
The complexity of approximate counting
Part 1

Leslie Ann Goldberg, University of Oxford

Counting Complexity and Phase Transitions Boot Camp
Simons Institute for the Theory of Computing

January 2016



The Complexity of Approximate Counting

Relative Complexity and #BIS: This talk

Markov Chain Monte Carlo: Ivona Bezáková, Nayantara
Bhatnagar (next talk!)

Approximate Counting and Constraint Satisfaction
Problems David Richerby (Part 2)

Correlation Decay and Phase Transitions Yitong Yin

1



Credits

Cai, Chebolu, Dyer, Galanis, Greenhill, Guo, Gysel, Jerrum,
Kelk, Lapinskas, Martin, Paterson, Štefankovič, Vigoda

2



Example: The Potts model

Interaction strength γ > −1.

Set of spins [q].

Graph G = (V, E).

partition function

ZPotts(G; q,γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γδ({σ(u),σ(v)})

)

Configuration σ: assigns
spins to vertices

1 if spins are the same and
0 otherwise.

3



Example: The Potts model

Interaction strength γ > −1.

Set of spins [q].

Graph G = (V, E).

partition function

ZPotts(G; q,γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γδ({σ(u),σ(v)})

)
ferromagnetic γ > 0

Ising q = 2

3



Example: The Potts model

Interaction strength γ > −1.

Set of spins [q].

Graph G = (V, E).

partition function

ZPotts(G; q,γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γδ({σ(u),σ(v)})

)
γ = −1
counts proper
q-colourings

3



Example: The Potts model

Interaction strength γ > −1.

Set of spins [q].

Graph G = (V, E).

partition function

ZPotts(G; q,γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γδ({σ(u),σ(v)})

)

• “computational counting”: computing sums of products.

• In FP#P. We’ll focus on approximate counting within #P
(or within FP#P).

In #P up to “easily-computable factor”

3



Example: The Potts model

Interaction strength γ > −1.

Set of spins [q].

Graph G = (V, E).

partition function

ZPotts(G; q,γ) =
∑

σ:V→[q]

∏
e={u,v}∈E

(
1 + γδ({σ(u),σ(v)})

)

• “computational counting”: computing sums of products.

• In FP#P. We’ll focus on approximate counting within #P
(or within FP#P).

later λe

3



The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : Σ∗ → R.

Input:

instance x ∈ Σ∗

rational error tolerance ε ∈ (0, 1)

Output: Rational number z such that, for all x,

Pr
(

e−εf (x) 6 z 6 eεf (x)
)
>

3
4

.

FPRAS: Running time bounded by a polynomial in |x| and ε−1.

finite alphabet Σ

e.g., if f = ZPotts then x encodes G

4



The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : Σ∗ → R.

Input:

instance x ∈ Σ∗

rational error tolerance ε ∈ (0, 1)

Output: Rational number z such that, for all x,

Pr
(

e−εf (x) 6 z 6 eεf (x)
)
>

3
4

.

FPRAS: Running time bounded by a polynomial in |x| and ε−1.

z is a random variable, depending on the “coin
tosses” made by the algorithm”

4



The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : Σ∗ → R.

Input:

instance x ∈ Σ∗

rational error tolerance ε ∈ (0, 1)

Output: Rational number z such that, for all x,

Pr
(

e−εf (x) 6 z 6 eεf (x)
)
>

3
4

.

FPRAS: Running time bounded by a polynomial in |x| and ε−1.

e.g., if f = ZPotts then x encodes G and |x| = n.

4



“No FPRAS”: typically, we can’t even get close!

k · G: k disjoint copies of G.

ZPotts(k · G; q,γ) = ZPotts(G; q,γ)k.
Set k = O

( 1
ε

)
given a constant factor approximation to ZPotts(k · G; q,γ)
take k’th root
get FPRAS for ZPotts(G; q,γ).

contrast with optimisation!

An approximation within a polynomial factor would also suffice.

5



How difficult is it to FPRAS a problem in #P?

• It can be NP-hard

• But it can’t be much harder

• Valiant, Vazirani 1986 bisection technique

• #SAT can be approximated by a probabilistic
polynomial-time Turing machine using an oracle for SAT.

• Given an FPRAS for #SAT, obtain an FPRAS for any
problem in #P

under (randomised) polynomial-time Turing reductions

Obviously, an FPRAS for counting satisfying assignments will
tell you, with high probability, whether there is one.

6



How difficult is it to FPRAS a problem in #P?

• It can be NP-hard

• But it can’t be much harder

• Valiant, Vazirani 1986 bisection technique

• #SAT can be approximated by a probabilistic
polynomial-time Turing machine using an oracle for SAT.

• Given an FPRAS for #SAT, obtain an FPRAS for any
problem in #P

FPRAS for #SAT

6



How difficult is it to FPRAS a problem in #P?

• It can be NP-hard

• But it can’t be much harder

• Valiant, Vazirani 1986 bisection technique

• #SAT can be approximated by a probabilistic
polynomial-time Turing machine using an oracle for SAT.

• Given an FPRAS for #SAT, obtain an FPRAS for any
problem in #P

Cook’s theorem is
parsimonious

number of accepting computations of Turing machine/input pair =
number of satisfying assignments of the constructed formula

6



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g:

randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)
2 A meets the specification for being a RAS for f whenever

the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

apologies to Pilu Crescenzi (1997)!

7



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g: randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)
2 A meets the specification for being a RAS for f whenever

the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

Input: (x, ε) ∈ Σ∗ × (0, 1).
x is an instance of f

7



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g: randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)

2 A meets the specification for being a RAS for f whenever
the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

Input: (x, ε) ∈ Σ∗ × (0, 1).
x is an instance of f

w is an instance of g. 0 < δ < 1 is an error bound
satisfying δ−1 6 poly(|x|, ε−1)

7



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g: randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)
2 A meets the specification for being a RAS for f whenever

the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

Input: (x, ε) ∈ Σ∗ × (0, 1).
x is an instance of f

7



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g: randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)
2 A meets the specification for being a RAS for f whenever

the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

Input: (x, ε) ∈ Σ∗ × (0, 1).
x is an instance of f

7



Relative Complexity of Approximate Counting

f , g: functions from Σ∗ to N.

AP-reduction from f to g: randomised algorithm A for
computing f using an oracle for g.

1 A makes oracle calls (w, δ)
2 A meets the specification for being a RAS for f whenever

the oracle meets the specification for being a RAS for g

3 the run-time of A is polynomial in |x| and ε−1.

The class of functions with an FPRAS is closed under
AP-reducibility.

Input: (x, ε) ∈ Σ∗ × (0, 1).
x is an instance of f

7



An impossible goal (if NP 6= RP)

A dichotomy within #P:

FPRASable problems.

The rest.

Bordewich 2010

Let π be a problem in #P such that there is no FPRAS for π.
Then there is a problem π ′ ∈ #P such that

there is no FPRAS for π ′, and

π 66AP π
′.

All AP-interreducible

All AP-interreducible.
No FPRAS unless NP = RP

8



An impossible goal (if NP 6= RP)

A dichotomy within #P:

FPRASable problems.

The rest.

Bordewich 2010

Let π be a problem in #P such that there is no FPRAS for π.
Then there is a problem π ′ ∈ #P such that

there is no FPRAS for π ′, and

π 66AP π
′.

Like Ladner 1975 for P versus NP.

8



Three classes of interreducible classes within #P

FPRASable problems

Problems AP-interreducible with #BIS

Problems AP-interreducible with #SAT

Name #BIS
Instance A bipartite graph B.
Output The number of independent sets in B.

All problems in #P are AP-reducible to #SAT (since a parsimo-
nious reduction is an AP-reduction)

9



Another impossible goal

A trichotomy within #P:

FPRASable problems

Problems ≡AP #BIS

Problems ≡AP #SAT

Bordewich 2010

If there is no FPRAS for #BIS then there is a problem π in #P
that does not have an FPRAS such that #BIS 66AP π.

(Infinite hierarchy below #BIS)

We have candidates above #BIS
but nothing natural below

some settings where trichotomies arise ...
10



Graph Homomorphisms

Homomorphism from G to H
σ : V(G)→ V(H)

for every edge (u, v) ∈ E(G), (σ(u),σ(v)) ∈ E(H)

Name #HOMSTO(H).
Instance Graph G.
Output The number of homomorphisms from G to H.

11



connected 3-vertex H

No known trichotomy
for all H

12



A trichotomy for weighted homomorphisms to trees

Weighting function w : V(H)→ Q>0 assigns
non-negative rational weight to each vertex of H.

W(G, H) = {wv | v ∈ V(G)}.

ZH(G, W(G, H)) =
∑

σ∈Hom(G,H)

∏
v∈V(G)

wv(σ(v)).

13



A trichotomy for weighted homomorphisms to trees

Weighting function w : V(H)→ Q>0 assigns
non-negative rational weight to each vertex of H.

W(G, H) = {wv | v ∈ V(G)}.

ZH(G, W(G, H)) =
∑

σ∈Hom(G,H)

∏
v∈V(G)

wv(σ(v)).

weighting function
for each v ∈ V(G)

13



A trichotomy for weighted homomorphisms to trees

Weighting function w : V(H)→ Q>0 assigns
non-negative rational weight to each vertex of H.

W(G, H) = {wv | v ∈ V(G)}.

ZH(G, W(G, H)) =
∑

σ∈Hom(G,H)

∏
v∈V(G)

wv(σ(v)).

13



A trichotomy for weighted homomorphisms to trees

≡AP SAT

FP

≡AP #BIS

H has an induced J3

H is not a star.
H has no induced J3

(e.g, it is a “caterpillar”)

H is a star

14



A trichotomy for weighted homomorphisms to trees

≡AP SAT

FP

≡AP #BIS

H has an induced J3

H is not a star.
H has no induced J3

(e.g, it is a “caterpillar”)

H is a star

Open problems if H not a
tree

14



A trichotomy for weighted homomorphisms to trees

≡AP SAT

FP

≡AP #BIS

H has an induced J3

H is not a star.
H has no induced J3

(e.g, it is a “caterpillar”)

H is a star

Open problems unweighted

Some of red region is still #SAT-hard

14



Connection to the Potts model

For any q > 2 and any (efficiently approximable) γ, counting
homomorphisms to Jq is AP-equivalent to computing the
partition of the ferromagnetic q-state Potts model ZPotts(·; q,γ).

Jq is like J3 but with q branches

We’ll come back to the Potts
model

15



Approximate counting problems which are ≡AP #BIS

Counting downsets in a partial order

Graph homomorphism counting problems

Counting Constraint Satisfaction (#CSP) problems

Ferromagnetic Ising with mixed fields

Ferromagnetic Ising in a hypergraph
(even without fields)

Counting stable matchings (in general, or for
geometric preference models)

We’ve seen some.
See also [Kelk 2003]

part 2

follows also from
#CSP results

16



The ferro Ising partition function of a hypergraph

Interaction strength γ > 0.

ZIsing(H;γ) =
∑

σ:V→{0,1}

∏
f∈E

(
1 + γδ({σ(v) | v ∈ f })

)

By (Fortuin, Kasteleyn 1972) this is the same as the Tutte
polynomial version

ZTutte(H;γ) =
∑
F⊆E

2κ(F)γ|F|,

δ(S) = 1 if its argument is a singleton and 0 otherwise.

Back to Binary Matroid Ising

17



The ferro Ising partition function of a hypergraph

Interaction strength γ > 0.

ZIsing(H;γ) =
∑

σ:V→{0,1}

∏
f∈E

(
1 + γδ({σ(v) | v ∈ f })

)

By (Fortuin, Kasteleyn 1972) this is the same as the Tutte
polynomial version

ZTutte(H;γ) =
∑
F⊆E

2κ(F)γ|F|,

κ(F) is the number of connected components in (V, F):
think of the connected components of the underlying
graph if you replace hyperedges by cliques

Back to Binary Matroid Ising

17



The ferro Ising partition function of a hypergraph

Interaction strength γ > 0.

ZIsing(H;γ) =
∑

σ:V→{0,1}

∏
f∈E

(
1 + γδ({σ(v) | v ∈ f })

)

By (Fortuin, Kasteleyn 1972) this is the same as the Tutte
polynomial version

ZTutte(H;γ) =
∑
F⊆E

2κ(F)γ|F|,

Proof: “Integrate out” one of the sums in∑
σ:V→{0,1}

∑
F⊆E

∏
f∈F

γδ({σ(v) | v ∈ f })

Back to Binary Matroid Ising

17



#BIS 6AP Ferromagnetic Hypergraph Ising

a

b

c

d

e

R

B

G

U

V

F

IS with F on RHS: 2|U|−|Γ(F)|

ZTutte(H; 1) =
∑
F⊆E

2κ(F)

Vertices U ∪ {v}

Hyperedges
R = {a, b, c, v}
B = {c, d, v}
G = {d, e, v}

Contribution of F:
2κ(F) = 2|U|−Γ(F)+1.

Back to FerroPotts

18



Ferromagnetic Hypergraph Ising 6AP Downsets

ZIsing(H; 1) =
∑

σ:V→{0,1}

∏
f∈E

(
1 + δ({σ(v) | v ∈ f }

)

11111

?

1

f 00000

0

?

00111

0

1

Downsets in a partial order: Represent partial order as directed graph
(drawn on the slides with edges pointing down). Spin 1 forces all ver-
tices below to have spin 1

19



Ferromagnetic Hypergraph Ising 6AP Downsets

ZIsing(H; 1) =
∑

σ:V→{0,1}

∏
f∈E

(
1 + δ({σ(v) | v ∈ f }

)

11111

?

1

f 00000

0

?

00111

0

1

Then stretch and thicken to get other γ

19



Approximate counting problems which are ≡AP #BIS

Counting downsets in a partial order

Graph homomorphism counting problems

Counting Constraint Satisfaction (#CSP) problems

Ferromagnetic Ising with mixed fields

Ferromagnetic Ising in a hypergraph
(even without fields)

Counting stable matchings (in general, or for
geometric preference models)

Now place #BIS in logically defined class

20


	Potts model
	Potts model
	Potts model
	Potts model
	Potts model

