Finding k Simple Shortest Paths and Cycles

Vijaya Ramachandran
University of Texas at Austin, USA
(Joint work with Udit Agarwal)
(http://arxiv.org/pdf/1512.02157v1.pdf)

k Simple Shortest Paths

Given: Directed graph $G=(V, E)$ with non-negative edge-weights, a pair of vertices $s, t \in V$, positive integer $k ;|V|=n,|E|=m$.

- Find the k shortest paths from s to t.

Easy: $O(m+n \log n+k)$ time [Eppstein'98]

- Find the k shortest paths with distinct path lengths from s to t. Hard: NP-hard even for $k=2$ [Lalgudi-Papaefthymiou'97]
- Find the k simple shortest paths from s to t.
$\tilde{O}(k \cdot m n)$ time algorithm [Yen'71]
Even for $k=2$, subcubic (for dense graphs) only if APSP has sub-cubic algorithm [Williams-Williams'10]
- For $k=1$ all three problems are the same, and efficiently solvable using Dijkstra's algorithm.

This Talk: Finding k Simple Shortest Paths and Cycles

Prior work in this topic:

- k simple shortest paths from s to $t(k-S i S P)$ [Yen'71, GL09, RZ12]]: $\tilde{O}(k m n)$ time.
- Enumeration of k simple cycles (in no particular order): $O(\mathrm{kmn})$ [Tarjan'73], improved to $O(\mathrm{~km})$ in [Johnson'75].

We study the following natural variants:

- k simple shortest paths for all pairs (k-APSiSP).
- k simple shortest cycles through a given vertex ($k-\mathrm{SiSC}$), or through each vertex in $G(k$-AVSiSC).
- Enumeration of k simple shortest cycles (k-All-SiSC) and k simple shortest paths (k-All-SiSP) in G.

Main Algorithmic Contributions

- New approach: Find simple shortest paths through path extensions:
- Solves 2-APSiSP in $\tilde{O}(m n)$ time \& 3-APSiSP in $\tilde{O}\left(m n^{2}\right)$ time. (Improves $\tilde{O}\left(n^{3}\right)$ for 2-APSiSP and $\tilde{O}\left(m n^{3}\right)$ for 3-APSiSP)
- Solves k-All-SiSP in $O(m)$ time for the first path and $\tilde{O}(\min \{j, n\})$ for the j-th path.
(uses different path extensions from the ones for k-APSiSP)
- Algorithms and reductions to obtain $\tilde{O}(m n)$ time algorithms for 2 -AVSiSC and for k-SiSC, k-All-SiSC, for constant k.
- Also show that all of these problems as at least as hard as finding a minimum weight cycle (Min-Wt-Cyc) in a sparse graph, except k-All-SiSP (using $\leq_{(m, n)}$ reductions).

Reductions and Hardness Class

- The APSP hardness class contains a large collection of problems that are at least as hard as APSP for sub-cubic algorithms [WW'10].
- But this does not distinguish between dense and sparse graphs.
- We consider reductions that preserve sparsity, and the starting problem is Min-Wt-Cyc, which has an $\tilde{O}(m n)$ time algorithm.
- So, our hardness class is Sparse Min-Wt-Cyc hardness, and is with regard to sub-mn algorithms.
- $O\left(m^{3 / 2}\right)$ is another (faster) sparse time bound that matches n^{3} in the dense case, achieved by Min-Wt-Triangle [IR'78].
- But $O(m n)$ appears to be the most common time bound for sparse versions of problems equivalent to APSP under sub-cubic reductions.

Problem	Known Results	New Results
2-APSiSP	Upper Bound: $\tilde{O}\left(n^{3}\right)$	Upper Bound: ${ }^{\text {Of(mn) }}$
	(using DSO) [BK]	
3-APSiSP	$\underline{\text { UB: }} \tilde{O}\left(m n^{3}\right)$ [Yen]	$\underline{\text { UB: }} \tilde{\mathbf{O}}\left(\mathrm{mn}^{2}\right)$
2-SiSP	LB: Min-Wt- $\Delta \leq 2-$ SiSP (for subcubic) [WW] UB: $\tilde{O}(m n)$ [Yen]	LB: Min-Wt-Cyc $\leq_{(m, n)}{ }^{\text {2-SiSP }}$
k-SiSP	LB: Same as 2-SiSP UB: $\tilde{O}(k m n)$ [Yen]	LB: Same as 2-SiSP
k-SiSC	-	k-SiSP $\equiv(\mathrm{m}, \mathrm{n}) \mathrm{k}$-SiSC
$k-A V S i S C$	-	$\begin{aligned} & \text { LB: Min-Wt-Cyc } \leq_{(m, n)} 2 \text {-AVSiSC } \\ & \text { UB: } \tilde{O}(m n) \text { for }(k=2) \\ & \quad \text { and } \tilde{\mathrm{O}}\left(\mathrm{kmn}^{2}\right) \text { for }(k>2) \end{aligned}$
k-All-SiSC	-	LB: Min-Wt-Cyc $\leq_{(m, n)}$ 2-All-SiSC UB: $\tilde{O}(m n)$ per cycle
k-All-SiSP	-	UB: amortized $\tilde{O}(k)$ if $k<n$ and $\tilde{O}(n)$ if $k \geq n$ per path after a startup cost of $O(m)$

Table: Our Main Results. (DSO stands for Distance Sensitivity Oracles.)

(m, n) Reductions

Definition. Given graph problems P and Q, an (m, n) reduction, $P \leq_{(m, n)} Q$, means that an input $G=(V, E)$ to P with $|V|=n$, $|E|=m$ can be transformed in $O(m+n)$ time to an input $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ to Q with $\left|V^{\prime}\right|=O(n)$ and $\left|E^{\prime}\right|=O(m)$ such that from a solution for Q on G^{\prime} we can obtain a solution for P on G in $O(m+n)$ time.

- Our main reductions:

$$
\begin{gathered}
\text { Min-Wt-Cycle } \leq_{(m, n)} 2-\mathrm{SiSP} \leq_{(m, n)} k \text {-SiSP } \equiv_{(m, n)} k \text {-SiSC } \\
\text { Trivially, APSP } \leq_{(m, n)} k \text {-APSiSP, } k \text {-SiSC } \leq_{(m, n)} k \text {-AVSiSC, } \\
\text { Min-Wt-Cycle } \leq_{(m, n)} k \text {-All-SiSC }
\end{gathered}
$$

- Prior related known results:

$$
\text { Min-Wt-Cycle } \leq_{(m, n)} \text { APSP }
$$

2 -SiSP $\leq_{(m, n)}$ APSP plus $O\left(n^{2}\right)$ processing [GL'09] k-SiSP reduces to k calls to 2 -SiSP [RZ'12]

Reductions: k-SiSP $\equiv_{(m, n)} k$-SiSC

- k-SiSP $\leq_{(m, n)} k-S i S C:$
- Input is G, with source s and sink t.
- Form G^{\prime} by adding a new vertex u^{\prime} and zero-weight edges $\left(u^{\prime}, s\right),\left(t, u^{\prime}\right)$.
- k-th simple s - t path in G is k-th simple cycle in G^{\prime} though u^{\prime}.
- k-SiSC $\leq_{(m, n)} k$-SiSP:
- To compute k-SiSC through v in $G=(V, E)$:
- Split v into v_{i} and v_{o}.
- All incoming edges to v become incoming to v_{i}.
- All outgoing edges from v become outgoing from v_{o}.
- A simple cycle through vertex v in G is transformed into a simple path from v_{o} to v_{i} in G^{\prime} with same weight.
- So k-SiSC $\leq_{(m, n)} k-S i S P$.

Min-Wt-Cycle $\leq_{(m, n)}$ 2-SiSP

- Cycle to Path: Basic transformation from G to G^{\prime} converts each vertex v into v_{i} and v_{o} with zero-weight edge (v_{i}, v_{o}).
- All incoming edges to v become incoming to v_{i}.
- All outgoing edges from v become outgoing from v_{o}.

- A simple cycle through vertex v in G is transformed into a simple path from v_{o} to v_{i} in G^{\prime} with same weight.

Min-Wt-Cycle $\leq_{(m, n)}$ 2-SiSP

- path $\left\langle p_{0}, \cdots, p_{n}\right\rangle$ with zero-weight edges.
- $W=n \cdot w$, where w is max edge-weight in G.
- edge of weight $(n-j+1) W$ from p_{j-1} to j_{o} and an edge of weight $j W$ from j_{i} to p_{j}.

Refinements Within $\tilde{O}(m n)$

Time Bound	Problems Achieving The Time Bound
$m \cdot n$	Min-Length-Cycle, Unweighted APSP (undirected and directed)
$m \cdot n \cdot \log \alpha(m, n)$	Undir Min-Wt-Cycle, Undir Wted APSP [PR'05]
$m \cdot n+n^{2} \cdot \log \log n$	Min-Wt-Cyc, $k-S i S P ~[Y e n ' 71, G L ' 09], ~ k-S i S C ~[h e r e] ~$ (constant k), Directed APSP [Pettie'04]
$m \cdot n+n^{2} \log n$	2-APSiSP, 2-AVSiSC, $k-A I I-S i S C ~[a l l ~ h e r e] ~$ (constant $k)$
$\left(m \cdot n+n^{2} \log n\right) \cdot \log n$	DSO [BK'09]
$n \cdot\left(m \cdot n+n^{2} \log \log n\right)$	$k-A V S i S C, k \geq 3$ [here]
$n \cdot\left(m \cdot n+n^{2} \log n\right)$	$3-A P S i S P[h e r e]$
$n^{2}\left(m \cdot n+n^{2} \log n \log n\right)$	$k-A P S i S P, k \geq 4[Y e n ' 71$, GL'09]

Path Extension Algorithms

The rest of the talk will cover:

- The 2-APSiSP algorithm.
- Uses path extensions that may not be detours.
- 3-APSiSP, and k-APSiSP, $k \geq 3$.
- Uses recursion, but inefficient for larger k.
- k-All-SiSP.
- Uses a different type of path extension.

Background for SiSP

- k-SiSP. All known algorithms for k-SiSP (and 2-SiSP) from x to y compute detours around each edge in a shortest path, and then choose the shortest $x-y$ path generated by a detour.
- Replacement Paths. This computes, for each edge e on an $x-y$ SP, a shortest path avoiding e. 2-SiSP from x to y can be computed as the minimum weight replacement path.

- Lower Bound. $O(m \sqrt{n})$ lower bound for both 2-SiSP and Replacement Paths in the path-weight comparison model, assuming that the algorithm only examines these detours [HSB'07].
- Our 2-APSiSP algorithm generates and examines paths that are not detours for any pair of vertices.

Replacement Paths

- Replacement paths for a single pair $x, y: O\left(m n+n^{2} \log \log n\right)$ time [Yen'71, GL'09]
- 2 - SiSP is computed by the same algorithm plus $O(n)$ additional time to select a minimum weight replacement path.
- Replacement paths for all pairs $x, y \in V$:
- The output can potentially have size $\Omega\left(n^{3}\right)$, simply for the weights of all replacement paths.
- Instead use compact distance sensitivity oracles (DSO) [DTCR'08] of size $\tilde{O}\left(n^{2}\right)$.
- Any specific replacement path can be found from DSO in constant time.
- Current fastest algorithm for DSO runs in $O\left(m n \log n+n^{2} \log ^{2} n\right)$ time [BK'09]
- BUT: 2-APSiSP from DSO takes n^{3} time.
(to examine up to n^{3} replacement paths)

Our Approach

- We first compute k nearly SiSP sets $Q_{k}(x, y)$ (to be defined).
- We then use an algorithm Compute-APSiSP (to be presented) that computes k-APSiSP from the $Q_{k}(x, y)$ sets in $O\left(k n^{2}+n^{2} \log n\right)$ time.

The Q_{2} Sets and Distance Sensitivity Oracles

- Definition. The set $Q_{2}(x, y)$ of the two nearly shortest simple paths from x to y in G contains a shortest path π from x to y, and a shortest path from x to y in G that avoids the first edge on π (if such a path exists).

- Observation: Using DSO, we can compute the $Q_{2}(x, y)$ sets, in additional $O\left(n^{2}\right)$ time for all pairs.
(We have another method - simpler than DSO - that computes $Q_{2}(x, y)$ sets directly in $O\left(m n+n^{2} \log n\right)$.)

2-APSiSP Algorithm

- The 2-APSiSP Algorithm:
- Compute the first path in all Q_{2} sets with an APSP computation.
- Compute the second path in each Q_{2} set in $O(1)$ time using distance oracles.
- Compute 2-APSiSP from the Q_{2} sets. (Need an algorithm for this - Compute-APSiSP)

The Q_{k} Sets

Assume that there are k simple paths from x to y, for all $x, y \in V$. Then,

- $P_{k}^{*}(x, y)$ is the set of k simple shortest paths from x to y in G.
- $Q_{k}(x, y)$ is the set of k nearly simple shortest paths from x to y, defined as follows:
- if all paths in $P_{k-1}^{*}(x, y)$ share the same first edge (x, a), then $Q_{k}(x, y)$ contains all paths in $P_{k-1}^{*}(x, y)$, together with the shortest simple path from x to y that does not start with edge (x, a), if such a path exists.
- Otherwise, $Q_{k}(x, y)=P_{k}^{*}(x, y)$.
- Task for Algorithm Compute-APSiSP.
- If the $k-1$ shortest paths in $Q_{k}(x, y)$ all start with the same edge (x, a) then we need to determine if the k-th simple shortest path from x to y also starts with edge (x, a).
- Otherwise, $Q_{k}(x, y)=P_{k}^{*}(x, y)$.

Algorithm Compute-APSiSP

- Algorithm Compute-APSiSP computes k-APSiSP in $O\left(k \cdot n^{2}+n^{2} \log n\right)$ time, for any $k \geq 2$, given the $Q_{k}(x, y)$ sets.
* Recall: Only if the $k-1$ shortest paths in $Q_{k}(x, y)$ all start with the same edge (x, a) then Compute-APSiSP needs to determine if the k-th simple shortest path from x to y also starts with edge (x, a). (Otherwise $Q_{k}(x, y)=P_{k}^{*}(x, y)$).
- The pairs x, y for which * holds can be determined by scanning the Q_{k} sets, which are input to Compute-APSiSP.
- For these pairs, Compute-APSiSP uses the following Lemma 1 to find the k-th path.

Lemma 1. If all paths in $P_{k}^{*}(x, y)$ start with the same first edge (x, a) then $P_{k}^{*}(a, y)$ consists of the right subpaths of the paths in $P_{k}^{*}(x, y)$.

Lemma 1

Lemma 1. If all paths in $P_{k}^{*}(x, y)$ start with the same first edge (x, a) then the right subpath of the i-th simple shortest path from x to y has weight equal to the weight of the i-th simple shortest path from a to y, $1 \leq i \leq k$.

Algorithm Compute-APSiSP

- Algorithm Compute-APSiSP maintains a set Extensions (a, y) for each pair of vertices a, y.
- Extensions (a, y) contains those edges (x, a), incoming to a, that are the first edge on the $k-1$ simple shortest paths from x to y.
- So, if the $k-1$ shortest paths in $\left.Q_{k}(x, y)\right)$ all start with (x, a) then (x, a) is placed in Extensions (a, y)
- Lemma 1 shows that we may need to 'pre-extend to x,' the k-th simple shortest path from a to y in order to compute the k-th simple shortest path from x to y that uses (x, a) as the first edge.
- Compute-APSiSP performs these path extensions and may create paths that are not detours.

```
Algorithm Compute-APSiSP \(\left(G=(V, E), w t, k,\left\{Q_{k}(x, y), \forall x, y\right\}\right)\)
```

1: Initialize:

```
\(H \leftarrow \phi \quad\{H\) is a priority queue. \(\}\)
for all \(x, y \in V, x \neq y\) do
\(P_{k}^{*}(x, y) \leftarrow Q_{k}(x, y)\)
    if the \(k-1\) shortest paths in \(P_{k}^{*}(x, y)\) have the same first edge, say \((x, a)\) then
                Add \((x, a)\) to the set Extensions \((a, y)\)
            if \(\left|Q_{k}(a, y)\right|=k\) then
                \(\pi \leftarrow\) the path of largest weight in \(Q_{k}(a, y)\)
                        \(\pi^{\prime} \leftarrow(x, a) \circ \pi\)
                        Add \(\pi^{\prime}\) to \(H\) with weight \(w t(x, a)+w t(\pi)\)
11: Main Loop:
12: while \(H \neq \phi\) do
13: \(\quad \pi \leftarrow\) Extract-min \((H)\)
14: Let \(\pi=(x a, y)\) and let the path of largest weight in \(P_{k}^{*}(x, y)\) be \(\pi^{\prime}\)
15: \(\quad\) if \(\left|P_{k}^{*}(x, y)\right|=k-1\) then add \(\pi\) to \(P_{k}^{*}(x, y)\) and set update flag
16: \(\quad\) else if \(w t(\pi)<\omega t\left(\pi^{\prime}\right)\) then replace \(\pi^{\prime}\) with \(\pi\) in \(P_{k}^{*}(x, y)\) and set update flag
17: if update flag is set then
18: \(\quad\) for all \(\left(x^{\prime}, x\right) \in\) Extensions \((x, y)\) do
19: \(\quad\) add \(\left(x^{\prime}, x\right) \circ \pi\) to \(H\) with weight \(w t\left(x^{\prime}, x\right)+w t(\pi)\)
```


Analysis of Compute-APSiSP

- Lemma 2. Algorithm Compute-APSiSP correctly computes the sets $P_{k}^{*}(x, y) \forall x, y \in V$.
- Lemma 3. Algorithm Compute-APSiSP runs in $O\left(k n^{2}+n^{2} \log n\right)$ time.
- Corollary 1. Using DSO, 2-APSiSP can be computed by an $O\left(m n \log n+n^{2} \log ^{2} n\right)$ time randomized algorithm.
- Corollary 2. 2-APSiSP can be computed in $O\left(m n+n^{2} \log n\right)$ time.
(This uses an algorithm that computes the Q_{2} sets without using DSO.)

3-APSiSP and $k-A P S i S P$

- 3-APSiSP:
- Compute the Q_{3} sets by recursively calling 2-APSiSP on G, with incoming edges to v removed, for each $v \in V$.
- Call Compute-APSiSP with the Q_{3} sets.
- Run-time is $O\left(m n^{2}+n^{3} \log n\right)$ (dominated by the recursive calls).
- Previous best method was to run the 3-SiSP algorithm $\Theta\left(n^{2}\right)$ times, which takes $O\left(m n^{3}+n^{4} \log \log n\right)$.
- k-APSiSP:

The Q_{k} sets can be computed by the same recursive method, but the running time degrades with larger k.

Algorithm for k-All-SiSP

$\operatorname{All-SiSP}(G=(V, E) ; w t)$

Initialization:

for all $(x, y) \in E$ do
Add (x, y) to priority queue H with $w t(x, y)$ as key
Add (x, y) to $L(\langle y\rangle)$ and $R(\langle x\rangle)$
Main loop:

while $H \neq \phi$ do

$\pi \leftarrow$ Extract-min (H)
Add π to the output sequence of simple paths
Let $\pi_{x b}=\ell(\pi)$ and $\pi_{a y}=r(\pi)((x, a)$ and (b, y) are first and last edges on $\pi)$
for all $\pi_{x^{\prime} b} \in L\left(\pi_{x b}\right)$ with $x^{\prime} \neq y$ do
Form $\pi_{x^{\prime} y} \leftarrow\left(x^{\prime}, x\right) \circ \pi$ and add $\pi_{x^{\prime} y}$ to H with $w t\left(\pi_{x^{\prime} y}\right)$ as key Add $\pi_{x^{\prime} y}$ to $L\left(\pi_{x y}\right)$ and to $R\left(\pi_{x^{\prime} b}\right)$
for all $\pi_{\text {ay }} \in R\left(\pi_{\text {ay }}\right)$ with $y^{\prime} \neq x$ do perform steps complementary to Steps 11 and 12

Lemma 4. Algorithm All-SiSP computes the shortest path in $O(m)$ time and each succeeding simple shortest path in amortized $O(k+\log n)$ time if $k=O(n)$ and $O(n+\log k)$ time if $k=\Omega(n)$.

Summary

- Simple Shortest Paths and Cycles
- New algorithm, using path extensions, for 2-APSiSP with the same time bound as 2-SiSP (to within a log factor), and for 3-APSiSP.
- Reductions between sparse graphs for most versions of finding k simple shortest paths and cycles, showing hardness relative to Sparse Min-Wt-Cyc.
- Very fast algorithm for k-All-SiSP, again with path extensions.
- Further Research
- Can we compute the Q_{k} sets more efficiently?
- Space usage is high in our all-pairs algorithms. Can we obtain more space-efficient algorithms?
- Hardness relative to Sparse Min-Wt-Cycle.
- Can we show equivalence to APSP in sparse graphs?
- More generally, can we further extend the class of problems hard for 'sub-mn' computations?
- Udit Agarwal, Vijaya Ramachandran, "Finding k simple shortest paths and cycles," arXiv:1512.02157v1, 2015.

