Markov Chain Mixing Times And Applications

Ivona Bezáková

(Rochester Institute of Technology)

Nayantara Bhatnagar (University of Delaware)

Simons Institute for the Theory of Computing Counting Complexity and Phase Transitions Bootcamp

January 25th, 2016

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

- A random walk on a graph
- 1. Start at a vertex
- 2. Randomly choose a neighbor and move there
- 3. Repeat step 2.

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

Example:

Transition matrix for this MC:

	A	В	С	D	Ε
A	0	1/4	1/4	1/4	1/4
В	1	0	0	0	0
С	1/2	0	0	1/2	0
D	1/3	0	1/3	0	1/3
E	1/2	0	0	1/2	0

- A (discrete) Markov chain is a random process that
- has a set of states Ω
- in one step moves from the current state to a random "neighboring" state
- the distribution for the move does not depend on previously visited states

Example:

Transition matrix for another MC:

	A	В	С	D	Ε
A	0	0.1	0.1	0.1	0.7
В	1	0	0	0	0
С	1/2	0	0	1/2	0
D	1/3	0	1/3	0	1/3
E	1/2	0	0	1/2	0

<u>Def</u>: A (discrete) <u>Markov chain</u> M is a pair (Ω ,P) where P is an $|\Omega| \times |\Omega|$ matrix where each of its rows is a distribution. Ω is the <u>state space</u> and P is the <u>transition</u> <u>matrix</u>.

Example:

Transition matrix for another MC:

	A	В	С	D	Ε
A	0	0.1	0.1	0.1	0.7
В	1	0	0	0	0
С	1/2	0	0	1/2	0
D	1/3	0	1/3	0	1/3
E	1/2	0	0	1/2	0

<u>Def</u>: A (discrete) <u>Markov chain</u> M is a pair (Ω ,P) where P is an $|\Omega| \times |\Omega|$ matrix where each of its rows is a distribution. Ω is the <u>state space</u> and P is the <u>transition</u> <u>matrix</u>.

A distribution π on Ω is stationary if $\pi P = \pi$.

<u>Example:</u>

A simple MC:

	_ A	В	C
A	0	0.9	0.1
В	1	0	0
С	0.6	0.4	0

<u>Def</u>: A (discrete) <u>Markov chain</u> M is a pair (Ω ,P) where P is an $|\Omega| \times |\Omega|$ matrix where each of its rows is a distribution. Ω is the <u>state space</u> and P is the <u>transition</u> <u>matrix</u>.

A distribution π on Ω is stationary if $\pi P = \pi$.

Example:

A simple MC:

$P = \begin{bmatrix} A & B & C \\ 0 & 0.9 & 0.1 \\ 1 & 0 & 0 \\ 0.6 & 0.4 & 0 \end{bmatrix}$

Start in A:

• start distribution: σ = (1,0,0)

<u>Def</u>: A (discrete) <u>Markov chain</u> M is a pair (Ω ,P) where P is an $|\Omega| \times |\Omega|$ matrix where each of its rows is a distribution. Ω is the <u>state space</u> and P is the <u>transition</u> <u>matrix</u>.

A distribution π on Ω is stationary if $\pi P = \pi$.

Example:

A simple MC: A = B = C A = 0 = 0.9 = 0.1 P = B = 1 = 0 = 0C = 0.6 = 0.4 = 0 Start in A:

- start distribution: $\sigma = (1,0,0)$
- after one step: $\sigma P = (0, 0.9, 0.1)$

<u>Def</u>: A (discrete) <u>Markov chain</u> M is a pair (Ω ,P) where P is an $|\Omega| \times |\Omega|$ matrix where each of its rows is a distribution. Ω is the <u>state space</u> and P is the <u>transition</u> <u>matrix</u>.

A distribution π on Ω is stationary if $\pi P = \pi$.

<u>Example:</u>

A simple MC:						
		Α	В	C_		
	A	0	0.9	0.1		
P=	В	1	0	0		
	С	0.6	0.4	0		
				_		

Start in A:

- start distribution: $\sigma = (1,0,0)$
- after one step: $\sigma P = (0, 0.9, 0.1)$
- after t steps: σP^{\dagger}

Def: A Markov chain $M=(\Omega,P)$ is

• <u>irreducible</u> if there is a path in the transition graph from every state to every other state

• <u>aperiodic</u> if for each state s, the gcd of all walk lengths from s to s is 1

Example:

Another simple MC (not irreducible):

$$P = \begin{array}{ccc} A & B & C \\ A & 0 & 0.9 & 0.1 \\ 0 & 1 & 0 \\ C & 0.6 & 0.4 & 0 \end{array}$$

Def: A Markov chain $M=(\Omega,P)$ is

• <u>irreducible</u> if there is a path in the transition graph from every state to every other state

• <u>aperiodic</u> if for each state s, the gcd of all walk lengths from s to s is 1

Example:

Even simpler MC (not aperiodic):

Def: A Markov chain $M=(\Omega,P)$ is

• <u>irreducible</u> if there is a path in the transition graph from every state to every other state

• <u>aperiodic</u> if for each state s, the gcd of all walk lengths from s to s is 1

<u>Example:</u>

Even simpler MC (now aperiodic):

- **Def:** A Markov chain $M=(\Omega,P)$ is
- <u>irreducible</u> if there is a path in the transition graph from every state to every other state
- <u>aperiodic</u> if for each state s, the gcd of all walk lengths from s to s is 1
- <u>ergodic</u> if both irreducible and aperiodic
- <u>Thm</u>: An ergodic MC has a unique stationary distribution.

<u>Thm</u>: An ergodic MC has a unique stationary distribution.

<u>Def</u>: For ϵ >0, <u>mixing time</u> is # steps needed to get ϵ -close to the stationary distribution π . Formally:

For a start state x, let $\sigma_{\rm x}$ be the corresponding starting distribution. Then

 $t_{mix}(\epsilon) = minimum + such that for every x, <math>||\sigma_x P^+ - \pi||_{tv} < \epsilon$ where, for two distributions μ, ν , their <u>total variation</u> <u>distance</u> is

$$|\mu - \nu||_{\mathsf{tv}} = \frac{1}{2} \sum_{\mathsf{x} \in \Omega} |\mu(\mathsf{x}) - \nu(\mathsf{x})|$$

0.1

0.9

B

<u>Example:</u>

 $||(1,0,0) - (0,0.9,0.1)||_{tv} = \frac{1}{2}(1+0.9+0.1) = 1$ $||(0.5,0.4,0.1) - (0.6,0.4,0)||_{tv} = \frac{1}{2}(0.1+0.1) = 0.1$

Thm: An ergodic MC has a unique stationary distribution.

 $\pi \mathbf{P} = \pi$

Observations:

- Eigenvalue: 1, with eigenvector π
- \bullet All eigenvalues, in absolute value, ≤ 1
- Mixing time depends on the <u>spectral gap</u> (difference between 1 and the 2nd largest eigenvalue in absolute value)

<u>Thm</u>: For an ergodic MC, let $1 = \lambda_1 > \lambda_2 \ge ... \ge \lambda_{\min}$ be the eigenvalues and $\pi_{\min} = \min_x \pi(x)$. Then $t_{mix}(\varepsilon) \le \frac{1}{1 - \max\{|\lambda_2|, |\lambda_{\min}|\}} \log\left(\frac{1}{\varepsilon \pi_{\min}}\right)$ $t_{mix}(\varepsilon) \ge \frac{|\lambda_2|}{1 - \max\{|\lambda_2|, |\lambda_{\min}|\}} \log\left(\frac{1}{2\varepsilon}\right)$

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

G:

[q] = {● ,○ ,○ ,● ,

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

G:

[q] = {● ,○ ,○ ,●

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

- 1. $|\Omega| \leq q^n$ where n = #vertices
- 2. aperiodic (self-loops)

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

- 1. $|\Omega| \leq q^n$ where n = #vertices
- 2. aperiodic (self-loops)
- 3. not irreducible ...

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

- 1. $|\Omega| \leq q^n$ where n = #vertices
- 2. aperiodic (self-loops)
- 3. not irreducible ...

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

- 1. $|\Omega| \leq q^n$ where n = #vertices
- 2. aperiodic (self-loops)
- 3. if q > maxdeg+1 then irreducible

Given is a graph G and a set [q]. A <u>coloring</u> assigns to each vertex a color from [q], so that adjacent vertices have different colors. Let Ω be the set of all colorings.

MC on Ω :

- 1. Choose a random vertex v and a random color c.
- 2. If no neighbor of v is colored by c, recolor v by c, otherwise, do nothing.

- 1. $|\Omega| \leq q^n$ where n = #vertices
- 2. aperiodic (self-loops)
- 3. if q > maxdeg+1 then irreducible

A MC on Colorings:

- ergodic: unique stationary distribution π
- transition probability for neighboring x,y: P(x,y) = 1/(nq)

A MC on Colorings:

- ergodic: unique stationary distribution π
- transition probability for neighboring x,y: P(x,y) = 1/(nq)
- symmetric: P(x,y)=P(y,x)

A MC on Colorings:

- ergodic: unique stationary distribution π
- transition probability for neighboring x,y: P(x,y) = 1/(nq)
- symmetric: P(x,y)=P(y,x)

A MC on Colorings:

- ergodic: unique stationary distribution $\pi = 1/|\Omega|$ (uniform)
- transition probability for neighboring x,y: P(x,y) = 1/(nq)

symmetric: P(x,y)=P(y,x)

A MC on Colorings:

- ergodic: unique stationary distribution $\pi = 1/|\Omega|$ (uniform)
- transition probability for neighboring x,y: P(x,y) = 1/(nq)

symmetric: P(x,y)=P(y,x)

More generally:

A MC is <u>reversible</u>, if there is a distribution π such that:

 $\pi(x) P(x,y) = \pi(y) P(y,x)$

[Also known as detailed balance condition.] Then, π is stationary.

<u>Want:</u> to sample from a target distribution π

How (Metropolis filter):

• start with a symmetric ergodic MC ($\Omega, P')$ -> uniform stationary distribution

• modify the probability of a move from x to y as follows:

$$P(x,y) = \min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

A MC is <u>reversible</u>, if there is a distribution π such that: $\pi(x) P(x,y) = \pi(y) P(y,x)$ [Also known as <u>detailed balance condition</u>.]

Then, π is stationary.

$\underline{\mathbf{Want:}}$ to sample from a target distribution π

How (Metropolis filter):

- start with a symmetric ergodic MC (Ω ,P') -> uniform stationary distribution
- modify the probability of a move from x to y as follows:

$$P(x,y) = min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

- 1. Choose a random vertex v and a random color c.
- 2. If can recolor v by c and recoloring it
 - a) increases (\geq) # red vertices: recolor v by c
 - b) decreases # red vertices: recolor v by c with probability 1/lpha

$\underline{\mathbf{Want:}}$ to sample from a target distribution π

How (Metropolis filter):

- start with a symmetric ergodic MC ($\Omega, P')$ -> uniform stationary distribution
- modify the probability of a move from x to y as follows:

$$P(x,y) = min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

- 1. Choose a random vertex v and a random color c.
- 2. If can recolor v by c and recoloring it
 - a) increases (\geq) # red vertices: recolor v by c
 - b) decreases # red vertices: recolor v by c with probability 1/lpha

$\underline{\mathbf{Want:}}$ to sample from a target distribution π

How (Metropolis filter):

- start with a symmetric ergodic MC ($\Omega, P')$ -> uniform stationary distribution
- modify the probability of a move from x to y as follows:

$$P(x,y) = min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

- 1. Choose a random vertex v and a random color c.
- 2. If can recolor v by c and recoloring it
 - a) increases (\geq) # red vertices: recolor v by c
 - b) decreases # red vertices: recolor v by c with probability 1/lpha

$\underline{\mathbf{Want:}}$ to sample from a target distribution π

How (Metropolis filter):

- start with a symmetric ergodic MC ($\Omega, P')$ -> uniform stationary distribution
- modify the probability of a move from x to y as follows:

$$P(x,y) = min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

- 1. Choose a random vertex v and a random color c.
- 2. If can recolor v by c and recoloring it
 - a) increases (\geq) # red vertices: recolor v by c
 - b) decreases # red vertices: recolor v by c with probability 1/lpha

$\underline{\mathbf{Want:}}$ to sample from a target distribution π

How (Metropolis filter):

- start with a symmetric ergodic MC ($\Omega,\!P')$ -> uniform stationary distribution
- modify the probability of a move from x to y as follows:

$$P(x,y) = min \{ \pi(y)/\pi(x), 1 \} P'(x,y)$$

- 1. Choose a random vertex v and a random color c.
- 2. If can recolor v by c and recoloring it
 - a) increases (\geq) # red vertices: recolor v by c
 - b) decreases # red vertices: recolor v by c with probability 1/lpha

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

A matching

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

<u>Example:</u>

Another perfect matching

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

A perfect matching

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Known:

- Finding a maximum matching can be done in polynomial time [O(m√n) Micali-Vazirani '80]
- Counting perfect matchings is #P-complete [Valiant '79]

Goal: Approximate counting

Suppose we can sample a uniformly random matching.

Then:

Suppose we can sample a uniformly random matching.

Then:

Suppose we can sample a uniformly random matching.

Then:

Suppose we can sample a uniformly random matching.

Then:

Suppose we can sample a uniformly random matching.

Then:

Estimator:

Indicator random variable X, =1 if matching does not contain e and =0 otherwise

Estimator:

Indicator random variable X, =1 if matching does not contain e and =0 otherwise

E[X] = # matchings
matchings

Observation:

 $1/2 \leq E[X] \leq 1$

Estimator:

Indicator random variable X, =1 if matching does not contain e and =0 otherwise

E[X] = # matchings
matchings

Observation:

 $1/2 \leq E[X] \leq 1$

(For every matching with edge e, we can remove it to get a matching without e.)

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let G₀ = G and G₁ = G-e, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let $G_0 = G$ and $G_1 = G$ -e, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let $G_0 = G$ and $G_1 = G-e$, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let $G_0 = G$ and $G_1 = G-e$, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let $G_0 = G$ and $G_1 = G-e$, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

E[X] = # matchings without e # matchings

• Let $G_0 = G$ and $G_1 = G-e$, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

 G_{24}

E[X] = # matchings without e # matchings

• Let G₀ = G and G₁ = G-e, then:

Suppose we can sample a uniformly random matching.

• Let e be an arbitrary edge. Use sampling to determine the fraction of matchings that do not use e.

 $E[X] = \frac{\# \text{ matchings without } e}{\# \text{ matchings in } G_0} = \frac{\# \text{ matchings in } G_1}{\# \text{ matchings in } G_0} = \frac{|M(G_1)|}{|M(G_0)|}$

- Let e_1, \dots, e_m be the edges of G. Let $G_i = G \{e_1, \dots, e_i\}$. Let • Let e_1, \dots, e_m be the eagles of C. Let G_1, \dots, G_m be the set of all matchings in G. Estimate: $|M(G_{i+1})|$ $|M(G_i)|$
- Then:

 $\frac{|\mathsf{M}(\mathsf{G}_1)|}{|\mathsf{M}(\mathsf{G}_0)|} \quad \frac{|\mathsf{M}(\mathsf{G}_2)|}{|\mathsf{M}(\mathsf{G}_1)|} \quad \frac{|\mathsf{M}(\mathsf{G}_3)|}{|\mathsf{M}(\mathsf{G}_2)|} \dots \quad \frac{|\mathsf{M}(\mathsf{G}_m)|}{|\mathsf{M}(\mathsf{G}_{m-1})|} = \frac{|\mathsf{M}(\mathsf{G}_m)|}{|\mathsf{M}(\mathsf{G}_0)|} = \frac{1}{|\mathsf{M}(\mathsf{G})|}$

[Self-reducibility]
From Sampling to Counting: Technicalities

Terminology:

- <u>Almost uniform sampler</u>: for a tolerance parameter δ >0, it produces a sample from a distribution within variation distance of δ from the uniform distribution
- Fully polynomial almost uniform sampler (FPAUS): runs in time polynomial in input size and log $1/\delta$
- <u>Randomized approximation scheme</u>: for a counting problem and error tolerance ϵ , produce an answer within (1+- ϵ) factor of the count with probability $\geq 3/4$
- Fully polynomial randomized approximation scheme (FPRAS): runs in time polynomial in input size and $1/\epsilon$

From Sampling to Counting: Technicalities

<u>Thm</u> [Jerrum-Valiant-Vazirani '86]:

FPAUS for sampling from all matchings => FPRAS for counting all matchings.

In particular, get an FPRAS with running time O(T(n,m, ϵ /(6m)) m²/ ϵ ²), where T(n,m, δ) is the running time of the FPAUS.

<u>Goal:</u> to design a Markov chain to sample matchings; better mixing time => better running time of the FPRAS