The complexity of approximate counting
Part 1

Leslie Ann Goldberg, University of Oxford

Counting Complexity and Phase Transitions Boot Camp
Simons Institute for the Theory of Computing
January 2016

The Complexity of Approximate Counting

@ Relative Complexity and #BIS: This talk

@ Markov Chain Monte Carlo: Ivona Bezakova, Nayantara
Bhatnagar (next talk!)

@ Approximate Counting and Constraint Satisfaction
Problems David Richerby (Part 2)

@ Correlation Decay and Phase Transitions Yitong Yin

Credits

Cai, Chebolu, Dyer, Galanis, Greenhill, Guo, Gysel, Jerrum,
Kelk, Lapinskas, Martin, Paterson, Stefankovi¢, Vigoda

Example: The Potts model

Interaction strength v > —1.

Set of spins [¢].

Graph G = (V,E). ‘ 1 if spins are the same and ’
0 otherwise.

partition function %4

Zoous (Gi4,v) = Z [T (+vstotu, o))

o:V—lql e={u,v}€E

A

Configuration o: assigns
spins to vertices

Example: The Potts model

Interaction strength v > —1.

Set of spins [¢].

Graph G = (V, E).

partition function [fe"omagﬁﬁc v>0 |

Zoous (Gi4,v) = Z [T (+vstotu, o))

o:V—lql e={u,v}€E

Example: The Potts model

Interaction strength v > —1.

Set of spins [¢].

Yy = —1
Graph G = (V,E). counts proper

g-colourings

partition function

Zoous (Gi4,v) = Z [T (+vstotu, o))

o:V—lql e={u,v}€E

Example: The Potts model

Interaction strength vy > —1.
Set of spins [¢].
Graph G = (V,E).

partition function

Zpous(G3 4, Y) = Z [T (+vsolw), o))

0:V—=lq] e={uyv}€E

e “computational counting”: computing sums of products.

e In FP* We'll focus on approximate counting within #P
(or within FP#P). ™

[In #P up to “easily-computable factor”

Example: The Potts model

Interaction strength vy > —1.
Set of spins [¢].
Graph G = (V,E).

partition function

Zoous (G q,7) = Z [T (+vs(otu), o))

0:V—=lq] e={uyv}€E

e “computational counting”: computing sums of products.

e In FP* We'll focus on approximate counting within #P
(or within FP#P).

The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : * — R.
[finite alphabet £]

Input: 7

@ instance x € X*

@ rational error tolerance ¢ € (0, 1)

[e.g., if f = Zpoys then x encodes G]

The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : * — R.

Input:

@ instance x € X*

@ rational error tolerance ¢ € (0, 1)

Output: Rational number z such that, for all x,

Pr(e () <2< () > 3.

z is a random variable, depending on the “coin
tosses” made by the algorithm”

The goal: an FPRAS

A randomised approximation scheme (RAS) is an algorithm for
approximately computing the value of a function f : * — R.

Input:

@ instance x € X*

@ rational error tolerance ¢ € (0, 1)

Output: Rational number z such that, for all x,

Pr(e () <2< () > 3.

FPRAS: Running time bounded by a polynomial in |x| and ¢~ !.

[e.g., if f = Zpoys then x encodes G and |x| = n.]

“No FPRAS”: typically, we can’t even get close!

@ k- G: k disjoint copies of G.

® Zpous(k - G;q,v) = Zpous(G; ¢, V)" [contrast with optimisation!]

@ Setk=0(1) /
@ given a constant factor approximation to Zpys(k - G; q,v)

o take k’th root
o get FPRAS for Zpos (G; q,v).

[An approximation within a polynomial factor would also suffice.]

How difficult is it to FPRAS a problem in #P?

[under (randomised) polynomial-time Turing reductions]

I
e It can be NP-hard

Obviously, an FPRAS for counting satisfying assignments will
tell you, with high probability, whether there is one.

How difficult is it to FPRAS a problem in #P?

e It can be NP-hard
e But it can’t be much harder
¢ Valiant, Vazirani 1986 bisection technique

e #SAT can be approximated by a probabilistic

polynomial-time Turing machine using an oracle for SAT.

™

(FPRAS for #SAT

)

How difficult is it to FPRAS a problem in #P?

e It can be NP-hard
e But it can’t be much harder
¢ Valiant, Vazirani 1986 bisection technique

e #SAT can be approximated by a probabilistic
polynomial-time Turing machine using an oracle for SAT.

e Given an FPRAS for #SAT, obtain an FPRAS for any

. NN
problem in #P Cook’s theorem is

parsimonious

number of accepting computations of Turing machine/input pair =
number of satisfying assignments of the constructed formula

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g:
flog {apologies to Pilu Crescenzi (1997)!]

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g: randomised algorithm A for

computing f using an oracle for g. [Input: (x,¢) € £* x (0, 1).
x is an instance of f

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g: randomised algorithm A for

computing f using an oracle for g. [Input: (x,¢) € £* x (0, 1).
x is an instance of f

@ A makes oracle calls (w, d)

w is an instance of g. 0 < & < 1 is an error bound
satisfying 6! < poly(|x|, e~')

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g: randomised algorithm A for

computing f using an oracle for g. [Input: (x,¢) € £* x (0, 1).
x is an instance of f

@ A makes oracle calls (w, d)

@ A meets the specification for being a RAS for f whenever
the oracle meets the specification for being a RAS for g

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g: randomised algorithm A for

computing f using an oracle for g. [Input: (x,¢) € £* x (0, 1).
x is an instance of f

@ A makes oracle calls (w, d)

@ A meets the specification for being a RAS for f whenever
the oracle meets the specification for being a RAS for g

© the run-time of A is polynomial in x| and ¢ ~'.

Relative Complexity of Approximate Counting

f, g: functions from £* to N.

AP-reduction from f to g: randomised algorithm A for

computing f using an oracle for g. [Input: (x,¢) € £* x (0, 1).
x is an instance of f

@ A makes oracle calls (w, d)

@ A meets the specification for being a RAS for f whenever
the oracle meets the specification for being a RAS for g

© the run-time of A is polynomial in x| and ¢ ~'.

The class of functions with an FPRAS is closed under
AP-reducibility.

An impossible goal (if NP # RP)

A dichotomy within #P:

@ FPRASable problems. {AII AP-interreducible |

All AP-interreducible.

@ The rest.
{No FPRAS unless NP = RP

An impossible goal (if NP # RP)

A dichotomy within #P:

@ FPRASable problems.

@ The rest.

Bordewich 2010 {Like Ladner 1975 for P versus NP.

Let 7t be a problem in #P such that there is no FPRAS for 7.
Then there is a problem n’ € #P such that

@ there is no FPRAS for nt/, and

QT ;{Ap 7.

Three classes of interreducible classes within #P

@ FPRASable problems
@ Problems AP-interreducible with #BIS
@ Problems AP-interreducible with #SAT

Name #BIS
Instance A bipartite graph B.
Output The number of independent sets in B.

All problems in #P are AP-reducible to #SAT (since a parsimo-
nious reduction is an AP-reduction)

Another impossible goal

A trichotomy within #P:

@ FPRASable problems
@ Problems =pp #BIS
@ Problems =pp #SAT

Bordewich 2010

If there is no FPRAS for #BIS then there is a problem 7t in #P
that does not have an FPRAS such that #BIS €£ap 7.

(Infinite hierarchy below #BIS)
™

We have candidates above #BIS
but nothing natural below

some settings where trichotomies arise ...

Graph Homomorphisms

Homomorphism from G to H
o:V(G) — V(H)
for every edge (u,v) € E(G), (o(u),o(v)) € E(H)

o—8 S

Name #HOMSTO(H).
Instance Graph G.
Output The number of homomorphisms from G to H.

connected 3-vertex H

No known trichotomy
for all H

s &%
o % o'y &%
oo g% ot ot

A trichotomy for weighted homomorphisms to trees

Weighting function w: V(H) — Qx> assigns
non-negative rational weight to each vertex of H.

A trichotomy for weighted homomorphisms to trees

C . . weighting function
Weighting function w: V(H) — Q30 assigns for each v € V(G)

non-negative rational weight to each vertex of H.

W(G,H) ={w, | v € V(G)}.

A trichotomy for weighted homomorphisms to trees

Weighting function w: V(H) — Qx> assigns
non-negative rational weight to each vertex of H.

W(G,H) ={w, | v € V(G)}.

Zw(GW(GH) = >] wlo).

ocHom(G,H) veV(G)

A trichotomy for weighted homomorphisms to trees

H has an induced J;

H is not a star.
H has no induced J;
(e.g, itis a “caterpillar”)

H is a star

A trichotomy for weighted homomorphisms to trees
i

Open problems if H not a
tree

H has an induced J;

H is not a star.
H has no induced J;
(e.g, itis a “caterpillar”)

H is a star

A trichotomy for weighted homomorphisms to trees
[Open probEms unweighted]

Some of red region is still #SAT-hard
H has an induced J;3

H is not a star.
H has no induced J;
(e.g, itis a “caterpillar”)

H is a star

Connection to the Potts model

For any ¢ > 2 and any (efficiently approximable) v, counting
homomorphisms to J, is AP-equivalent to computing the
partition of the ferromagnetic ¢-state Potts model Zpyys(-; q,v)-

[Jq is like J; but with ¢ branches]

We'll come back to the Potts ’
model

Approximate counting problems which are =pp #BIS

We've seen some.
See also [Kelk 2003]

@ Graph homomorphism counting problems “
s

@ Counting Constraint Satisfaction (#CSP) problem

@ Counting downsets in a partial order

@ Ferromagnetic Ising with mixed fields

. o follows also from
@ Ferromagnetic Ising in a hypergraph | xcsp results

(even without fields)

@ Counting stable matchings (in general, or for
geometric preference models)

The ferro Ising partition function of a hypergraph

Interaction strength v > 0.

Ziing(Hiy) =)] +v38{o) |verh)

0:V—{0,1} fEE

[S(S) = 1 if its argument is a singleton and 0 otherwise.]

Back to Binary Matroid Ising

The ferro Ising partition function of a hypergraph

Interaction strength v > 0.

Ziing(Hiy) =)] +v38{o) |verh)

0:V—{0,1} fEE

By (Fortuin, Kasteleyn 1972) this is the same as the Tutte
polynomial version

ZTutte H Y Z 2K lFl
FCE
k(F) is the number of connected components in (V, F):
think of the connected components of the underlying
graph if you replace hyperedges by cliques

Back to Binary Matroid Ising

The ferro Ising partition function of a hypergraph
Interaction strength v > 0.

Ziing(Hiy) =)] +v38{o) |verh)

0:V—{0,1} fEE

By (Fortuin, Kasteleyn 1972) this is the same as the Tutte
polynomial version

ZTutte H V Z 2K lFl
FCE

Proof: “Integrate out” one of the sums in

> > [Ivste Iverh

0:V—{0,1} FCE feF

Back to Binary Matroid Ising

#BIS <ap Ferromagnetic Hypergraph Ising

IS with F on RHS; 2/UVI=IT(F)]

Back to FerroPotts

ZTutte H l

-3

FCE

@ Vertices U U {v}

@ Hyperedges
R={a,b,c,v}
B ={c,d,v}
G ={d, e, v}

Contribution of F:
2&(F) — olUI=T(F)+1

Ferromagnetic Hypergraph Ising <ap Downsets

Downsets in a partial order: Represent partial order as directed graph
(drawn on the slides with edges pointing down). Spin 1 forces all ver-
tices below to have spin 1

Ferromagnetic Hypergraph Ising <ap Downsets

ZIsing(H;l): Z H 1+ 06({o(v |V€f})

0:V—{0,1} fEE

[Then stretch and thicken to get other y]

Approximate counting problems which are =pp #BIS

@ Counting downsets in a partial order

@ Graph homomorphism counting problems

@ Counting Constraint Satisfaction (#CSP) problems

@ Ferromagnetic Ising with mixed fields

@ Ferromagnetic Ising in a hypergraph
(even without fields)

@ Counting stable matchings (in general, or for
geometric preference models)

[Now place #BIS in logically defined class]

20

	Potts model
	Potts model
	Potts model
	Potts model
	Potts model

