Deterministic Edge Connectivity in Near-Linear Time

Ken-ichi Kawarabayashi

National Institute of Informatics, Japan

Mikkel Thorup

University of Copenhagen

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Simple graph G = (V, E) (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- ► Cut defined by $U \subseteq V$, $\emptyset \neq U \neq V$. Two sides *U* and $T = V \setminus U$, cut edges $E(U, T) = \partial U = \partial T$ between sides.
- Result Find edge connectivity including minimum cut deterministically in near linear time.

- Simple graph G = (V, E) (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- ► Cut defined by $U \subseteq V$, $\emptyset \neq U \neq V$. Two sides *U* and $T = V \setminus U$, cut edges $E(U, T) = \partial U = \partial T$ between sides.
- Result Find edge connectivity including minimum cut deterministically in near linear time.

- Simple graph G = (V, E) (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

• Cut defined by $U \subseteq V$, $\emptyset \neq U \neq V$. Two sides U and $T = V \setminus U$, cut edges $E(U, T) = \partial U = \partial T$ between sides.

Result Find edge connectivity including minimum cut deterministically in near linear time.

- Simple graph G = (V, E) (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- Cut defined by $U \subseteq V$, $\emptyset \neq U \neq V$. Two sides U and $T = V \setminus U$, cut edges $E(U, T) = \partial U = \partial T$ between sides.
- Result Find edge connectivity including minimum cut deterministically in near linear time.

n = |V|, m = |E|, edge conectivity $\lambda \leq \text{min-degree } \delta \leq 2m/n$.

- [Gomory Hu 1961] global min-cut via n 1 min s-t cuts:

 O(\nm) with Ford Fulkerson [1956], or
 O(nm) (1976)
- [Podderyugin 1973] global min-cut for simple graphs in O(λn²) = O(nm) time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
- In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

・ロット (雪) (日) (日)

$n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$

- [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
- In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$

- [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
- In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

$n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$

- Figure (Gomory Hu 1961) global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- ▶ [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O(nm + n^2 \log n)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
- In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

・ロット (雪) (日) (日) (日)

- $n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$
 - [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
 - [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
 - [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
 - [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
 - [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
 - In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- n = |V|, m = |E|, edge conectivity $\lambda \leq \text{min-degree } \delta \leq 2m/n$.
 - [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
 - [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
 - [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
 - [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
 - [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
 - In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

- $n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$
 - [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
 - [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
 - [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
 - [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
 - [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
 - In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

- $n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$
 - [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
 - [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
 - [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
 - [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
 - [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
 - In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

- $n = |V|, m = |E|, edge \text{ conectivity } \lambda \leq \text{min-degree } \delta \leq 2m/n.$
 - [Gomory Hu 1961] global min-cut via $n 1 \min s t$ cuts:
 - $O(\lambda nm)$ with Ford Fulkerson [1956], or
 - $O(nm^{3/2})$ time with Even and Tarjan [1975].
 - [Podderyugin 1973] global min-cut for simple graphs in $O(\lambda n^2) = O(nm)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
 - [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in O(nm + n² log n) time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
 - [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with O(kn) edges preserving k-edge connectivity (unweighted).
 - [Matula 1993] Linear time (2 + ε)-approximation of the edge-connectivity λ.
 - In O(m) time, find subgraph with O(λn) edges and same edge-connectivity λ.

- n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.
 - [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for simple graphs. Implicit O(λm log n) for multigraphs.
 - 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
 - [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
 - ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
 - [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
 - [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
 - ► [This paper] Global min-cut deterministically for simple graphs in O(m log¹² n) = Õ(m) time.

- n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.
 - [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for simple graphs. Implicit O(λm log n) for multigraphs.
 - 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
 - [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
 - ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
 - [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
 - [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
 - ► [This paper] Global min-cut deterministically for simple graphs in O(m log¹² n) = Õ(m) time.

n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.

- [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for simple graphs. Implicit O(λm log n) for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
- ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
- ► [This paper] Global min-cut deterministically for simple graphs in O(m log¹² n) = Õ(m) time.

n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.

- [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for simple graphs. Implicit O(λm log n) for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
- ► [Karger 1994] Global min-cut in O(√λ m) time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.

► [This paper] Global min-cut deterministically for simple graphs in $O(m \log^{12} n) = \tilde{O}(m)$ time.

n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.

- [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for simple graphs. Implicit O(λm log n) for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
- ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.

► [This paper] Global min-cut deterministically for simple graphs in $O(m \log^{12} n) = \widetilde{O}(m)$ time.

n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.

- ► [Gabow 1993] Global min-cut in O(\lambda m log(n/\lambda)) time for simple graphs. Implicit O(\lambda m log n) for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
- ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.

► [This paper] Global min-cut deterministically for simple graphs in $O(m \log^{12} n) = \widetilde{O}(m)$ time.

n = |V|, m = |E|, edge conectivity $\lambda = \Theta(m/n)$.

- ► [Gabow 1993] Global min-cut in O(\lambda m log(n/\lambda)) time for simple graphs. Implicit O(\lambda m log n) for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in O(n² log³ n) time but randomized Monte Carlo.
- ► [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in O(m log³ n) time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
- ► [This paper] Global min-cut deterministically for simple graphs in $O(m \log^{12} n) = \widetilde{O}(m)$ time.

- A cut is trivial if one side is a single vertex.
- ► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

(日) (日) (日) (日) (日) (日) (日)

- A cut is trivial if one side is a single vertex.
- ► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

(日) (日) (日) (日) (日) (日) (日)

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph G with m = O(m/δ) edges, preserving all non-trivial min-cuts of G.

(日) (日) (日) (日) (日) (日) (日)

- A cut is trivial if one side is a single vertex.
- ► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph G with m
 = O(m/δ) edges, preserving all non-trivial min-cuts of G.

► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

- Run Gabow's min-cut (or cactus) algorithm on *G* in $\widetilde{O}(\lambda \overline{m}) = \widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from *G* should be included.
- Gives min-cut (or cactus) for original G in O(m) total time.

・ロト・日本・日本・日本・日本

► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

- ► Run Gabow's min-cut (or cactus) algorithm on \overline{G} in $\widetilde{O}(\lambda \overline{m}) = \widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from *G* should be included.
- Gives min-cut (or cactus) for original G in $\widetilde{O}(m)$ total time.

► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

- ► Run Gabow's min-cut (or cactus) algorithm on \overline{G} in $\widetilde{O}(\lambda \overline{m}) = \widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from G should be included.
- Gives min-cut (or cactus) for original G in $\tilde{O}(m)$ total time.

► For simple graph with min-degree δ , in near-linear time, contract edges producing graph \overline{G} with $\overline{m} = \widetilde{O}(m/\delta)$ edges, preserving all non-trivial min-cuts of *G*.

- ► Run Gabow's min-cut (or cactus) algorithm on \overline{G} in $\widetilde{O}(\lambda \overline{m}) = \widetilde{O}(m)$ time.
- ► Check against δ to see if trivial min-cuts from G should be included.
- Gives min-cut (or cactus) for original G in O(m) total time.

Involving cut conductance

• The volume of vertex set $U \subseteq V$ is # edge end-points in U:

$$\operatorname{vol}(U) = \sum_{v \in U} d(v).$$

- Recall $\partial U = E(U, V \setminus U)$.
- Conductance of cut around U is

$$\Phi(U) = \frac{|\partial U|}{\min\{\operatorname{vol}(U), \ 2m - \operatorname{vol}(U)\}} = \Phi(V \setminus U)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Involving cut conductance

• The volume of vertex set $U \subseteq V$ is # edge end-points in U:

$$vol(U) = \sum_{v \in U} d(v).$$

• Recall $\partial U = E(U, V \setminus U)$.

Conductance of cut around U is

$$\Phi(U) = \frac{|\partial U|}{\min\{\operatorname{vol}(U), \ 2m - \operatorname{vol}(U)\}} = \Phi(V \setminus U)$$

Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.

- $|\partial S| \ge |S|(\delta (|S| 1)).$
- $\bullet \ |\partial S| \le \delta \text{ and } |S| > 1 \implies |S| \ge \delta.$
- so $\operatorname{vol}(S) \ge \delta^2$ and $\Phi(S) = |\partial S|/\operatorname{vol}(S) \le 1/\delta$.

We assume min-degree $\delta \ge \lg^6 n$; otherwise apply Gabow.

Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.

$$\bullet |\partial S| \ge |S|(\delta - (|S| - 1)).$$

 $\bullet \ |\partial S| \le \delta \text{ and } |S| > 1 \implies |S| \ge \delta.$

► so $\operatorname{vol}(S) \ge \delta^2$ and $\Phi(S) = |\partial S|/\operatorname{vol}(S) \le 1/\delta$.

We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.

Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.

$$\bullet |\partial S| \ge |S|(\delta - (|S| - 1)).$$

$$\bullet \ |\partial S| \le \delta \text{ and } |S| > 1 \implies |S| \ge \delta.$$

▶ so $\operatorname{vol}(S) \ge \delta^2$ and $\Phi(S) = |\partial S|/\operatorname{vol}(S) \le 1/\delta$.

We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.

Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.

$$\bullet |\partial S| \ge |S|(\delta - (|S| - 1)).$$

$$\bullet \ |\partial S| \le \delta \text{ and } |S| > 1 \implies |S| \ge \delta.$$

• so $\operatorname{vol}(S) \ge \delta^2$ and $\Phi(S) = |\partial S|/\operatorname{vol}(S) \le 1/\delta$.

We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.

$$\bullet |\partial S| \ge |S|(\delta - (|S| - 1)).$$

$$\bullet \ |\partial S| \le \delta \text{ and } |S| > 1 \implies |S| \ge \delta.$$

• so $\operatorname{vol}(S) \ge \delta^2$ and $\Phi(S) = |\partial S|/\operatorname{vol}(S) \le 1/\delta$.

We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.
- We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
- Certify-or-cut(G) In near-linear time, we will either
 - (i) certify all min-cuts of G are trivial, or
- (ii) find cut *T* with conductance $o(1/\log m)$.
- Both (i) and (ii) alone are difficult deterministically.
 - (i) As hard as certifying edge connectivity k
 - (ii) Using PageRank, need to guess good vertex in S.

・ロト・日本・日本・日本・日本

- Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.
- We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
- Certify-or-cut(G) In near-linear time, we will either
 - (i) certify all min-cuts of G are trivial, or
 - (ii) find cut *T* with conductance $o(1/\log m)$.
- Both (i) and (ii) alone are difficult deterministically.
 - (i) As hard as certifying edge connectivity k
 - (ii) Using PageRank, need to guess good vertex in *S*.

- Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.
- We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
- Certify-or-cut(G) In near-linear time, we will either
 - (i) certify all min-cuts of G are trivial, or
 - (ii) find cut T with conductance $o(1/\log m)$.
- Both (i) and (ii) alone are difficult deterministically.
 - (i) As hard as certifying edge connectivity *k*(ii) Using PageRank, need to guess good vertex in *S*.

- Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.
- We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
- Certify-or-cut(G) In near-linear time, we will either
 - (i) certify all min-cuts of G are trivial, or
 - (ii) find cut T with conductance $o(1/\log m)$.
- Both (i) and (ii) alone are difficult deterministically.
 - (i) As hard as certifying edge connectivity k

(ロ) (同) (三) (三) (三) (三) (○) (○)

(ii) Using PageRank, need to guess good vertex in S.

- Obs Any non-trivial min-cut *S* has conductance $\leq 1/\delta$.
- We assume min-degree $\delta \geq \lg^6 n$; otherwise apply Gabow.
- Certify-or-cut(G) In near-linear time, we will either
 - (i) certify all min-cuts of G are trivial, or
 - (ii) find cut T with conductance $o(1/\log m)$.
- Both (i) and (ii) alone are difficult deterministically.
 - (i) As hard as certifying edge connectivity k

(ロ) (同) (三) (三) (三) (三) (○) (○)

(ii) Using PageRank, need to guess good vertex in S.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

(i) certify no min-cut of *G* splits more than 2 vertices from *C*.
(ii) find a cut (*A*, *B*) of conductance o(1/log m) of *C*

Claim If *C* has been certified, we can contract a large "core" of *C* in *G* preserving all non-trivial cuts of *G*. No proof in this talk

▶ Set *H* = *G*.

▶ While some component *C* of *H* has not been certified.

• Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

• Set H = G.

▶ While some component *C* of *H* has not been certified.

Certify-or-cut(C, G)

et low-conductance.cut.(A, B) of C

• Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge.
- ▶ each edge land in small side lg *m* times..., .æ, .æ, .æ, .æ

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - ▶ Certify-or-cut(*C*, *G*)

if we get low-conductance cut (A, B) of C

• Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge
- ▶ each edge land in small side lg *m* times..., .æ, .æ, .æ, .æ

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C

repeatedly remove v with $d_H(v) \leq \frac{2}{3} d_{\Theta}(v)$.

► Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge.
- each edge land in small side lg m times.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - ▶ if we get low-conductance cut (*A*, *B*) of *C*

• remove cut edges E(A, B) from H.

► repeatedly remove v with $d_H(v) \le \frac{2}{5} d_G(v)$.

Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - ▶ remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- ► Contract cores of components C of H in G.

- charge cut edges as o(1/log m) per small-side edge.
- ► each edge land in small side lg m times.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - ▶ if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- ► Contract cores of components *C* of *H* in *G*.

- charge cut edges as o(1 / log m) per small-side edge.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - ▶ if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- ► Contract cores of components *C* of *H* in *G*.

- charge cut edges as o(1/log m) per small-side edge.
- ▶ each edge land in small side lg *m* times. ১০০ ১০৫০ ২০০০ ২০০০ ২০০০ ২০০০ ২০০০ ২০০০

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - ▶ if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

- charge cut edges as o(1/log m) per small-side edge.
- ► each edge land in small side lg *m* times.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

- charge cut edges as $o(1/\log m)$ per small-side edge.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

Lemma Most edges remain in components *C* of *H*:

• charge cut edges as $o(1/\log m)$ per small-side edge.

each edge land in small side lg m times.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- ► Contract cores of components *C* of *H* in *G*.

- charge cut edges as $o(1/\log m)$ per small-side edge.
- ▶ each edge land in small side lg *m* times. $_$

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - ▶ if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

Need to recurse, but contractions create parallel edges.

Thm After enough recursions G has $\widetilde{O}(m/\delta)$ edges and preserves all original non-trivial min-cuts.

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

Need to recurse, but contractions create parallel edges.

Thm After enough recursions *G* has $O(m/\delta)$ edges and preserves all original non-trivial min-cuts. Many Letting preserves $\sigma_{\infty} = \sigma_{\infty} = \sigma$

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

Need to recurse, but contractions create parallel edges.

Thm After enough recursions G has $O(m/\delta)$ edges and preserves all original non-trivial min-cuts. Many details in paper $S_{0,\infty}$

Really, we need something more elaborate

Certify-or-cut(C, G) C subgraph of G with min-degree $\frac{2}{5}\delta$.

- (i) certify no min-cut of G splits more than 2 vertices from C.
- (ii) find a cut (A, B) of conductance $o(1/\log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- ► Set *H* = *G*.
- ▶ While some component *C* of *H* has not been certified.
 - Certify-or-cut(C, G)
 - if we get low-conductance cut (A, B) of C
 - remove cut edges E(A, B) from H.
 - repeatedly remove v with $d_H(v) \leq \frac{2}{5}d_G(v)$.
- Contract cores of components *C* of *H* in *G*.

Need to recurse, but contractions create parallel edges.

Thm After enough recursions G has $\widetilde{O}(m/\delta)$ edges and preserves all original non-trivial min-cuts. Many details in paper.

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut U of conductance $o(1/\lg m)$.

Recall both (i) and (ii) alone are difficult.

(i) As hard as certifying edge connectivity *k*(ii) Using PageRank, need to guess good vertex in *S*

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut *U* of conductance $o(1/\lg m)$.

Recall both (i) and (ii) alone are difficult.

(i) As hard as certifying edge connectivity k

(ii) Using PageRank, need to guess good vertex in S.

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut *U* of conductance $o(1/\lg m)$.
 - We use PageRank emulating random walk.
 - Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
 - ▶ We need success (ii) only if non-trivial min-cut exists ¬(i).
 - This gives us enough structure for deterministic algorithm, bypassing the need for guessing.

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut *U* of conductance $o(1/\lg m)$.
 - We use PageRank emulating random walk.
 - Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
 - ▶ We need success (ii) only if non-trivial min-cut exists ¬(i).
 - This gives us enough structure for deterministic algorithm, bypassing the need for guessing.

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut *U* of conductance $o(1/\lg m)$.
 - We use PageRank emulating random walk.
 - Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
 - ▶ We need success (ii) only if non-trivial min-cut exists ¬(i).
 - This gives us enough structure for deterministic algorithm, bypassing the need for guessing.

Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either

- (i) certify all min-cuts of G are trivial, or
- (ii) find a cut *U* of conductance $o(1/\lg m)$.
 - We use PageRank emulating random walk.
 - Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
 - ▶ We need success (ii) only if non-trivial min-cut exists ¬(i).
 - This gives us enough structure for deterministic algorithm, bypassing the need for guessing.

(ロ) (同) (三) (三) (三) (三) (○) (○)

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while v ∈ V with residual density r(v)/d(v) ≥ ε
 Push(α, v):

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while v ∈ V with residual density r(v)/d(v) ≥ ε
 Push(α, v):

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with residual density $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):

$$p(v) = p(v) + \alpha r(v)$$
for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$
 $r(v) = 0.$

(日) (日) (日) (日) (日) (日) (日)

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with residual density $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):

▶
$$p(v) = p(v) + \alpha r(v)$$

▶ for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$
▶ $r(v) = 0.$

(日) (日) (日) (日) (日) (日) (日)

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with residual density $r(v)/d(v) \ge \varepsilon$

▶ Push(*a*, *v*):

$$p(v) = p(v) + \alpha r(v)$$

for $(v, w) \in E$ do $r(w) - r(w) + (1 - \alpha)r(v)/d(v)$

▶ for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$ ▶ r(v) = 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = \sum_{v \in V} p^{\circ}(v) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with residual density $r(v)/d(v) \ge \varepsilon$

▶ Push(*a*, *v*):

►
$$p(v) = p(v) + \alpha r(v)$$

► for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

•
$$r(v) = 0$$
.

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ} : V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*a*, *v*):
 - $\blacktriangleright p(v) = p(v) + \alpha r(v)$
 - ► for $(v, w) \in E$ do $r(w) = r(w) + (1 \alpha)r(v)/d(v)$ ► r(v) = 0.
- order vertices v by decreasing density p(v)/d(v).
- find best cuts defined by any prefix.

Pushing over $O(1/(\alpha \varepsilon))$ edges in total, so $O(1/(\alpha \varepsilon))$ total time.

But when can we promise finding low-conductance cut?

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ} : V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):
 - $\blacktriangleright p(v) = p(v) + \alpha r(v)$
 - for (v, w) ∈ E do r(w) = r(w) + (1 α)r(v)/d(v)
 r(v) = 0.
- order vertices v by decreasing density p(v)/d(v).
- find best cuts defined by any prefix.

Pushing over $O(1/(\alpha \varepsilon))$ edges in total, so $O(1/(\alpha \varepsilon))$ total time.

But when can we promise finding low-conductance cut?
PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ} : V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):
 - $\blacktriangleright p(v) = p(v) + \alpha r(v)$
 - ▶ for $(v, w) \in E$ do $r(w) = r(w) + (1 \alpha)r(v)/d(v)$ ▶ r(v) = 0.
- order vertices v by decreasing density p(v)/d(v).
- find best cuts defined by any prefix.

Pushing over $O(1/(\alpha \varepsilon))$ edges in total, so $O(1/(\alpha \varepsilon))$ total time.

But when can we promise finding low-conductance cut?

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ} : V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):
 - $\blacktriangleright p(\mathbf{v}) = p(\mathbf{v}) + \alpha r(\mathbf{v})$
 - for (v, w) ∈ E do r(w) = r(w) + (1 α)r(v)/d(v)
 r(v) = 0.
- order vertices v by decreasing density p(v)/d(v).
- find best cuts defined by any prefix.

Pushing over $O(1/(\alpha \varepsilon))$ edges in total, so $O(1/(\alpha \varepsilon))$ total time.

But when can we promise finding low-conductance cut?

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*α*, *v*):

$$\blacktriangleright p(\mathbf{v}) = p(\mathbf{v}) + \alpha r(\mathbf{v})$$

• for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

•
$$r(v) = 0$$

Unique (abstract) limit mass distribution $p^* \leftarrow p$ for $\varepsilon \rightarrow 0$. PR_{α}(p°) = p^* linear transformation such that

$$\mathsf{PR}_{\alpha}(p^{\circ}) = p + \mathsf{PR}_{\alpha}(r)$$

Stationary mass distribution $q = PR_{\alpha}(q)$ iff all $v \in V$ have same density $q(v)/d(v) = \sigma_{co}, \sigma_{co}, \sigma_{co}, \sigma_{co}$

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$
 - ▶ Push(*a*, *v*):

$$\blacktriangleright p(\mathbf{v}) = p(\mathbf{v}) + \alpha r(\mathbf{v})$$

► for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

$$r(v)=0$$

Unique (abstract) limit mass distribution $p^* \leftarrow p$ for $\varepsilon \rightarrow 0$. PR_{α}(p°) = p^* linear transformation such that

$$\mathsf{PR}_{\alpha}(p^{\circ}) = p + \mathsf{PR}_{\alpha}(r)$$

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}$, $p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$

▶ Push(*α*, *v*):

$$\mathbf{p}(\mathbf{v}) = \mathbf{p}(\mathbf{v}) + \alpha \mathbf{r}(\mathbf{v})$$

► for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

$$r(v) = 0$$

Unique (abstract) limit mass distribution $p^* \leftarrow p$ for $\varepsilon \rightarrow 0$. PR_{α}(p°) = p^* linear transformation such that

$$\mathsf{PR}_{\alpha}(p^{\circ}) = p + \mathsf{PR}_{\alpha}(r)$$

Stationary mass distribution $q = PR_{\alpha}(q)$ iff all $v \in V$ have same density $q(v)/d(v) = \sigma_{\alpha}$

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \to \mathbb{R}_{\geq 0}, p^{\circ}(V) = 1$ teleportation constant $\alpha = 1/\lg^5 n$ slack $\varepsilon \in (0, 1)$.

- residual mass distribution $r = p^{\circ}$
- settled mass distribution $p = 0^V$
- while $v \in V$ with $r(v)/d(v) \ge \varepsilon$

▶ Push(*α*, *v*):

$$\mathbf{p}(\mathbf{v}) = \mathbf{p}(\mathbf{v}) + \alpha \mathbf{r}(\mathbf{v})$$

▶ for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

$$r(v) = 0$$

Unique (abstract) limit mass distribution $p^* \leftarrow p$ for $\varepsilon \rightarrow 0$. PR_{α}(p°) = p^* linear transformation such that

$$\mathsf{PR}_{\alpha}(p^{\circ}) = p + \mathsf{PR}_{\alpha}(r)$$

Stationary mass distribution $q = \mathsf{PR}_{\alpha}(q)$ iff all $v \in V$ have same density $q(v)/d(v) = \sigma_{\alpha}$

Thm [ACL'06] If $S \subseteq V$ has $p^*(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ then PageRank finds *T* with conductance $\Phi(T) = o(1/\log m)$ with $\operatorname{vol}(T) = \widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.

In [ACL06], if $\Phi(S) \le 1/\lg^{10} m$ and we start with $p^{\circ}(v) = 1$ from random $v \in S$, we get $p^{*}(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ with good probability, but here we do not want to guess..

We will prove that if *S* non-trivial min-cut and we start with $p^{\circ}(v) = 1$ for any $v \in S$, we get $p^{*}(S) - \text{vol}(S)/(2m) = \Omega(1)$.

and if that fails we have

New analysis of end-game

Thm If $v \in V$ has $1/(2m) - p^*(v)/d(v) = \Omega(1/(2m))$ then PageRank finds T, $vol(T) \leq m$, with $\Phi(T) = o(1/\log m)$ either in $\tilde{O}(vol(T))$ time or T contains all v with $p^*(v)/d(v) = (1 - \Omega(1))/(2m)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Thm [ACL'06] If $S \subseteq V$ has $p^*(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ then PageRank finds *T* with conductance $\Phi(T) = o(1/\log m)$ with $\operatorname{vol}(T) = \widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.

In [ACL06], if $\Phi(S) \le 1/\lg^{10} m$ and we start with $p^{\circ}(v) = 1$ from random $v \in S$, we get $p^{*}(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ with good probability, but here we do not want to guess.

We will prove that if *S* non-trivial min-cut and we start with $p^{\circ}(v) = 1$ for any $v \in S$, we get $p^{*}(S) - \text{vol}(S)/(2m) = \Omega(1)$.

and if that fails we have

New analysis of end-game

Thm If $v \in V$ has $1/(2m) - p^*(v)/d(v) = \Omega(1/(2m))$ then PageRank finds T, $vol(T) \leq m$, with $\Phi(T) = o(1/\log m)$ either in $\tilde{O}(vol(T))$ time or T contains all v with $p^*(v)/d(v) = (1 - \Omega(1))/(2m)$.

・ロト・日本・日本・日本・日本

Thm [ACL'06] If $S \subseteq V$ has $p^*(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ then PageRank finds T with conductance $\Phi(T) = o(1/\log m)$ with $\operatorname{vol}(T) = \widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.

In [ACL06], if $\Phi(S) \le 1/\lg^{10} m$ and we start with $p^{\circ}(v) = 1$ from random $v \in S$, we get $p^{*}(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ with good probability, but here we do not want to guess.

We will prove that if *S* non-trivial min-cut and we start with $p^{\circ}(v) = 1$ for any $v \in S$, we get $p^{*}(S) - \text{vol}(S)/(2m) = \Omega(1)$.

and if that fails we have

New analysis of end-game

Thm If $v \in V$ has $1/(2m) - p^*(v)/d(v) = \Omega(1/(2m))$ then PageRank finds T, $vol(T) \leq m$, with $\Phi(T) = o(1/\log m)$ either in $\widetilde{O}(vol(T))$ time or T contains all v with $p^*(v)/d(v) = (1 - \Omega(1))/(2m)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Thm [ACL'06] If $S \subseteq V$ has $p^*(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ then PageRank finds T with conductance $\Phi(T) = o(1/\log m)$ with $\operatorname{vol}(T) = \widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.

In [ACL06], if $\Phi(S) \leq 1/\lg^{10} m$ and we start with $p^{\circ}(v) = 1$ from random $v \in S$, we get $p^{*}(S) - \operatorname{vol}(S)/(2m) = \Omega(1)$ with good probability, but here we do not want to guess.

We will prove that if *S* non-trivial min-cut and we start with $p^{\circ}(v) = 1$ for any $v \in S$, we get $p^{*}(S) - \text{vol}(S)/(2m) = \Omega(1)$.

and if that fails we have

New analysis of end-game

Thm If $v \in V$ has $1/(2m) - p^*(v)/d(v) = \Omega(1/(2m))$ then PageRank finds T, $vol(T) \leq m$, with $\Phi(T) = o(1/\log m)$ either in $\widetilde{O}(vol(T))$ time or T contains all v with $p^*(v)/d(v) = (1 - \Omega(1))/(2m)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Recall

Push
$$(\alpha, v)$$
:
 $p(v) = p(v) + \alpha r(r)$
 $for(v, w) \in E \text{ do } r(w) = r(w) + (1 - \alpha)r(v)/d(v)$

•
$$r(v) = 0$$

Lemma Starting from p° , with settled mass p, netflow over (u, v) was $(1 - \alpha)(p(u)/d(u) - p(v)/d(v))/\alpha$.

Recall

Push(
$$\alpha$$
, v):
• $p(v) = p(v) + \alpha r(r)$
• for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$
• $r(v) = 0$

Lemma Starting from p° , with settled mass p, netflow over (u, v) was $(1 - \alpha)(p(u)/d(u) - p(v)/d(v))/\alpha$.

Recall

► Push(
$$\alpha$$
, v):
► $p(v) = p(v) + \alpha r(r)$
► for $(v, w) \in E$ do $r(w) = r(w) + (1 - \alpha)r(v)/d(v)$
► $r(v) = 0$

Lemma Starting from p° , with settled mass p, netflow over (u, v) was $(1 - \alpha)(p(u)/d(u) - p(v)/d(v))/\alpha$.

Recall

Lemma Starting from p° , with settled mass p, netflow over (u, v) was $(1 - \alpha)(p(u)/d(u) - p(v)/d(v))/\alpha$.

• We have min-degree $\delta \ge \lg^6 n$ and $\alpha = 1/\lg^5 n$.

- Let S with vol(S) ≤ m/2 be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \le 1/d(v) \le 1/d(v)$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge < 1/($lpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

▶ By ACL, PageRank finds T with $\Phi(T) = P(1 \neq p \neq p)_{z}$, $z = p_{z}$

• We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.

• Let S with $vol(S) \le m/2$ be small side of min-cut.

For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \le 1/d(v) \le 1/d(v)$
- ► On every vertex u, residual density r(u)/d(u) ≤ 1/δ².
- Henceforth pushing, netflow over any edge < 1/($lpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S_i
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

▶ By ACL, PageRank finds T with $\Phi(T) = P(1 \neq p \neq p)_{z}$, $z = p_{z}$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \le 1/d(v) \le 1/d(v)$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge < 1/($lpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = P(1 \downarrow | Q \downarrow g)$, z = -2

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \le 1/d(v) \le 1/d$
- On every vertex u, residual density r(u)/d(u) ≤ 1/δ².
- Henceforth pushing, netflow over any edge < 1/($lpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = P(1 \downarrow | Q | Q) |_{Q}$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex u, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge < 1/($\alpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

▶ By ACL, PageRank finds T with $\Phi(T) = P(1 \neq p)_{i=1}$, $i = -\infty$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge < 1/($\alpha\delta^2$),
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = \rho(1_{\phi} | g_{\phi} | g_{\phi})$, $z \to z \to \infty$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

• At least half mass stays in S.

- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge < 1/(αδ²),
- so $\lambda/(\alpha \delta^2) \leq 1/\lg m = o(1)$ flow over edges leaving S.
- ► Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = P(1 \neq p(1))$, $= \sum_{i=1}^{n} P(1 \neq p(1))$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving S.
- ► Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = P(1_{\phi} \circ g_{f})$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- ► On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- so $\lambda/(\alpha \delta^2) \leq 1/\log m = o(1)$ flow over edges leaving S.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

► By ACL, PageRank finds T with $\Phi(T) = 2(1 \frac{1}{2} \log n)_{1 = 1}$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- ► On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- ▶ so $\lambda/(\alpha\delta^2) \leq 1/\lg m = o(1)$ flow over edges leaving *S*.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- ► On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- ▶ so $\lambda/(\alpha \delta^2) \le 1/\lg m = o(1)$ flow over edges leaving *S*.

• Thus 1/2 - o(1) mass remains in *S*, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- ▶ For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- ▶ so $\lambda/(\alpha\delta^2) \le 1/\lg m = o(1)$ flow over edges leaving *S*.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

- We have min-degree $\delta \geq \lg^6 n$ and $\alpha = 1/\lg^5 n$.
- Let S with $vol(S) \le m/2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v) = 1$ and push from v

- At least half mass stays in S.
- On every vertex *u*, residual mass $r(u) \le 1/d(v) \le 1/\delta$
- On every vertex *u*, residual density $r(u)/d(u) \le 1/\delta^2$.
- Henceforth pushing, netflow over any edge $< 1/(\alpha \delta^2)$,
- ▶ so $\lambda/(\alpha\delta^2) \leq 1/\lg m = o(1)$ flow over edges leaving *S*.
- Thus 1/2 o(1) mass remains in S, so

 $p^*(v) - \operatorname{vol}(S)/(2m) \ge 1/2 - o(1) - (m/2)/(2m) = \Omega(1).$

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

(日) (日) (日) (日) (日) (日) (日)

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

(日) (日) (日) (日) (日) (日) (日)

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One *v* has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - vol(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

 $p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Suppose min-cut side *S* with $m/2 \le vol(S) \le 3m/2$.
- < 16 vertices incident to $\geq \delta/8$ cut edges.
- Trying 16 vertices separately.
- One v has 7/8 neighbors on same side.
- Pushing to limit from v, we get

$$p^*(S) - \operatorname{vol}(S)/(2m) \ge 7/8 - o(1) - (3m/2)/(2m) = \Omega(1).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Any non-trivial min-cut

- For some $s \le m/2$, know vol(S) $\le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in O(s) time, if $v \in S'$ for min-cut S' with $vol(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ► Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with 46(利用→ 6個)/4回9 7篇、今へで

Any non-trivial min-cut

- For some $s \le m/2$, know vol $(S) \le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in O(s) time, if $v \in S'$ for min-cut S' with $vol(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with

<br
- For some $s \le m/2$, know vol(S) $\le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in O(s) time, if $v \in S'$ for min-cut S' with $vol(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- ▶ Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with কি(√ি)ক≶ এই৮/বিদ্যু π≩া তৃৎক

- For some $s \le m/2$, know vol $(S) \le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in $\widetilde{O}(s)$ time, if $v \in S'$ for min-cut S' with vol $(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- ▶ Try $8m/(s\alpha)$ different *v* in O(m) time. None succeeds.

► Give each of them initial mass $s\alpha/(8m)$ and density $\leq s\alpha/(8m\delta)$. Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/vol(S) \le (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with

<br

- For some $s \le m/2$, know vol(S) $\le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in $\widetilde{O}(s)$ time, if $v \in S'$ for min-cut S' with $vol(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.

► Give each of them initial mass $s\alpha/(8m)$ and density $\leq s\alpha/(8m\delta)$. Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\operatorname{vol}(S) \le (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with ব≣(সবিদ্র≤ @≦া/বিদ্রু mà. ৩৭৫

- For some $s \le m/2$, know vol $(S) \le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in $\widetilde{O}(s)$ time, if $v \in S'$ for min-cut S' with vol $(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda(s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with ☜(T)률 ወ≦।/أهg m≩. ๑๑๙

- For some $s \le m/2$, know vol $(S) \le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in $\widetilde{O}(s)$ time, if $v \in S'$ for min-cut S' with $vol(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda (s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\operatorname{vol}(S) \le (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with ♠(T) 🚈 0(11/1@g m). ㅋ٩٩

- For some $s \le m/2$, know vol(S) $\le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in $\widetilde{O}(s)$ time, if $v \in S'$ for min-cut S' with vol $(S') \leq s$, find T with $\Phi(T) \leq o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda (s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with ♠(T) ≤ 0(1/10g m). ㅋ٩٩

- For some $s \le m/2$, know vol $(S) \le s$ for any min-cut S.
- Look for min-cut *S* with $1 < s/2 \le vol(S) \le s$.
- ▶ Using ACL, in O(s) time, if $v \in S'$ for min-cut S' with $vol(S') \le s$, find T with $\Phi(T) \le o(1/\log m)$.
- Try $8m/(s\alpha)$ different v in O(m) time. None succeeds.
- Give each of them initial mass sα/(8m) and density ≤ sα/(8mδ). Apply page rank.

- ▶ Netflow over min-cut into $S \le \lambda (s\alpha/(8m\delta))/\alpha \le s/(8m)$.
- So average limit density in S is

 $p^*(S)/\mathrm{vol}(S) \leq (s/(8m))/(s/2) = 1/(4m).$

▶ By new end-game theorem, get T with $\Phi(T) \leq o(1/\log m)$.

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- ► Certified: no min-cut of *G* splits > 2 vertices from *C*.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in *C*.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- ▶ Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

(日) (日) (日) (日) (日) (日) (日)

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- so smaller cut if we move v to T.

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

(日) (日) (日) (日) (日) (日) (日)

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- ▶ so smaller cut if we move v to T.

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

(日) (日) (日) (日) (日) (日) (日)

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- ▶ so smaller cut if we move v to T.

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

(1)

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- so smaller cut if we move v to T

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts *C*, at most two verteces, *v* and *w* in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$
- so smaller cut if we move v to T

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts *C*, at most two verteces, *v* and *w* in $U \cap C$.

(1)

- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.
- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C_{2}$
- so smaller cut if we move v to T

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts *C*, at most two verteces, *v* and *w* in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- so smaller cut if we move v to T

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts *C*, at most two verteces, *v* and *w* in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

• Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,

so smaller cut if we move v to T

- C subgraph of G with min-degree $\frac{2}{5}\delta$.
- Certified: no min-cut of G splits > 2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v)/2 + 1$ neighbors in C.
- All other vertics of *C* in core.

Lemma Core of *C* can be contracted preserving all non-trivial cuts of *G*.

- Consider non-trivial min-cut (U, T) of G.
- ▶ If (U, T) cuts *C*, at most two verteces, *v* and *w* in $U \cap C$.
- Suppose v not loose with $\geq d(v)/2 + 2$ neighbors in C.

- Then $\geq d(v)/2 + 1$ neighbors in $T \cap C$,
- so smaller cut if we move v to T.

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can further contract down to graph with O(n) edges and Õ(n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \tilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- ► For simple graph *G* with *n* nodes, *m* edges, min-degree δ , we contracted all but $\widetilde{O}(m/\delta)$ edges while preserving all non-trivial min-cuts of *G*.
- Can further contract down to graph with O(n) edges and Õ(n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \tilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about *s-t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can further contract down to graph with O(n) edges and Õ(n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \widetilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with O
 (n) edges and O
 (n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \widetilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with O(n) edges and Õ(n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most n + Õ((n/δ)²) cuts of size at most (2 − ε)λ.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- ► How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with O(n) edges and Õ(n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \widetilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- ► How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with O
 (n) edges and O
 (n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \widetilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- ► How about *s*-*t*-edge connectivity $\lambda_{s,t}$ in simple graph? Can we beat $\tilde{O}(\lambda_{s,t}m)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}(m + \lambda_{s,t}n)$ expected time by Karger and Levine [STOC'02].

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but Õ(m/δ) edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with O
 (n) edges and O
 (n/δ) vertices, preserving all non-trivial cuts of size at most (2 − ε)δ for any constant ε > 0.
- So with edge connectivity λ there are at most $n + \widetilde{O}((n/\delta)^2)$ cuts of size at most $(2 \varepsilon)\lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about s-t-edge connectivity λ_{s,t} in simple graph? Can we beat Õ(λ_{s,t}m) time by Ford-Fulkerson [1956], or the randomized Õ(m + λ_{s,t}n) expected time by Karger and Levine [STOC'02].

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not"
 —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but

(日) (日) (日) (日) (日) (日) (日)

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not"
 —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but

(日) (日) (日) (日) (日) (日) (日)

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not"
 —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but

(日) (日) (日) (日) (日) (日) (日)

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" —(2 + ε)-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but
- We can now give exact answer deterministically in near-linear time.

For more fun with algorithms, do PhD/Postdoc in Copenhagen.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▶ ▲□