
Markov Chain Mixing Times 
And Applications 

Ivona Bezáková 
 

(Rochester Institute of Technology) 
 

Nayantara Bhatnagar 
 

(University of Delaware) 

Simons Institute for the Theory of Computing 
Counting Complexity and Phase Transitions Bootcamp 

 
January 25th, 2016 



Introduction to Markov Chains 

A (discrete) Markov chain is a random process that 
• has a set of states Ω 
• in one step moves from the current state to a random 
“neighboring” state 
• the distribution for the move does not depend on 
previously visited states 

Example:  
 

A random walk on a graph 
 

1. Start at a vertex 
2. Randomly choose a neighbor 

and move there 
3. Repeat step 2. 
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Introduction to Markov Chains 

Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 
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Introduction to Markov Chains 

Example:  
 

A simple MC: 0.6 

0.1 

0.9 1 

A 

B 

C 

0.4 

Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 
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P= 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
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Introduction to Markov Chains 

Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 

Example:  
 

A simple MC: 

P= 

0.6 

0.1 

0.9 1 

A 

0.4 

C 

B 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
• after one step:  ¾P = (0,0.9,0.1) 
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Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 

Example:  
 

A simple MC: 

P= 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
• after one step:  ¾P = (0,0.9,0.1) 
• after t steps:  ¾Pt 
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Introduction to Markov Chains 

Example:  
 

Another simple MC (not irreducible): 0.6 

0.1 

0.9 1 

A 

0.4 

P= 

C 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 
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Introduction to Markov Chains 

Example:  
 

Even simpler MC (not aperiodic): 

P= 
1 1 

A 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 
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Introduction to Markov Chains 

Example:  
 

Even simpler MC (now aperiodic): 

P= 1/2 1/2 

A 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 

1/2 

1/2 
Lazy MC:                  
a self-loop                     
at every state 



Introduction to Markov Chains 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 
• ergodic if both irreducible and aperiodic 
 

Thm: An ergodic MC has a unique stationary distribution. 



Introduction to Markov Chains 

Thm: An ergodic MC has a unique stationary distribution. 
 

Def: For ²>0, mixing time is # steps needed to get ²-close 
to the stationary distribution ¼. Formally: 

For a start state x, let ¾x be the corresponding starting 
distribution. Then 
tmix(²) = minimum t such that for every x, ||¾xPt - ¼||tv < ² 

where, for two distributions ¹,º, their total variation 
distance is 

||¹ - º ||tv = ½ ∑x2Ω |¹(x)-º(x)| 

 Example:  
 

 ||(1,0,0) – (0,0.9,0.1)||tv = ½(1+0.9+0.1) = 1 
 

 ||(0.5,0.4,0.1) – (0.6,0.4,0)||tv = ½(0.1+0.1) = 0.1 
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Introduction to Markov Chains 

Thm: An ergodic MC has a unique stationary distribution. 
 

Observations: 
• Eigenvalue: 1, with eigenvector ¼ 

• All eigenvalues, in absolute value, · 1 
• Mixing time depends on the spectral gap (difference 
between 1 and the 2nd largest eigenvalue in absolute value) 
 

Thm: For an ergodic MC, let 1 = ¸1 > ¸2 ¸ … ¸ ¸min be the 
eigenvalues and ¼min = minx ¼(x). Then 

¼ P = ¼ 
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Exponential State Space 

G: 

A MC on Colorings: 

Given is a graph G and a set [q]. A coloring assigns to each 
vertex a color from [q], so that adjacent vertices have 
different colors. Let Ω be the set of all colorings. 

MC on Ω: 
1. Choose a random vertex v and a random color c. 
2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  

[q] = {   ,   ,   ,   ,    } 
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MC on Ω: 
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2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  
1. |Ω| · qn where n = #vertices 
2. aperiodic (self-loops) 
3. if q > maxdeg+1 then irreducible 

[q] = {   ,   ,   } 
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A MC on Colorings: 

Given is a graph G and a set [q]. A coloring assigns to each 
vertex a color from [q], so that adjacent vertices have 
different colors. Let Ω be the set of all colorings. 

MC on Ω: 
1. Choose a random vertex v and a random color c. 
2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  
1. |Ω| · qn where n = #vertices 
2. aperiodic (self-loops) 
3. if q > maxdeg+1 then irreducible 

[q] = {   ,   ,   ,   ,    } 

G: 
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A MC on Colorings: 
• ergodic: unique stationary distribution ¼ 

• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
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Exponential State Space 

A MC on Colorings: 
• ergodic: unique stationary distribution ¼ = 1/|Ω|   (uniform) 
• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
• symmetric: P(x,y)=P(y,x) 
 

etc… 



Exponential State Space 

A MC on Colorings: 
• ergodic: unique stationary distribution ¼ = 1/|Ω|   (uniform) 
• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
• symmetric: P(x,y)=P(y,x) 

More generally: 
A MC is reversible, if there is a distribution ¼ such that: 

 ¼(x) P(x,y) = ¼(y) P(y,x) 
[Also known as detailed balance condition.] 
Then, ¼ is stationary. 



Designing a Markov Chain 

Want: to sample from a target distribution ¼ 

How (Metropolis filter): 
• start with a symmetric ergodic MC (Ω,P’) -> uniform 
stationary distribution 
• modify the probability of a move from x to y as follows: 
 

P(x,y) = min { ¼(y)/¼(x) , 1 } P’(x,y) 
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b) decreases # red vertices: recolor v by c with probability 1/® 
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Relation to Counting 

Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 



Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 
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Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 

Another perfect matching 

Relation to Counting 



Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 

A perfect matching 

Relation to Counting 



Known: 

• Finding a maximum 
matching can be done in 
polynomial time [O(m√n) 
Micali-Vazirani ‘80] 

• Counting perfect matchings 
is #P-complete [Valiant ‘79] 
 

Goal: Approximate counting 
 

Relation to Counting 

Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 



From Sampling to Counting 

Suppose we can sample a uniformly random matching. 

Then: 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

e 
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Estimator: 

Indicator random variable X,                  
=1 if matching does not contain e and     
=0 otherwise 

  # matchings without e 
# matchings E[X] =  
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From Sampling to Counting 

Estimator: 

Indicator random variable X,                  
=1 if matching does not contain e and     
=0 otherwise 

  # matchings without e 
# matchings E[X] =  

Observation: 

1/2 · E[X] · 1 

(For every matching with 
edge e, we can remove it to 
get a matching without e.) 

e 



From Sampling to Counting 

Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  
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• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 
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Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  
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Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 
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Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G4 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G24 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e. 

 

 

• Let e1,…,em be the edges of G. Let Gi = G-{e1,…,ei}. Let 
M(G) be the set of all matchings in G. Estimate: 

• Then: 

 

 

[Self-reducibility]                                                  

From Sampling to Counting 

# matchings without e 
# matchings E[X] =  # matchings in G1 

# matchings in G0 
 =  |M(G1)| 

|M(G0)| 
 =  

|M(Gi+1)| 
|M(Gi)| 

|M(G1)| 
|M(G0)| 

… |M(G2)| 
|M(G1)| 

|M(G3)| 
|M(G2)| 

|M(Gm)| 
|M(Gm-1)| 

= |M(Gm)| 
|M(G0)| 

= 1 
|M(G)| 



Terminology: 
• Almost uniform sampler: for a tolerance parameter ±>0, 
it produces a sample from a distribution within variation 
distance of ± from the uniform distribution 

• Fully polynomial almost uniform sampler (FPAUS): runs 
in time polynomial in input size and log 1/± 

• Randomized approximation scheme: for a counting 
problem and error tolerance ², produce an answer within 
(1+-²) factor of the count with probability ¸ 3/4 

• Fully polynomial randomized approximation scheme 
(FPRAS): runs in time polynomial in input size and 1/² 

From Sampling to Counting: Technicalities 



Thm [Jerrum-Valiant-Vazirani ’86]: 

FPAUS for sampling from all matchings => FPRAS for 
counting all matchings. 
 

In particular, get an FPRAS with running time                     
           O( T(n,m,²/(6m)) m2/²² ),                                                 
where T(n,m,±) is the running time of the FPAUS. 

 

Goal: to design a Markov chain to sample matchings;    
better mixing time => better running time of the FPRAS 

From Sampling to Counting: Technicalities 
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