Finding k Simple Shortest Paths and Cycles

Vijaya Ramachandran University of Texas at Austin, USA (Joint work with Udit Agarwal)

(http://arxiv.org/pdf/1512.02157v1.pdf)

k Simple Shortest Paths

Given: Directed graph G = (V, E) with non-negative edge-weights, a pair of vertices $s, t \in V$, positive integer k; |V| = n, |E| = m.

- ► Find the k shortest paths from s to t. Easy: O(m + n log n + k) time [Eppstein'98]
- Find the k shortest paths with distinct path lengths from s to t.
 Hard: NP-hard even for k = 2 [Lalgudi-Papaefthymiou'97]
- Find the k simple shortest paths from s to t.

 Õ(k · mn) time algorithm [Yen'71]

 Even for k = 2, subcubic (for dense graphs) only if APSP has sub-cubic algorithm [Williams-Williams'10]
- For k = 1 all three problems are the same, and efficiently solvable using Dijkstra's algorithm.

This Talk: Finding k Simple Shortest Paths and Cycles

Prior work in this topic:

- ▶ k simple shortest paths from s to t (k-SiSP) [Yen'71, GL09, RZ12]]: Õ(kmn) time.
- Enumeration of k simple cycles (in no particular order): O(kmn) [Tarjan'73], improved to O(km) in [Johnson'75].

We study the following natural variants:

- ► *k* simple shortest paths for all pairs (*k*-APSiSP).
- ▶ k simple shortest cycles through a given vertex (k-SiSC), or through each vertex in G (k-AVSiSC).
- Enumeration of k simple shortest cycles (k-All-SiSC) and k simple shortest paths (k-All-SiSP) in G.

Main Algorithmic Contributions

New approach: Find simple shortest paths through path extensions:

- ► Solves 2-APSiSP in $\tilde{O}(mn)$ time & 3-APSiSP in $\tilde{O}(mn^2)$ time. (Improves $\tilde{O}(n^3)$ for 2-APSiSP and $\tilde{O}(mn^3)$ for 3-APSiSP)
- Solves k-All-SiSP in O(m) time for the first path and Õ(min{j, n}) for the j-th path. (uses different path extensions from the ones for k-APSiSP)
- Algorithms and reductions to obtain *O*(*mn*) time algorithms for 2-AVSiSC and for *k*-SiSC, *k*-All-SiSC, for constant *k*.
- ► Also show that all of these problems as at least as hard as finding a minimum weight cycle (MIN-WT-CYC) in a sparse graph, except k-All-SiSP (using ≤_(m,n) reductions).

Reductions and Hardness Class

- The APSP hardness class contains a large collection of problems that are at least as hard as APSP for sub-cubic algorithms [WW'10].
- But this does not distinguish between dense and sparse graphs.
- We consider reductions that preserve sparsity, and the starting problem is Min-Wt-Cyc, which has an Õ(mn) time algorithm.
- So, our hardness class is Sparse Min-Wt-Cyc hardness, and is with regard to sub-mn algorithms.
- ► O(m^{3/2}) is another (faster) sparse time bound that matches n³ in the dense case, achieved by Min-Wt-Triangle [IR'78].
- But O(mn) appears to be the most common time bound for sparse versions of problems equivalent to APSP under sub-cubic reductions.

Problem	KNOWN RESULTS	New Results
2-APSiSP	Upper Bound: $\tilde{O}(n^3)$	Upper Bound: Õ(mn)
	(using DSO) [BK]	
3-APSiSP	<u>UB</u> : Õ(<i>mn</i> ³) [Yen]	<u>UB</u> : Õ(mn ²)
2-SiSP	<u>LB</u> : Min-Wt- $\Delta \leq 2$ -SiSP	
	(for subcubic) [WW]	<u>LB</u> : Min-Wt-Cyc ≤ _(m,n) 2-SiSP
	<u>UB</u> : Õ(<i>mn</i>) [Yen]	
k-SiSP	LB: Same as 2-SiSP	<u>LB</u> : Same as 2-SiSP
	<u>UB</u> : Õ(<i>kmn</i>) [Yen]	
<i>k</i> -SiSC	—	$k\text{-}SiSP \equiv_{(m,n)} k\text{-}SiSC$
<i>k</i> -AVSiSC	—	$\underline{LB}: Min-Wt-Cyc \leq_{(m,n)} 2-AVSiSC$
		<u>UB</u> : $\tilde{O}(mn)$ for $(k = 2)$
		and $\tilde{O}(kmn^2)$ for $(k > 2)$
<i>k</i> -All-SiSC	—	<u>LB</u> : Min-Wt-Cyc $\leq_{(m,n)}$ 2-All-SiSC
		<u>UB</u> : Õ(mn) per cycle
<i>k</i> -All-SiSP	—	<u>UB</u> : amortized $\tilde{O}(k)$ if $k < n$
		and $ ilde{O}(n)$ if k \geq n per path
		after a startup cost of $O(m)$

Table : Our Main Results. (DSO stands for Distance Sensitivity Oracles.)

(m, n) Reductions

Definition. Given graph problems *P* and *Q*, an (m, n) reduction, $P \leq_{(m,n)} Q$, means that an input G = (V, E) to *P* with |V| = n, |E| = m can be transformed in O(m + n) time to an input G' = (V', E')to *Q* with |V'| = O(n) and |E'| = O(m) such that from a solution for *Q* on *G'* we can obtain a solution for *P* on *G* in O(m + n) time.

• Our main reductions:

Min-Wt-Cycle $\leq_{(m,n)} 2$ -SiSP $\leq_{(m,n)} k$ -SiSP $\equiv_{(m,n)} k$ -SiSC

Trivially, APSP $\leq_{(m,n)}$ k-APSiSP, k-SiSC $\leq_{(m,n)}$ k-AVSiSC, Min-Wt-Cycle $\leq_{(m,n)}$ k-All-SiSC

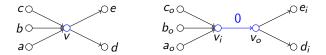
Prior related known results:

Min-Wt-Cycle $\leq_{(m,n)}$ APSP 2-SiSP $\leq_{(m,n)}$ APSP plus $O(n^2)$ processing [GL'09] k-SiSP reduces to k calls to 2-SiSP [RZ'12]

Reductions: k-SiSP $\equiv_{(m,n)} k$ -SiSC

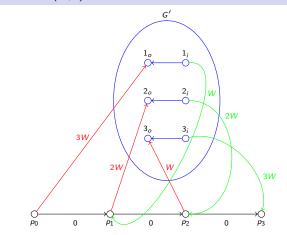
- ► k-SiSP $\leq_{(m,n)} k$ -SiSC:
 - ▶ Input is *G*, with source *s* and sink *t*.
 - Form G' by adding a new vertex u' and zero-weight edges (u', s), (t, u').
 - k-th simple s-t path in G is k-th simple cycle in G' though u'.
- ▶ k-SiSC $\leq_{(m,n)} k$ -SiSP:
- To compute k-SiSC through v in G = (V, E):
 - Split v into v_i and v_o .
 - All incoming edges to v become incoming to v_i.
 - All outgoing edges from v become outgoing from v_o .
 - ► A simple cycle through vertex v in G is transformed into a simple path from v_o to v_i in G' with same weight.
 - So k-SiSC $\leq_{(m,n)} k$ -SiSP.

- ► Cycle to Path: Basic transformation from G to G' converts each vertex v into v_i and v_o with zero-weight edge (v_i, v_o).
 - All incoming edges to v become incoming to v_i.
 - All outgoing edges from v become outgoing from v_o .



► A simple cycle through vertex v in G is transformed into a simple path from v_o to v_i in G' with same weight.

Min-Wt-Cycle $\leq_{(m,n)}$ 2-SiSP



- path $\langle p_0, \cdots, p_n \rangle$ with zero-weight edges.
- $W = n \cdot w$, where w is max edge-weight in G.
- edge of weight (n j + 1)W from p_{j-1} to j_o and an edge of weight jW from j_i to p_j .

Refinements Within $\tilde{O}(mn)$

TIME BOUND	PROBLEMS ACHIEVING THE TIME BOUND
m · n	Min-Length-Cycle, Unweighted APSP
	(undirected and directed)
$m \cdot n \cdot \log \alpha(m, n)$	Undir Min-Wt-Cycle, Undir Wted APSP [PR'05]
$m \cdot n + n^2 \cdot \log \log n$	Min-Wt-Cyc,
	<i>k</i> -SiSP [Yen'71,GL'09], <i>k</i> -SiSC [here]
	(constant k), Directed APSP [Pettie'04]
$m \cdot n + n^2 \log n$	2-APSiSP, 2-AVSiSC, k-All-SiSC [all here]
	(constant k)
$(m \cdot n + n^2 \log n) \cdot \log n$	DSO [BK'09]
$n \cdot (m \cdot n + n^2 \log \log n)$	k -AVSiSC, $k \ge 3$ [here]
$n \cdot (m \cdot n + n^2 \log n)$	3-APSiSP [here]
$n^2(m \cdot n + n^2 \log n \log n)$	k -APSiSP, $k \ge 4$ [Yen'71, GL'09]

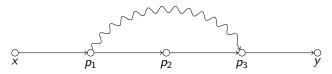
Path Extension Algorithms

The rest of the talk will cover:

- ► The 2-APSiSP algorithm.
 - Uses path extensions that may not be detours.
- ▶ 3-APSiSP, and *k*-APSiSP, $k \ge 3$.
 - ▶ Uses recursion, but inefficient for larger *k*.
- ▶ *k*-All-SiSP.
 - Uses a different type of path extension.

Background for SiSP

- ► k-SiSP. All known algorithms for k-SiSP (and 2-SiSP) from x to y compute detours around each edge in a shortest path, and then choose the shortest x y path generated by a detour.
- Replacement Paths. This computes, for each edge e on an x-y SP, a shortest path avoiding e. 2-SiSP from x to y can be computed as the minimum weight replacement path.



- ► Lower Bound. O(m√n) lower bound for both 2-SiSP and Replacement Paths in the path-weight comparison model, assuming that the algorithm only examines these detours [HSB'07].
- Our 2-APSiSP algorithm generates and examines paths that are not detours for any pair of vertices.

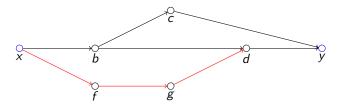
Replacement Paths

- Replacement paths for a single pair x, y: O(mn + n² log log n) time [Yen'71, GL'09]
 - 2-SiSP is computed by the same algorithm plus O(n) additional time to select a minimum weight replacement path.
- Replacement paths for all pairs $x, y \in V$:
 - The output can potentially have size Ω(n³), simply for the weights of all replacement paths.
 - Instead use compact distance sensitivity oracles (DSO) [DTCR'08] of size Õ(n²).
 - Any specific replacement path can be found from DSO in constant time.
 - Current fastest algorithm for DSO runs in O(mn log n + n² log² n) time [BK'09]
 - BUT: 2-APSiSP from DSO takes n³ time. (to examine up to n³ replacement paths)

- We first compute k nearly SiSP sets $Q_k(x, y)$ (to be defined).
- ▶ We then use an algorithm Compute-APSiSP (to be presented) that computes k-APSiSP from the Q_k(x, y) sets in O(kn² + n² log n) time.

The Q₂ Sets and Distance Sensitivity Oracles

• **Definition.** The set $Q_2(x, y)$ of the two nearly shortest simple paths from x to y in G contains a shortest path π from x to y, and a shortest path from x to y in G that avoids the first edge on π (if such a path exists).



• Observation: Using DSO, we can compute the $Q_2(x, y)$ sets, in additional $O(n^2)$ time for all pairs.

(We have another method – simpler than DSO – that computes $Q_2(x, y)$ sets directly in $O(mn + n^2 \log n)$.)

- ► The 2-APSiSP Algorithm:
 - Compute the first path in all Q₂ sets with an APSP computation.
 - ➤ Compute the second path in each Q₂ set in O(1) time using distance oracles.
 - Compute 2-APSiSP from the Q₂ sets.
 (Need an algorithm for this Compute-APSiSP)

The Q_k Sets

Assume that there are k simple paths from x to y, for all $x, y \in V$. Then,

- $P_k^*(x, y)$ is the set of k simple shortest paths from x to y in G.
- Q_k(x, y) is the set of k nearly simple shortest paths from x to y, defined as follows:
 - ▶ if all paths in P^{*}_{k-1}(x, y) share the same first edge (x, a), then Q_k(x, y) contains all paths in P^{*}_{k-1}(x, y), together with the shortest simple path from x to y that does not start with edge (x, a), if such a path exists.
 - Otherwise, $Q_k(x, y) = P_k^*(x, y)$.
- **Task for Algorithm** Compute-APSiSP.
 - ► If the k 1 shortest paths in Q_k(x, y) all start with the same edge (x, a) then we need to determine if the k-th simple shortest path from x to y also starts with edge (x, a).
 - Otherwise, $Q_k(x, y) = P_k^*(x, y)$.

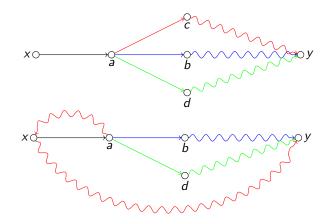
Algorithm COMPUTE-APSISP

- ► Algorithm COMPUTE-APSISP computes k-APSiSP in O(k · n² + n² log n) time, for any k ≥ 2, given the Q_k(x, y) sets.
- * **Recall:** Only if the k 1 shortest paths in $Q_k(x, y)$ all start with the same edge (x, a) then COMPUTE-APSISP needs to determine if the *k*-th simple shortest path from *x* to *y* also starts with edge (x, a). (Otherwise $Q_k(x, y) = P_k^*(x, y)$.)
- ► The pairs x, y for which * holds can be determined by scanning the Q_k sets, which are input to COMPUTE-APSISP.
- ► For these pairs, COMPUTE-APSISP uses the following Lemma 1 to find the *k*-th path.

Lemma 1. If all paths in $P_k^*(x, y)$ start with the same first edge (x, a) then $P_k^*(a, y)$ consists of the right subpaths of the paths in $P_k^*(x, y)$.

Lemma 1

Lemma 1. If all paths in $P_k^*(x, y)$ start with the same first edge (x, a) then the right subpath of the *i*-th simple shortest path from x to y has weight equal to the weight of the *i*-th simple shortest path from a to y, $1 \le i \le k$.



Algorithm Compute-APSiSP

- Algorithm COMPUTE-APSISP maintains a set Extensions(a, y) for each pair of vertices a, y.
- Extensions(a, y) contains those edges (x, a), incoming to a, that are the first edge on the k - 1 simple shortest paths from x to y.
 - So, if the k − 1 shortest paths in Q_k(x, y)) all start with (x, a) then (x, a) is placed in Extensions(a, y)
- Lemma 1 shows that we may need to 'pre-extend to x,' the k-th simple shortest path from a to y in order to compute the k-th simple shortest path from x to y that uses (x, a) as the first edge.
 - COMPUTE-APSISP performs these path extensions and may create paths that are not detours.

Algorithm COMPUTE-APSISP($G = (V, E), wt, k, \{Q_k(x, y), \forall x, y\}$)

1: Initialize: 2: $H \leftarrow \phi$ {*H* is a priority queue.} 3: for all $x, y \in V, x \neq y$ do 4: $P_{k}^{*}(x, y) \leftarrow Q_{k}(x, y)$ 5: if the k-1 shortest paths in $P_k^*(x, y)$ have the same first edge, say (x, a) then 6: Add (x, a) to the set Extensions(a, y)7: if $|Q_k(a, y)| = k$ then 8: $\pi \leftarrow$ the path of largest weight in $Q_k(a, y)$ 9: $\pi' \leftarrow (x, a) \circ \pi$ Add π' to H with weight $wt(x, a) + wt(\pi)$ 10: 11: Main Loop: 12: while $H \neq \phi$ do $\pi \leftarrow \text{Extract-MIN}(H)$ 13: Let $\pi = (xa, y)$ and let the path of largest weight in $P_k^*(x, y)$ be π' 14: if $|P_{\iota}^{*}(x,y)| = k - 1$ then add π to $P_{\iota}^{*}(x,y)$ and set update flag 15: 16: else if $wt(\pi) < wt(\pi')$ then replace π' with π in $P_{\nu}^{*}(x, y)$ and set update flag 17: if update flag is set then for all $(x', x) \in Extensions(x, y)$ do 18: 19: add $(x', x) \circ \pi$ to H with weight $wt(x', x) + wt(\pi)$

Analysis of $\operatorname{COMPUTE-APSISP}$

- Lemma 2. Algorithm COMPUTE-APSISP correctly computes the sets P^{*}_k(x, y) ∀x, y ∈ V.
- Lemma 3. Algorithm COMPUTE-APSISP runs in $O(kn^2 + n^2 \log n)$ time.
 - **Corollary 1.** Using DSO, 2-APSiSP can be computed by an $O(mn \log n + n^2 \log^2 n)$ time randomized algorithm.
 - Corollary 2. 2-APSiSP can be computed in O(mn + n² log n) time.
 (This uses an algorithm that computes the Q₂ sets without

(This uses an algorithm that computes the Q_2 sets without using DSO.)

► 3-APSiSP:

- Compute the Q₃ sets by recursively calling 2-APSiSP on G, with incoming edges to v removed, for each v ∈ V.
- Call COMPUTE-APSISP with the Q_3 sets.
- ▶ Run-time is $O(mn^2 + n^3 \log n)$ (dominated by the recursive calls).
- ▶ Previous best method was to run the 3-SiSP algorithm $\Theta(n^2)$ times, which takes $O(mn^3 + n^4 \log \log n)$.

► *k*-APSiSP:

The Q_k sets can be computed by the same recursive method, but the running time degrades with larger k.

Algorithm for *k*-All-SiSP

ALL-SISP(G = (V, E); wt) 1: Initialization: 2: for all $(x, y) \in E$ do Add (x, y) to priority queue H with wt(x, y) as key 3: 4: Add (x, y) to $L(\langle y \rangle)$ and $R(\langle x \rangle)$ 5: Main loop: 6: while $H \neq \phi$ do 7: $\pi \leftarrow \text{EXTRACT-MIN}(H)$ 8: Add π to the output sequence of simple paths 9: Let $\pi_{xb} = \ell(\pi)$ and $\pi_{ay} = r(\pi)$ ((x, a) and (b, y) are first and last edges on π) 10: for all $\pi_{x'b} \in L(\pi_{xb})$ with $x' \neq y$ do 11: Form $\pi_{x'v} \leftarrow (x', x) \circ \pi$ and add $\pi_{x'v}$ to *H* with $wt(\pi_{x'v})$ as key 12: Add $\pi_{x'y}$ to $L(\pi_{xy})$ and to $R(\pi_{x'b})$ 13: for all $\pi_{av'} \in R(\pi_{av})$ with $y' \neq x$ do perform steps complementary to Steps 11 and 12

Lemma 4. Algorithm ALL-SISP computes the shortest path in O(m) time and each succeeding simple shortest path in amortized $O(k + \log n)$ time if k = O(n) and $O(n + \log k)$ time if $k = \Omega(n)$.

Summary

- Simple Shortest Paths and Cycles
 - New algorithm, using path extensions, for 2-APSiSP with the same time bound as 2-SiSP (to within a log factor), and for 3-APSiSP.
 - Reductions between sparse graphs for most versions of finding k simple shortest paths and cycles, showing hardness relative to Sparse Min-Wt-Cyc.
 - ▶ Very fast algorithm for *k*-All-SiSP, again with path extensions.
- Further Research
 - Can we compute the Q_k sets more efficiently?
 - Space usage is high in our all-pairs algorithms. Can we obtain more space-efficient algorithms?
 - Hardness relative to Sparse Min-Wt-Cycle.
 - Can we show equivalence to APSP in sparse graphs?
 - More generally, can we further extend the class of problems hard for 'sub-mn' computations?

Udit Agarwal, Vijaya Ramachandran, "Finding k simple shortest paths and cycles," arXiv:1512.02157v1, 2015.