Programming Nanoscale Structure Using DNA-Based Information

Nadrian C. Seeman

Department of Chemistry New York University New York, NY 10003, USA ned.seeman@nyu.edu

Visions of the Theory of Computing Berkeley, CA May 30, 2013

DNA Is a Nanoscale Object

DNA BASE PAIRS

Reciprocal Exchange: A Theoretical Biokleptic Tool To Generate New DNA Motifs

Reciprocal Exchange in a Double Helical Context

DS + DS HJ **Reciprocal** Strand Exchange **Polarity** Identical Resolve Reciprocal Strand Exchange Polarity **Opposite** Resolve

Seeman, N.C. (2001), NanoLett. 1, 22-26.

Design of Immobile Branched Junctions: Minimize Sequence Symmetry

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

5-Arm, 6-Arm, 8-Arm and 12-Arm Junctions

Wang, Y., Mueller, J.E., Kemper, B. & Seeman, N.C. (1991), *Biochemistry* **30**, 5667-5674. Wang, X. & Seeman, N.C. (2007), *J. Am. Chem. Soc.* **129**, 8169-8176.

Sticky-Ended Cohesion: Easily Programmed Affinity

Sticky-Ended Cohesion: Structure

Qiu, H., Dewan, J.C. & Seeman, N.C. (1997) J. Mol. Biol. 267, 881-898.

The Central Concept of Structural DNA Nanotechnology: Combine Branched DNA with Sticky Ends to Make Objects, Lattices and Devices

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

OBJECTIVES AND APPLICATIONS FOR OUR LABORATORY

ARCHITECTURAL CONTROL AND SCAFFOLDING

MACROMOLECULAR CRYSTALLIZATION (PERIODIC IN 2D AND 3D).
NANOELECTRONICS ORGANIZATION (PERIODIC IN 2D AND 3D).
DNA-BASED COMPUTATION (APERIODIC IN 2D OR 3D).
CONTROL OF POLYMER AND MATERIALS COMPOSITION & TOPOLOGY.

NANOMECHANICAL DEVICES

[1] NANOROBOTICS.[2] NANOFABRICATION.

SELF-REPLICABLE SYSTEMS

CURRENT CRYSTALLIZATION PROTOCOL

GUESS NEW CONDITIONS

A New Suggestion for Producing Macromolecular Crystals

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

A Method for Organizing Nano-Electronic Components

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300..

Why DNA?

Nucleic Acid Sequences Can Be Programmed and Synthesized, Leading to Information-Based Structural, Dynamic and Catalytic Chemistry

Predictable Intermolecular Interactions:

Both Affinity and Structure.

Can Design Shape by Selecting Sequence: Robust Branched Motifs Programmable by Sequence.

Convenient Automated Chemistry: Both Vanilla DNA and Useful Derivatives.

Convenient Modifying Enzymes: Ligases, Exonucleases, Restriction Enzymes, Topoisomerases.

Locally A Stiff Polymer: Persistence Length ~500 Å; Stiff Branched Motifs Have Been Developed.

Robust Molecule: Can Heat Individual Strands without Doing Damage.

Amenable to Molecular Biology and Biotechnology Techniques: Gels, Autoradiography, PCR.

Externally Readable Code when Paired: Different Points in a Lattice Can be Addressed.

High Functional Group Density:

Every 3.4 Å Nucleotide Separation.

Prototype for Many Derivatives: The Gene Therapy Enterprise Has Generated Hundreds of Analogs

Self-Replicable and Therefore Selectable:

May be Able to Make and Improve Constructs Inexpensively.

DNA Topology Affects DNA Nanoconstructions

Chain Mail

Interwoven

What Is the Intellectual Goal of Structural DNA Nanotechnology?

Controlling the Structure of Matter in 3D to the Highest Extent (Resolution) Possible, so as to <u>Understand</u> the Connection between the Molecular and Macroscopic Scales.

"What I cannot create, I do not understand." --Richard P. Feynman (Inverse not necessarily true.) STRUCTURAL AND TOPOLOGICAL ASSEMBLIES

Polyhedral Catenanes

Cube: Junghuei Chen

Truncated Octahedron: Yuwen Zhang

Truncated Octahedron

Zhang, Y. & Seeman, N.C. (1994), J. Am. Chem. Soc. **116**, 1661-1669.

STRUCTURAL ASSEMBLIES

Construction of Crystalline Arrays REQUIREMENTS FOR LATTICE DESIGN COMPONENTS PREDICTABLE INTERACTIONS

PREDICTABLE LOCAL PRODUCT STRUCTURES

STRUCTURAL INTEGRITY

Derivation of DX and TX Molecules

DS + DS

DX

TX

2D DX Arrays

Erik Winfree (Caltech) Furong Liu Lisa Wenzler

Schematic of a Lattice Containing 1 DX Tile and 1 DX+J Tile

AFM of a Lattice Containing 1 DX Tile and 1 DX+J Tile

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

Schematic of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

AFM of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

Three-Dimensional Self-Assembled Arrays: DESIGNED CRYSTALS!

Jianping Zheng, Jens J. Birktoft, Yi Chen (Purdue), Tong Wang, Ruojie Sha, Pam Constantinou, Steve Ginell (Argonne), Chengde Mao (Purdue)

> Diffraction Data Collected at Brookhaven National Laboratory (NSLS) and Argonne National Laboratory (APS)

A 3D DNA Tensegrity Triangle

[D.Liu, M. Wang, Z. Deng, R. Walulu & C.Mao, J. Am. Chem. Soc. 126, 2324-2325 (2004)]

X-Ray Diffraction: Predicted Spacings and Rhombohedral Symmetry Resolution: ~10Å

Designed 142 A Edges
The Tensegrity Triangle Motif

A Small Threefold Pseudosymmetric DNA Tensegrity Triangle

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

Crystal Images

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

Crystal Structure of the 2-Turn DNA Tensegrity Triangle

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

4 Å [APS] Map Perpendicular to a Helix

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

Environment of a Single Triangle

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

The Rhombohedral Cavity

J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

Mono View Down 3-Fold Axis

R3; **a** = 68.28 Å;
$$\alpha = 102.44^{\circ}$$

Image Courtesy of David Goodsell J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao & N.C. Seeman, *Nature* 461, 74-77 (2009).

Table 1. Crystalline Tensegrity Triangles

Edge	Symmetry	Inter-junction	Rhom	bohedral	Resolution (Å)	Cross	Cavity
Length		Pairs	Cell D	imensions		Section (nm ²)	Size (nm ³)
21	+	7	a = 68.3,	$\alpha = 102.4^{\circ}$	4.0	23	103
21	-	7	a = 68.0,	$\alpha = 102.6^{\circ}$	5.0	23	101
31	+	17	a = 102.0,	$\alpha = 112.7^{\circ}$	6.1	62	366
31	-	17	a = 100.9,	$\alpha = 111.6^{\circ}$	6.3	61	373
32	+	18	a = 103.6,	α = 113.6 °	6.5	64	367
32	-	18	a = 103.3,	$\alpha = 112.2^{\circ}$	6.5	64	395
42	+	17	a = 134.9,	α = 110.9 °	11.0	123	1104
42	-	17	a = 133.7,	$\alpha = 111.3^{\circ}$	14.0	120	1048
42	+	28	a = 134.9,	$\alpha = 117.3^{\circ}$	10.0	117	643

A Two-Turn Tensegrity Triangle Designed Lattice with Two Components

> Tong Wang Ruojie Sha Jens Birktoft Jianping Zheng Chengde Mao (Purdue)

Movie of the Rhombohedral Cavity

T.Wang, R. Sha, J.J. Birktoft, J. Zheng, C. Mao, N.C. Seeman, J. Am. Chem. Soc., in press (2010).

Covalent Attachment of Fluorescent Dyes to One or Two Triangles in the A-B Crystal

Ruojie Sha

Attachment of Cy3 & Cy5 to Triangles

T.Wang, R. Sha, J.J. Birktoft, J. Zheng, C. Mao, N.C. Seeman, J. Am. Chem. Soc., 132, 15471-15473 (2010).

Nanocrystals Diffract Better than 4Å

> Arun Richard Chandrasekaran Yoel Ohayon Ilme Schlichting Petra Fromme Henry Chapman + 30 Others

SE = 1, No PO4

Modifying Contacts Improves Resolution to 3.0 Å at NSLS

Arun Richard Chandrasekaran Yoel Ohayon Nam Nguyen Jens Birktoft Ruojie Sha

SE = 1 G:C, All Strands Contain 5' PO₄

🔚 Adxv - /home/3	BD3/Desktop/2013	3-04-17BG/X25/bir	ktoft/px10-0183/A	RC 🔺 🗕 🕈 💥
				-
		-	-	
	~			
		-		
	1000		1	
		•		
			-	
			-	*
		-		
			1	

FROM GENES TO MACHINES

SHAPE-SHIFTERS

B-Z Device

Chengde Mao

A Device Based on the B<-->Z Transition

Mao, C., Sun, W., Shen, Z. & Seeman, N.C. (1999), Nature 397, 144-146.

A Sequence-Dependent Device

Hao Yan

Derivation of PX DNA

DS + DS ΡΧ Reciprocal Exchange **Everywhere** Resolve Everywhere **Reciprocal** Exchange Strand **Everywhere Polarity** Opposite Resolve Everywhere

Strand Polarity **Identical**

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65..

Machine Cycle of the PX-JX₂ Device

System to Test the PX-JX₂ Device

AFM Evidence for Operation of the PX-JX₂ Device

200x200nm

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

DNA Walking Biped

Bill Sherman

INCHWORM

Animation of the Biped Walker

Courtesy of Ann Marie Cunningham and Donna Vaughn of ScienCentral News

DNA-BASED COMPUTATION The Adleman Hamiltonian Path Experiment (1994)

Seven Cities for a Hamiltonian Path Experiment

Routes for the Hamiltonian Path Experiment

The Hamiltonian Path

Assignment of Sequences

Represent Each City as a 20-mer, with a 10-mer First Name and a 10-mer Last Name Represent Each Route as the Complement to the Last Name of Origin and and First Name of Destination

Quito		Quito	
Johannesburg	0	New York	
New York	O		
Paris	0		
Melbourne	O-		Quito New York
Ulan Bator	O-		
Shanghai			

Strategy of the Hamiltonian Path Experiment

- [1] Add All Cities (Phosphorylated) and All Routes (as Catalysts) to the Solution and Ligate.
- [2] Targets are all 140-mers, so Run the Products on a Gel and Select 140-mers.
- [3] To Select Routes that Start in Quito and End in Shanghai, Run PCR with Primers Complementary Quito and Shanghai.
- [4] Demonstrate All Intermediate Cities by Selecting for Each of Their Complements on Magnetic Beads.

Algorithmic Assembly: A Cumulative XOR Calculation

> Chengde Mao Thom LaBean (Duke) John Reif (Duke)

Wang Tiles

Grünbaum, B. & Shephard, G.C. *Tilings & Patterns*, W.H. Freeman & Co., New York, 1987 pp. 583-608.

The XOR Operation

Cumulative *XOR*

A Cumulative XOR Calculation: Tiles

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), *Nature* **407**, 493-496.

Schematic of a Lattice Containing 3 DX Tiles and 1 DX+J Tile Correct Tiles Compete Against Incorrect Tiles

Tiles for the Cumulative XOR Calculation Correct Tiles Compete Against <u>Half-Correct</u> Tiles

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), *Nature* **407**, 493-496.

A Cumulative XOR Calculation: Assembly

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), *Nature* **407**, 493-496.

A Cumulative XOR Calculation: Extracting the Answer

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), *Nature* **407**, 493-496.

A Cumulative XOR Calculation: Data

Mao, C., LaBean, T.H., Reif, J.H. & Seeman, N.C. (2000), *Nature* **407**, 493-496.

2D Algorithmic Assembly: A Sierpinski Triangle by Paul Rothemund, Nick Papadakis & **Erik Winfree**

The Sierpinski Triangle is Pascal's Triangle, Mod 2 It can be Generated by XOR in 2 Dimensions

P.W.K. Rothemund, N. Papadakis & E. Winfree, PLOS Biology 2, 2041-2053 (2004)

Pairs of Inserted PX-JX₂ Devices Used to Program a Pattern

> Hongzhou Gu Jie Chao

Programming an Array for Assembly

A. Carbone & N.C. Seeman, Proc. Nat. Acad. Sci. (USA) 99 12577-12582 (2002).

Producing Patterns from Long Viral Strands

P.W.K.Rothemund, *Nature* **440**, 297-302(2006).

Various Shapes from Long Viral Strands

P.W.K.Rothemund, *Nature* **440**, 297-302(2006).

AFM Image of Blank Origami Arrays for Insertion

H. Gu, J. Chao, S-J. Xiao & N.C. Seeman, Nature Nanotech. 4, 245-249 (2009).

AFM Image of Origami Arrays with Inserted Cassettes

Schematics of Programmed Patterns Made By Capturing Different Molecules

AFM Images of JX-JX Patterns

AFM Images of JX-PX Patterns

AFM Images of PX-JX Patterns

AFM Images of PX-PX Patterns

Error-Free Binding Protocol

DNA SELF-ASSEMBLY AS COMPUTATION

Assembly of a DNA Nano-Object Solves a Graph Theory Problem

Gang Wu Natasha Jonoska (U. South Florida)

System to Determine Graph 3-Colorability

G.Wu, N.Jonoska and N.C. Seeman, Biosystems 98, 80-84 (2009).

Result of 3-Colorability Experiments

100L A- A+ C1- C1+ C2- C2+ C3- C3+ M

G.Wu, N.Jonoska and N.C. Seeman, Biosystems 98, 80-84 (2009).

DNA Nanotechnology:

Combining Multiple Components

Combining Multiple Components: The Macroscopic Scale

Self-Opening Umbrella

A Proximity-Based Programmable Nanoscale Assembly Line

> Hongzhou Gu Jie Chao

Combining Components

PX-JX₂ Cassettes Clocked Walker Nanoparticles DNA Origami

Automobile Assembly Line (1920s)

Requirements for this System

[1] Directable Assembler <--> PX-JX₂ Cassette

[2] Inter-Station Conveyer <--> Trigonal Walker

[3] Framework for the System <--> DNA Origami

Mechanism of Assembly

H. Gu, J. Chao, S.J. Xiao & N.C. Seeman, Nature 465, 202-205 (2010).

Walker Structure

Cargo Transfer

Diversity of Products

Distinct Programmed Products

H. Gu, J. Chao, S.J. Xiao & N.C. Seeman, Nature 465, 202-205 (2010).

Summary of Results

- Polyhedral Catenanes, Knots and Borromean Rings can be Assembled from Branched DNA by Ligation.
- 2D Lattices with Tunable Features have been Made from DNA Tile and Origami Components.
- 3D Crystals with Tunable Properties have been Self-Assembled and their Structures have been Determined.
- Heterologous Species have been Included in DNA Nanoconstructs.
- Algorithmic Assembly has been Prototyped and its Problems have been Addressed.
- Nanomechanical Devices have been Assembled from Branched DNA, Including Shape-Shifters and Walkers. These have been Combined on an Origami Surface to Produce a Nano-Scale Assembly Line.

SUPPORT

National Institute of General Medical Sciences (1982-) Office of Naval Research (1989-2004; 2009-) National Science Foundation (1997-) DARPA/AFOSR (2001-2003) Army Research Office (2005-) W. M. Keck Foundation (2006-2010) Nanoscience Technologies, Inc. (2003-2006) Department of Energy -- (2006-2008; 2012-)

WEB PAGE

HTTP://SEEMANLAB4.CHEM.NYU.EDU