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Introduction to Markov Chains 

A (discrete) Markov chain is a random process that 
• has a set of states Ω 
• in one step moves from the current state to a random 
“neighboring” state 
• the distribution for the move does not depend on 
previously visited states 

Example:  
 

A random walk on a graph 
 

1. Start at a vertex 
2. Randomly choose a neighbor 

and move there 
3. Repeat step 2. 
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Introduction to Markov Chains 

Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 
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Example:  
 

A simple MC: 0.6 

0.1 

0.9 1 
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C 

0.4 

Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 
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P= 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
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Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 

Example:  
 

A simple MC: 

P= 

0.6 

0.1 

0.9 1 

A 

0.4 

C 

B 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
• after one step:  ¾P = (0,0.9,0.1) 
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Def: A (discrete) Markov chain M is a pair (Ω,P) where P 
is an |Ω|x|Ω| matrix where each of its rows is a 
distribution. Ω is the state space and P is the transition 
matrix. 

A distribution ¼ on Ω is stationary if  ¼ P = ¼. 

Example:  
 

A simple MC: 

P= 

Start in A: 
• start distribution:  ¾ = (1,0,0) 
• after one step:  ¾P = (0,0.9,0.1) 
• after t steps:  ¾Pt 
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Introduction to Markov Chains 

Example:  
 

Another simple MC (not irreducible): 0.6 
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0.9 1 

A 
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P= 

C 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 



A B 

A 0 1 

B 1 0 

Introduction to Markov Chains 

Example:  
 

Even simpler MC (not aperiodic): 

P= 
1 1 

A 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 
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Introduction to Markov Chains 

Example:  
 

Even simpler MC (now aperiodic): 

P= 1/2 1/2 

A 

B 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 

1/2 

1/2 
Lazy MC:                  
a self-loop                     
at every state 



Introduction to Markov Chains 

Def: A Markov chain M=(Ω,P) is 
• irreducible if there is a path in the transition graph 
from every state to every other state 
• aperiodic if for each state s, the gcd of all walk lengths 
from s to s is 1 
• ergodic if both irreducible and aperiodic 
 

Thm: An ergodic MC has a unique stationary distribution. 



Introduction to Markov Chains 

Thm: An ergodic MC has a unique stationary distribution. 
 

Def: For ²>0, mixing time is # steps needed to get ²-close 
to the stationary distribution ¼. Formally: 

For a start state x, let ¾x be the corresponding starting 
distribution. Then 
tmix(²) = minimum t such that for every x, ||¾xPt - ¼||tv < ² 

where, for two distributions ¹,º, their total variation 
distance is 

||¹ - º ||tv = ½ ∑x2Ω |¹(x)-º(x)| 

 Example:  
 

 ||(1,0,0) – (0,0.9,0.1)||tv = ½(1+0.9+0.1) = 1 
 

 ||(0.5,0.4,0.1) – (0.6,0.4,0)||tv = ½(0.1+0.1) = 0.1 
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Introduction to Markov Chains 

Thm: An ergodic MC has a unique stationary distribution. 
 

Observations: 
• Eigenvalue: 1, with eigenvector ¼ 

• All eigenvalues, in absolute value, · 1 
• Mixing time depends on the spectral gap (difference 
between 1 and the 2nd largest eigenvalue in absolute value) 
 

Thm: For an ergodic MC, let 1 = ¸1 > ¸2 ¸ … ¸ ¸min be the 
eigenvalues and ¼min = minx ¼(x). Then 

¼ P = ¼ 
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Exponential State Space 

G: 

A MC on Colorings: 

Given is a graph G and a set [q]. A coloring assigns to each 
vertex a color from [q], so that adjacent vertices have 
different colors. Let Ω be the set of all colorings. 

MC on Ω: 
1. Choose a random vertex v and a random color c. 
2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  

[q] = {   ,   ,   ,   ,    } 
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G: 
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Given is a graph G and a set [q]. A coloring assigns to each 
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different colors. Let Ω be the set of all colorings. 

MC on Ω: 
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2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  
1. |Ω| · qn where n = #vertices 
2. aperiodic (self-loops) 
3. if q > maxdeg+1 then irreducible 

[q] = {   ,   ,   } 



Exponential State Space 

A MC on Colorings: 

Given is a graph G and a set [q]. A coloring assigns to each 
vertex a color from [q], so that adjacent vertices have 
different colors. Let Ω be the set of all colorings. 

MC on Ω: 
1. Choose a random vertex v and a random color c. 
2. If no neighbor of v is colored by c, recolor v by c, 

otherwise, do nothing. 

Example:  
1. |Ω| · qn where n = #vertices 
2. aperiodic (self-loops) 
3. if q > maxdeg+1 then irreducible 

[q] = {   ,   ,   ,   ,    } 
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• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
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Exponential State Space 

A MC on Colorings: 
• ergodic: unique stationary distribution ¼ = 1/|Ω|   (uniform) 
• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
• symmetric: P(x,y)=P(y,x) 
 

etc… 



Exponential State Space 

A MC on Colorings: 
• ergodic: unique stationary distribution ¼ = 1/|Ω|   (uniform) 
• transition probability for neighboring x,y: P(x,y) = 1/(nq) 
• symmetric: P(x,y)=P(y,x) 

More generally: 
A MC is reversible, if there is a distribution ¼ such that: 

 ¼(x) P(x,y) = ¼(y) P(y,x) 
[Also known as detailed balance condition.] 
Then, ¼ is stationary. 



Designing a Markov Chain 

Want: to sample from a target distribution ¼ 

How (Metropolis filter): 
• start with a symmetric ergodic MC (Ω,P’) -> uniform 
stationary distribution 
• modify the probability of a move from x to y as follows: 
 

P(x,y) = min { ¼(y)/¼(x) , 1 } P’(x,y) 

 
A MC is reversible, if there is a distribution ¼ such that: 

 ¼(x) P(x,y) = ¼(y) P(y,x) 
[Also known as detailed balance condition.] 
Then, ¼ is stationary. 



Designing a Markov Chain 

Want: to sample from a target distribution ¼ 

How (Metropolis filter): 
• start with a symmetric ergodic MC (Ω,P’) -> uniform 
stationary distribution 
• modify the probability of a move from x to y as follows: 
 

P(x,y) = min { ¼(y)/¼(x) , 1 } P’(x,y) 

Example: MC on colorings, with ¼(x) » ®# red vertices in x  where ® > 1 
1. Choose a random vertex v and a random color c. 
2. If can recolor v by c and recoloring it 

a) increases (¸) # red vertices: recolor v by c 
b) decreases # red vertices: recolor v by c with probability 1/® 
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Relation to Counting 

Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 



Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 
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Relation to Counting 



Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 

Another perfect matching 

Relation to Counting 



Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 

A perfect matching 

Relation to Counting 



Known: 

• Finding a maximum 
matching can be done in 
polynomial time [O(m√n) 
Micali-Vazirani ‘80] 

• Counting perfect matchings 
is #P-complete [Valiant ‘79] 
 

Goal: Approximate counting 
 

Relation to Counting 

Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 



From Sampling to Counting 

Suppose we can sample a uniformly random matching. 

Then: 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

e 
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From Sampling to Counting 

Estimator: 

Indicator random variable X,                  
=1 if matching does not contain e and     
=0 otherwise 

  # matchings without e 
# matchings E[X] =  

Observation: 

1/2 · E[X] · 1 
e 



From Sampling to Counting 

Estimator: 

Indicator random variable X,                  
=1 if matching does not contain e and     
=0 otherwise 

  # matchings without e 
# matchings E[X] =  

Observation: 

1/2 · E[X] · 1 

(For every matching with 
edge e, we can remove it to 
get a matching without e.) 

e 



From Sampling to Counting 

Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

# matchings in G1 
# matchings in G0 

E[X] =  

# matchings without e 
# matchings E[X] =  

e 
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Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  
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then: 

# matchings in G1 
# matchings in G0 

E[X] =  

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G1 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G2 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  
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# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G4 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e.  

 

 

• Let G0 = G and G1 = G-e,                                                    
then: 

From Sampling to Counting 

# matchings in G1 
# matchings in G0 

E[X] =  

G24 

# matchings without e 
# matchings E[X] =  



Suppose we can sample a uniformly random matching. 

• Let e be an arbitrary edge. Use sampling to determine 
the fraction of matchings that do not use e. 

 

 

• Let e1,…,em be the edges of G. Let Gi = G-{e1,…,ei}. Let 
M(G) be the set of all matchings in G. Estimate: 

• Then: 

 

 

[Self-reducibility]                                                  

From Sampling to Counting 

# matchings without e 
# matchings E[X] =  # matchings in G1 

# matchings in G0 
 =  |M(G1)| 

|M(G0)| 
 =  

|M(Gi+1)| 
|M(Gi)| 

|M(G1)| 
|M(G0)| 

… |M(G2)| 
|M(G1)| 

|M(G3)| 
|M(G2)| 

|M(Gm)| 
|M(Gm-1)| 

= |M(Gm)| 
|M(G0)| 

= 1 
|M(G)| 



Terminology: 
• Almost uniform sampler: for a tolerance parameter ±>0, 
it produces a sample from a distribution within variation 
distance of ± from the uniform distribution 

• Fully polynomial almost uniform sampler (FPAUS): runs 
in time polynomial in input size and log 1/± 

• Randomized approximation scheme: for a counting 
problem and error tolerance ², produce an answer within 
(1+-²) factor of the count with probability ¸ 3/4 

• Fully polynomial randomized approximation scheme 
(FPRAS): runs in time polynomial in input size and 1/² 

From Sampling to Counting: Technicalities 



Thm [Jerrum-Valiant-Vazirani ’86]: 

FPAUS for sampling from all matchings => FPRAS for 
counting all matchings. 
 

In particular, get an FPRAS with running time                     
           O( T(n,m,²/(6m)) m2/²² ),                                                 
where T(n,m,±) is the running time of the FPAUS. 

 

Goal: to design a Markov chain to sample matchings;    
better mixing time => better running time of the FPRAS 

From Sampling to Counting: Technicalities 
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