instance: A set V of variables and a set of constraints, each of the form (R, x_i, \ldots, x_k) where R is a k-ary relation in Γ and each $x_i \in V$.

Fix a finite domain D and a set Γ of named relations over D.

Instance: A set V of variables and a set of constraints, each of the form (R, x_i, \ldots, x_k) where R is a k-ary relation in Γ and each $x_i \in V$.

An assignment $\sigma: V \to D$ is *satisfying* if $(\sigma(x_1), \ldots, \sigma(x_k)) \in R$ for each constraint.

 $\#CSP(\Gamma)$: given an instance with constraints from Γ , how many satisfying assignments are there? (Γ is a parameter.)

Domain
$$D = \{0, 1\}; \Gamma = \{R_0, R_1, R_2, R_3\}$$
, where

$$\begin{split} R_0 &= \{0,1\}^3 \setminus \{000\} \\ R_1 &= \{0,1\}^3 \setminus \{100\} \\ R_2 &= \{0,1\}^3 \setminus \{110\} \\ R_3 &= \{0,1\}^3 \setminus \{111\} \end{split}$$

clause $x \lor y \lor z$ clause $\neg x \lor y \lor z$ clause $\neg x \lor \neg y \lor z$ clause $\neg x \lor \neg y \lor \neg z$.

3

(日) (周) (三) (三)

Domain $D = \{0, 1\}$; $\Gamma = \{R_0, R_1, R_2, R_3\}$, where

 $\begin{array}{ll} R_0 = \{0,1\}^3 \setminus \{000\} & \text{clause } x \lor y \lor z \\ R_1 = \{0,1\}^3 \setminus \{100\} & \text{clause } \neg x \lor y \lor z \\ R_2 = \{0,1\}^3 \setminus \{110\} & \text{clause } \neg x \lor \neg y \lor z \\ R_3 = \{0,1\}^3 \setminus \{111\} & \text{clause } \neg x \lor \neg y \lor \neg z . \end{array}$

Bad news: no FPRAS for #3-SAT unless NP = RP.

General theme: this talk will be about computational hardness, rather than approximation algorithms.

Can view an instance I and a constraint language Γ as relational structures, and a satisfying assignment for I is a homomorphism $I \rightarrow \Gamma$.

If there are homomorphisms $I_1 \rightarrow I_2$ and $I_2 \rightarrow \Gamma$, then I_1 and I_2 must both be "yes" instances.

Can view an instance I and a constraint language Γ as relational structures, and a satisfying assignment for I is a homomorphism $I \rightarrow \Gamma$.

If there are homomorphisms $I_1 \rightarrow I_2$ and $I_2 \rightarrow \Gamma$, then I_1 and I_2 must both be "yes" instances.

Non-example: Hamiltonicity is not a CSP.

Corollary: not every #P problem is a $\#CSP(\Gamma)$, so Ladner-like hierarchies doesn't necessarily apply to exact or approx #CSP.

- **Theorem.** For every constraint language Γ , $\#CSP(\Gamma)$ is either in FP or is #P-complete.
- Xi Chen's second talk will have details.

Theorem. Let Γ be a constraint language over domain $\{0, 1\}$.

- If every relation in Γ is affine, then $\#CSP(\Gamma) \in FP$.
- Otherwise, if every relation in Γ can be defined by a conjunction of predicates x_i = 0, x_i = 1 and x_i → x_j, then #CSP(Γ) ≡_{AP} #BIS.
- Otherwise, $\#CSP(\Gamma) \equiv_{AP} \#SAT$.

```
Let IMP = \{00, 01, 11\}.
```

```
Lemma. \#BIS \leq_{AP} \#CSP(IMP).
```

Proof. Replace every edge $(x, y) \in V_L \times V_R$ with the constraint (IMP, x, y). This forbids x = 1, y = 0 so 1 means "in" on left and 0 means "in" on right. \Box

Let $IMP = \{00, 01, 11\}.$

Lemma. $\#BIS \leq_{AP} \#CSP(IMP).$

Proof. Replace every edge $(x, y) \in V_L \times V_R$ with the constraint (IMP, x, y). This forbids x = 1, y = 0 so 1 means "in" on left and 0 means "in" on right. \Box

Lemma. #CSP(IMP, =0, =1) $\leq_{AP} \#$ BIS.

Proof. (IMP, x, y) enforces $x \le y$ so imposes a partial order on the variables' values. Satisfying assignments correspond to downsets and #DOWNSETS $\le_{AP} \#$ BIS. \Box

Knowing that $\#BIS \leq_{AP} \#CSP(IMP)$ isn't enough.

Our constraint language contains relations built from IMP, =0, =1 but might not actually contain IMP.

Knowing that $\#BIS \leq_{AP} \#CSP(IMP)$ isn't enough.

Our constraint language contains relations built from $\rm IMP,$ =0, =1 but might not actually contain $\rm IMP.$

Suppose a relation $R \in \Gamma$ contains n_0 tuples t with $t_1 = 0$ and n_1 with $t_0 = 1$. If $n_0 > n_1$, simulate the constraint x = 0 by many constraints $R(x, v_2, \ldots, v_k)$.

Can implement IMP from a relation defined using it.

Knowing that $\#BIS \leq_{AP} \#CSP(IMP)$ isn't enough.

Our constraint language contains relations built from $\rm IMP,$ =0, =1 but might not actually contain $\rm IMP.$

Suppose a relation $R \in \Gamma$ contains n_0 tuples t with $t_1 = 0$ and n_1 with $t_0 = 1$. If $n_0 > n_1$, simulate the constraint x = 0 by many constraints $R(x, v_2, \ldots, v_k)$.

Can implement IMP from a relation defined using it.

Can implement ${\rm OR}$ or ${\rm NAND}$ from any relation that's not affine or defined from ${\rm IMP},$ =0 and =1.

Theorem. Let Γ be a constraint language over domain $\{0, 1\}$.

- If every relation in Γ is affine, then $\#CSP(\Gamma) \in FP$.
- Otherwise, if every relation in Γ can be defined by a conjunction of predicates x_i = 0, x_i = 1 and x_i → x_j, then #CSP(Γ) ≡_{AP} #BIS.
- Otherwise, $\#CSP(\Gamma) \equiv_{AP} \#SAT$.

Extend constraint languages from sets of relations to sets \mathcal{F} of functions $D^k \to \mathbb{R}_{\geq 0}$.

Goal is to compute the partition function of an instance I, given by

$$Z(I) = \sum_{\sigma: V \to D} \prod_{i} f_i(\sigma(x_{i,1}), \ldots, \sigma(x_{i,k})).$$

Unweighted case corresponds to functions $D^k \rightarrow \{0, 1\}$.

Ising with no external field is just $\#CSP({f})$ where

$$f(0,0) = f(1,1) = \lambda$$

f(0,1) = f(1,0) = 1.

(Mixed) external fields can be implemented by adding unary functions to the constraint language.

Theorem. For every weighted constraint language \mathcal{F} , $\#CSP(\mathcal{F})$ is either in FP or is $FP^{\#P}$ -complete.

Xi Chen's second talk will have details, again.

 Constraints f(x, y), g(x, y) together define the function h(x, y) = f(x, y) · g(x, y).

- Constraints f(x, y), g(x, y) together define the function $h(x, y) = f(x, y) \cdot g(x, y)$.
- If z appears in no other constraint, f(x, z) corresponds to the function $h(x) = \sum_{z \in D} f(x, z)$.

- Constraints f(x, y), g(x, y) together define the function $h(x, y) = f(x, y) \cdot g(x, y)$.
- If z appears in no other constraint, f(x, z) corresponds to the function $h(x) = \sum_{z \in D} f(x, z)$.
- The constraint f(x, y) can be considered to define a function of any arity ≥ 2 (e.g., h(x, y, z) = f(x, y)).

- Constraints f(x, y), g(x, y) together define the function $h(x, y) = f(x, y) \cdot g(x, y)$.
- If z appears in no other constraint, f(x, z) corresponds to the function $h(x) = \sum_{z \in D} f(x, z)$.
- The constraint f(x, y) can be considered to define a function of any arity ≥ 2 (e.g., h(x, y, z) = f(x, y)).
- Limits.

- Constraints f(x, y), g(x, y) together define the function $h(x, y) = f(x, y) \cdot g(x, y)$.
- If z appears in no other constraint, f(x, z) corresponds to the function $h(x) = \sum_{z \in D} f(x, z)$.
- The constraint f(x, y) can be considered to define a function of any arity ≥ 2 (e.g., h(x, y, z) = f(x, y)).
- Limits.

A *clone* is a set of functions closed under these operations.

Log-supermodular functions

A function $\{0,1\}^k \to \mathbb{R}_{\geq 0}$ is *log-supermodular* (LSM) if $f(\mathbf{x} \lor \mathbf{y}) f(\mathbf{x} \land \mathbf{y}) \geq f(\mathbf{x}) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \{0,1\}^k$.

All nullary and unary functions are trivially LSM.

Log-supermodular functions

A function $\{0,1\}^k \to \mathbb{R}_{\geq 0}$ is *log-supermodular* (LSM) if $f(\mathbf{x} \lor \mathbf{y}) f(\mathbf{x} \land \mathbf{y}) \geq f(\mathbf{x}) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \{0,1\}^k$.

All nullary and unary functions are trivially LSM.

 IMP is LSM, since, e.g.,

$$\begin{split} \mathrm{IMP}(01 \lor 10) \, \mathrm{IMP}(01 \land 10) &= \mathrm{IMP}(11) \, \mathrm{IMP}(00) = 1 \\ &\geq \mathrm{IMP}(01) \, \mathrm{IMP}(10) = 0 \, . \end{split}$$

A function $\{0,1\}^k \to \mathbb{R}_{\geq 0}$ is *log-supermodular* (LSM) if $f(\mathbf{x} \lor \mathbf{y}) f(\mathbf{x} \land \mathbf{y}) \geq f(\mathbf{x}) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \{0,1\}^k$.

All nullary and unary functions are trivially LSM.

 IMP is LSM, since, e.g.,

$$\begin{split} \mathrm{IMP}(01 \lor 10) \, \mathrm{IMP}(01 \land 10) &= \mathrm{IMP}(11) \, \mathrm{IMP}(00) = 1 \\ &\geq \mathrm{IMP}(01) \, \mathrm{IMP}(10) = 0 \, . \end{split}$$

Ferromagnetic Ising is also LSM, e.g.,

$$f(00) f(11) = \lambda^2 > f(01) f(10) = 1$$
.

Notation: $\langle \mathcal{F} \rangle$ is the smallest clone containing \mathcal{F} .

A clone is called *conservative* if it contains U, the set of all unary functions $\{0,1\} \to \mathbb{R}_{\geq 0}$.

Notation: $\langle \mathcal{F} \rangle$ is the smallest clone containing \mathcal{F} .

A clone is called *conservative* if it contains U, the set of all unary functions $\{0,1\} \to \mathbb{R}_{\geq 0}$.

If $f \notin \langle NEQ, \mathcal{U} \rangle$, then $IMP \in \langle f, \mathcal{U} \rangle$.

If, also, f is not LSM, then $\langle f, \mathcal{U} \rangle$ is all Boolean functions.

Approximate theorem. Let \mathcal{F} be a conservative weighted Boolean constraint language.

- If $\mathcal{F} \subseteq \langle NEQ, \mathcal{U} \rangle$, then there is an FPRAS for $\#CSP(\mathcal{F})$.
- Otherwise, $\#CSP(\mathcal{F})$ is #BIS-hard.
- If, in addition, there is a non-LSM $f \in \mathcal{F}$, then $\#SAT \equiv_{AP} \#CSP(\mathcal{F})$.

Actual theorem. Let \mathcal{F} be a conservative weighted Boolean constraint language.

- If $\mathcal{F} \subseteq \langle NEQ, \mathcal{U} \rangle$ then, for every finite $\mathcal{G} \subset \mathcal{F}$, there is an FPRAS for $\#CSP(\mathcal{G})$.
- Otherwise, there is a finite $\mathcal{G} \subset \mathcal{F}$ such that $\#CSP(\mathcal{G})$ is #BIS-hard.
- If, in addition, there is a non-LSM f ∈ F, then #SAT ≡_{AP} #CSP(G) for some finite G ⊂ F.

We can extend to arbitrary finite domains D.

Classification depends on definable binary functions and their behaviour on 2-element subdomains.

We can extend to arbitrary finite domains D.

Classification depends on definable binary functions and their behaviour on 2-element subdomains.

A constraint langauge is *weakly log-supermodular* if, for all definable binary functions f and all $a, b \in D$,

$$f(a, a) f(b, b) \ge f(a, b) f(b, a)$$

or $f(a, a) f(b, b) = 0$.

Theorem. For any conservative weighted constraint language \mathcal{F} ,

- If \mathcal{F} is weakly log-modular, then $\#CSP(\mathcal{G}) \in FP$ for every finite $\mathcal{G} \subset \mathcal{F}$.
- Otherwise, if \mathcal{F} is weakly log-supermodular then,
 - for every finite $\mathcal{G} \subset \mathcal{F}$, $\#CSP(\mathcal{G}) \leq_{AP} \#CSP(\mathcal{G}')$ for some finite set \mathcal{G}' of log-supermodular functions, and
 - $\#BIS \leq_{AP} \#CSP(\mathcal{G})$ for some finite $\mathcal{G} \subset \mathcal{F}$.
- Otherwise, $\#SAT \leq_{AP} \#CSP(\mathcal{G})$ for some finite $\mathcal{G} \subset \mathcal{F}$.

- Unary functions used in reductions.
- Structure of non-conservative clones not as well understood.
- Current area of research.