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Overview

Introduction to the Classification Program of Counting Problems.

When is a problem easy, when is it hard?

Dichotomy Theorems.

Three frameworks to address this question:

1 Spin Systems/Graph Homomorphisms
2 #CSP
3 Holant

Holographic Reductions. Holographic Algorithms. Matchgates.

http://www.cs.wisc.edu/~jyc/dichotomy-book.pdf
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Counting Problems

Valiant defined the class #P, and established the first #P-completeness
results.

We would like to classify broad classes of counting problems.

Some counting problems are #P-complete even though their
corresponding decision problems are in P. e.g., 2SAT, Perfect Matchings.

Some counting problems are #P-hard for general graphs, but in P-time for
planar graphs.

Counting PM over planar graphs is in P.
This is known as the FKT Algorithm (Fisher, Kasteleyn, and Temperley).
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Pfaffian

The fact that Pfaffians are more fundamental than determinants,
. . .

—Donald Knuth: “Overlapping Pfaffians”

An n×n matrix A is called skew-symmetric if Ai ,j = −Aj ,i , for 1 ≤ i , j ≤ n.

E.g.,

A =


0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0

 .

Then there is a matrix function called the Pfaffian.

Pf(A) = x12x34 − x13x24 + x14x23.
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Pfaffian

The Pfaffian of an n × n skew-symmetric matrix A is defined as follows.
Suppose n = 2k ≥ 2 is even, then

Pf(A) =
∑
π

sign(π)Ai1,i2Ai3,i4 · · ·Ai2k−1,i2k (1)

where the sum is over all permutations π =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
such that,

i1 < i2, i3 < i4, . . . , i2k−1 < i2k and i1 < i3 < . . . < i2k−1. (2)

The value sign(π) in (1) denotes the parity of π; it is +1 or −1 depending
on whether π is an even or odd permutation, respectively.
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Pfaffian and Perfect Matchings

There is a natural 1-1 correspondence between the terms in the Pfaffian
expression, or equivalently, permutations π satisfying the stipulation (2)
and partitions of [n] into disjoint pairs

π̃ = {{i1, i2}, {i3, i4}, . . . , {i2k−1, i2k}}.

For any permutation π =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
, not necessarily satisfying the

stipulation (2), define

aπ = sign(π)Ai1,i2Ai3,i4 · · ·Ai2k−1,i2k .

Observation: If π̃ = π̃′, then aπ = aπ′ , i.e., the expression aπ has the same
value if we list the partition π̃ = {{i1, i2}, {i3, i4}, . . . , {i2k−1, i2k}} in any
order of the pairs, as well as in any order of the two labels of each pair.
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Crossover

We say two pairs of labels i2j−1 < i2j and i2`−1 < i2` form a crossover, or
an overlapping pair, iff

i2j−1 < i2`−1 < i2j < i2` or i2`−1 < i2j−1 < i2` < i2j .

Suppose π satisfies stipulation (2).

Let c(π) be the number of crossovers among the pairs in the partition π̃.
Then

sign(π) = (−1)c(π).
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Crossover and Parity

To see that sign(π) = (−1)c(π), consider any permutation π and consider
a sequence of adjacent transpositions which moves the sequence

(1, 2, . . . , 2k − 1, 2k) −→ (i1, i2, . . . , i2k−1, i2k).

We have i1 = 1 by (2). The number of transpositions that will bring i2 to
the position right after 1 is the number of labels strictly between i1 = 1
and the number i2, and has the same parity as the number of crossovers
the pair {i1, i2} forms with all other pairs {{i3, i4}, . . . , {i2k−1, i2k}} in π̃.

After i1, i2 are placed in the first two positions, if n > 2, then i3 is the
minimum among all other labels by (2), and is currently located right after
the first two elements. Then we move i4 to the position right after i3. The
proof is completed by induction.

26 / 130



Crossover and Parity

To see that sign(π) = (−1)c(π), consider any permutation π and consider
a sequence of adjacent transpositions which moves the sequence

(1, 2, . . . , 2k − 1, 2k) −→ (i1, i2, . . . , i2k−1, i2k).

We have i1 = 1 by (2). The number of transpositions that will bring i2 to
the position right after 1 is the number of labels strictly between i1 = 1
and the number i2, and has the same parity as the number of crossovers
the pair {i1, i2} forms with all other pairs {{i3, i4}, . . . , {i2k−1, i2k}} in π̃.

After i1, i2 are placed in the first two positions, if n > 2, then i3 is the
minimum among all other labels by (2), and is currently located right after
the first two elements. Then we move i4 to the position right after i3. The
proof is completed by induction.

27 / 130



Crossover and Parity

To see that sign(π) = (−1)c(π), consider any permutation π and consider
a sequence of adjacent transpositions which moves the sequence

(1, 2, . . . , 2k − 1, 2k) −→ (i1, i2, . . . , i2k−1, i2k).

We have i1 = 1 by (2). The number of transpositions that will bring i2 to
the position right after 1 is the number of labels strictly between i1 = 1
and the number i2, and has the same parity as the number of crossovers
the pair {i1, i2} forms with all other pairs {{i3, i4}, . . . , {i2k−1, i2k}} in π̃.

After i1, i2 are placed in the first two positions, if n > 2, then i3 is the
minimum among all other labels by (2), and is currently located right after
the first two elements. Then we move i4 to the position right after i3. The
proof is completed by induction.

28 / 130



Pfaffian and Determinant

The Pfaffian can be computed in polynomial time. A key relation to
determinant is the following theorem.

Theorem

For any n × n skew-symmetric matrix A,

det(A) = [Pf(A)]2.
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Pfaffian as a Polynomial

Let G = (V ,E ) be a simple undirected graph without self loops and
parallel edges. Suppose the vertices of G are labeled by a totally ordered
set, e.g, V = {1, 2, . . . , n}.

Assign an indeterminate xe for every edge e = {u, v} ∈ E . Then we define
the skew-symmetric adjacency matrix A = A(G ) of the graph G to be

Au,v =


xe if e = {u, v} ∈ E and u < v
−xe if e = {u, v} ∈ E and u > v

0 if {u, v} 6∈ E
(3)

Denote by M(G ) the set of all perfect matchings of G .

For any permutation π, the partition π̃ is a perfect matching iff all pairs
are edges.
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Weight of a Perfect Matching

There is a 1-1 correspondence between non-zero terms in Pf(A) and
M(G ).

For any M ∈M(G ) there are 2kk! permutations of the form

π′ =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
that can represent M, i.e., π̃′ = M.

We define the weight of a perfect matching M in G to be

Γ(M) = ΓG (M) =
∏
e∈M

xe .

34 / 130



Weight of a Perfect Matching

There is a 1-1 correspondence between non-zero terms in Pf(A) and
M(G ).

For any M ∈M(G ) there are 2kk! permutations of the form

π′ =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
that can represent M, i.e., π̃′ = M.

We define the weight of a perfect matching M in G to be

Γ(M) = ΓG (M) =
∏
e∈M

xe .

35 / 130



Weight of a Perfect Matching

There is a 1-1 correspondence between non-zero terms in Pf(A) and
M(G ).

For any M ∈M(G ) there are 2kk! permutations of the form

π′ =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
that can represent M, i.e., π̃′ = M.

We define the weight of a perfect matching M in G to be

Γ(M) = ΓG (M) =
∏
e∈M

xe .

36 / 130



Orientation

An orientation of a graph G assigns one direction to each edge of G .

We denote by u → v if the edge {u, v} is oriented from u to v .
We say u is its tail, and v is its head.

For an oriented graph
−→
G we modify the skew-symmetric matrix A to be

B = B(
−→
G ):

Bu,v =


xe if e = {u, v} ∈ E and u → v
−xe if e = {u, v} ∈ E and v → u

0 if {u, v} 6∈ E
(4)

In other words, we change the sign at both entries Au,v and Av ,u provided

u < v and {u, v} is oriented v → u.
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Pfaffian Term

Given an orientation, we can consider the Pfaffian of B

Pf(B) =
∑
π

sign(π)Bi1,i2Bi3,i4 · · ·Bi2k−1,i2k . (5)

For a perfect matching M in an oriented graph
−→
G , suppose M = π̃, define

the Pfaffian term

Pf−→
G

(M) = sign(π)Bi1,i2Bi3,i4 · · ·Bi2k−1,i2k . (6)

We can choose any permutation π representing M, and the value Pf−→
G

(M)
is invariant; it only depends on M.

It is a term in Pf(B) when π is the canonical expression for M and it is
equal to either ΓG (M) or its negation −ΓG (M).
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Sign of a Perfect Matching

Definition

For any perfect matching M in an oriented graph
−→
G , the sign of the

perfect matching M with respect to this orientation is

sgn(M) =
Pf−→

G
(M)

ΓG (M)
∈ {−1, 1}. (7)

We note that sgn(M) can be computed with any permutation π with
partition π̃ = M, due to the invariance of Pf−→

G
(M).

In particular, sgn(M) can be computed simply as the sign of the

permutation π =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
where each matching edge

{i2`−1, i2`} ∈ M is listed by its orientation i2`−1 → i2`.
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We note that sgn(M) can be computed with any permutation π with
partition π̃ = M, due to the invariance of Pf−→

G
(M).

In particular, sgn(M) can be computed simply as the sign of the

permutation π =
(

1 2 . . . 2k
i1 i2 . . . i2k

)
where each matching edge

{i2`−1, i2`} ∈ M is listed by its orientation i2`−1 → i2`.
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If We Have Two Perfect Matchings

Let M and M ′ be two perfect matchings.

The symmetric difference M ⊕M ′ consists of a set of cycles of even length
that are alternating between edges from M and M ′.

For any orientation on a graph G , if C is a cycle of even length, then we
say it is evenly oriented if there are an even number of edges oriented in
one direction, and oddly oriented otherwise.

Clearly this notion does not depend on the direction since C has an even
length.
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A Key Lemma

Lemma

For and perfect matchings M and M ′ in an oriented graph G , if k is the
number of evenly oriented cycles in M ⊕M ′, then

sgn(M) · sgn(M ′) = (−1)k .

Proof Sketch:
1. If equality holds for one orientation then it holds for all orientations.
2. Choose one orientation such that it gives a cyclic orientation on each
cycle of M ⊕M ′. Orient all other edges arbitrarily. Then k is the number
of cycles in M ⊕M ′.
3. We may relabel the vertices of G .
4. Sequentially label each cycle of M ⊕M ′ starting at the tail of an edge
in M.
5. After all cycles of M ⊕M ′ are done, label all remaining vertices so that
each edge in M ∩M ′ is labeled consecutively with the next unused
integers, and increasing from tail to head.
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Key Lemma Continued

Now the Pfaffian term Pf−→
G

(M) for M is just the product of all edge
weights ΓG (M). This is seen easily if we write bπ in the way where the
permutation π is the identity, and we list all matched edges in the oriented
order.

For the Pfaffian term bπ′ corresponding to M ′, we still list the product
part Bi1,i2Bi3,i4 · · ·Bi2k−1,i2k in the oriented order for each matched edge.
The sign(π′) for the permutation is as follows:

The part for the first cycle of length 2` in M ⊕M ′ has the form(
1 2 . . . 2`− 1 2`
2 3 . . . 2` 1

)
, which is an even cycle as a permutation, and has

an odd parity.

The permutation π′ is a product of these disjoint cycles in the permutation
group. Hence it has parity sign(π′) = (−1)k .
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Pfaffian Orientation

Definition

An orientation of a connected plane graph is called a Pfaffian orientation if
along the boundary of every non-outer face, there are an odd number of
clockwise oriented edges.

We have the following Pfaffian Orientation Lemma

Lemma

Any Pfaffian orientation in a connected plane graph G satisfies the
following property: For every cycle C , the number of clockwise oriented
edges of C is of the opposite parity to the number of vertices contained
within C . (This number does not include the vertices on the cycle C).
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Pfaffian Orientation Continued

Proof: Let V and E be the number of vertices and edges contained within
C , and let ` be the number of edges on C , which is also the number of
vertices on C .

The vertices contained within C are those in the interior of the region
bounded by C ; they do not include those on the cycle C . Similarly the
edges within C do not include those on C .

Suppose there are F faces bounded by C , and let ci be the number of
clockwise oriented edges on the boundary of the i-th face (1 ≤ i ≤ F).
Each ci is odd by assumption, therefore F ≡∑F

i=1 ci (mod 2).

By Euler’s formula, counting the face formed by the exterior of C , we have
(V + `)− (E + `) + (F + 1) = 2. It follows that

E = V + F− 1.
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Pfaffian Orientation Continued

We have
E = V + F− 1

If we add up all the clockwise oriented edges among all boundary edges in
F faces, each interior edge within C regardless orientation contributes one
and each clockwise oriented edge on C contributes one. Hence∑F

i=1 ci = E + c , where c is the number of clockwise oriented edges on C .

It follows that

F ≡
F∑

i=1

ci = E + c = V + F− 1 + c (mod 2),

and hence V + c = 1 (mod 2).
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Pfaffian Orientation and Perfect Matchings

For every cycle of M ⊕M ′, any inside vertex cannot match any outside
vertex. Hence the cycle contains a perfect matching (possibly empty) in
its interior.

So the number of vertices within the cycle must be even.

Each cycle of M ⊕M ′ has an even length, consisting of alternatingly edges
from M and M ′.

By the Pfaffian Orientation Lemma just proved, the cycle is oddly oriented.

By the Key Lemma proved earlier, sgn(M) · sgn(M ′) = 1.

Hence, with respect to a Pfaffian orientation every two perfect matchings
M and M ′ must have the same sign: sgn(M) = sgn(M ′).
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PerfMatch Polynomial

Hence for a Pfaffian orientation, every Pfaffian term has the same sign.

Definition

The perfect matching polynomial is the following:

PerfMatch(G ) =
∑

M∈M(G)

∏
e∈M

xe (8)

If we assign xe = 1, then PerfMatch(G ) counts the number of perfect
matchings in G .
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Kasteleyn’s Algorithm a.k.a. FKT

Theorem (Kasteleyn)

Every connected planar graph has a Pfaffian orientation. Such an
orientation can be constructed in polynomial time, leading to a polynomial
time algorithm to compute PerfMatch(G ) for any weighted planar graph
G .

Intuitively, one can “grow” from inside out, face by face, to extend to a
Pfaffian orientation.

This is technically not quite right . . .
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Kasteleyn’s Algorithm

Assume G is a connected planar graph, and given a planar embedding.

If G is a tree, then any orientation is acceptable.

If G is not a tree, then choose any edge on the boundary of the outer face
which belongs to a cycle.

Such an edge exists by a simple induction.

Let F be the non-outer face containing this edge e. By induction we can
construct a Pfaffian orientation for G − {e}, the graph with the same
vertex set as G but with edge e removed.

Now add e back, and orient e appropriately we can guarantee that F also
has an odd number of clockwise oriented edges.
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Kasteleyn’s Algorithm

For a Pfaffian orientation, let B = B(
−→
G ) be the skew-symmetric matrix.

Then either Pf(B) = PerfMatch(G ) or Pf(B) = −PerfMatch(G ).

The equality is a polynomial equality: for the given Pfaffian orientation,
either + holds for all weight values, or − holds for all weight values.

Setting all weight values to 1, we can decide which sign is valid for the
particular orientation (unless there is no perfect matching and G is
non-empty, in which we can safely output PerfMatch(G ) = 0).

Then we can compute PerfMatch(G ) for the actual weight values.

If G has connected components G1,G2, . . . ,Gm, then

PerfMatch(G ) =
m∏
i=1

PerfMatch(Gi ).
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Matchgates

Definition

A matchgate is an undirected weighted plane graph G with a subset of
distinguished nodes on its outer face, called the external nodes, ordered in
a clockwise order.

Let G be a matchgate with k external nodes. For each α ∈ {0, 1}k , G
defines a subgraph Gα obtained from G by moving all external nodes i
(and incident edges) such that αi = 1.

Definition

We define the signature of a matchgate G as the vector ΓG = (ΓαG ),
indexed by α ∈ {0, 1}k in lexicographic order, as follows:

ΓαG = PerfMatch(Gα) =
∑

M∈M(Gα)

∏
e∈M

w(e). (9)
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Perfect Matchings as a Holant Sum

Counting the number of Perfect Matchings can be viewed as follows:

A graph G is given, where every vertex v is labeled by an Exact-One
function fv of arity deg(v).

We then consider

Holant(G ) =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)).

Each product term gives a one if σ−1(1) is a Perfect Matching, and zero
otherwise.
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Holant Sum

Definition

Let F be a set of constraint functions (signatures). A signature grid is a
tuple Ω = (G , π) where π assigns a function f ∈ F to each vertex of G .

Definition

For a set of signatures F , Holant(F) is the following class of problems:
Input: A signature grid Ω = (G , π) over F ;
Output:

Holant(Ω;F) =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where

E (v) denotes the incident edges of v and

σ |E(v) denotes the restriction of σ to E (v), and fv (σ |E(v)) is the
evaluation of fv on the ordered input tuple σ |E(v).
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Some Problems

#PL-3-NAE-ICE
Input: A planar graph G = (V ,E ) of maximum degree 3.
Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations.

For simplicity suppose G is 3-regular.

Let f (x , y , z) be the Not-All-Equal function. This is the constraint at
every vertex.

If f is a symmetric function on {x1, x2, . . . , xn}, we can denote it as
[f0, f1, . . . , fn], where fw is the value of f on input of Hamming weight w .

Thus the ternary Not-All-Equal function f is [0, 1, 1, 0].
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#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.

This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.

109 / 130



#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.

This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.

110 / 130



#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.

This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.

111 / 130



#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.

This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.

112 / 130



#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.

This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.

113 / 130



Holant Sum as a Dot Product

This Holant Sum can be viewed as a (long) dot product of the following
two vectors:

On LHS: we take the tensor product of all [0, 1, 0], one per each edge.

On RHS: we take the tensor product of all [0, 1, 1, 0], one per each vertex.

The indices of the two (long) vectors (each of dimension 22|E |) are
matched up by the connection of the graph.
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Holographic Transformation

We can perform a local transformation

by H =

[
1 1
1 −1

]
.

[0, 1, 1, 0] 7→ H⊗3[0, 1, 1, 0]

[0, 1, 0](H−1)⊗2 7→[0, 1, 0]

[0, 1, 1, 0] =

[
1
1

]⊗3

−
[

1
0

]⊗3

−
[

0
1

]⊗3

7→ H⊗3[0, 1, 1, 0] =

[
2
0

]⊗3

−
[

1
1

]⊗3

−
[

1
−1

]⊗3

= [6, 0,−2, 0],

and

7→[0, 1, 0] =
[
1 1

]⊗2 −
[
1 0

]⊗2 −
[
0 1

]⊗2

[0, 1, 0](H−1)⊗2 = [
1

2
, 0,
−1

2
] =

1

2
[1, 0,−1].
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Valiant’s Holant Theorem

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω′,
then HolantΩ = HolantΩ′ .

Hence the same quantity is obtained for #PL-3-NAE-ICE if we use the
signature [6, 0,−2, 0] = H⊗3[0, 1, 1, 0] for each vertex,
and the signature 1

2 [1, 0,−1] = [0, 1, 0](H−1)⊗2 for each edge.
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Holographic Algorithms by Matchgates

Both [6, 0,−2, 0] and 1
2 [1, 0,−1] are matchgate signatures.

23

1

− 1
3− 1

3

− 1
3

11

1

6

Figure: A matchgate with signature [6, 0,−2, 0]
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Another Matchgate

1

2

1
2

1
2

1

Figure: A matchgate with signature 1
2 [1, 0,−1]

Thus #PL-3-NAE-ICE is computable in P.
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A list of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the
following form, for some a, b ∈ C and integer k (we take the convention
that 00 = 1):

1 [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk ] (arity 2k ≥ 2)

2 [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk , 0] (arity 2k + 1 ≥ 1)

3 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk ] (arity 2k + 1 ≥ 1)

4 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk , 0] (arity 2k + 2 ≥ 2).
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Some papers can be found on my web site
http://www.cs.wisc.edu/~jyc

THANK YOU!
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