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Edge connectivity and global min-cut

I Simple graph G = (V ,E) (no parallel edges).
I Edge connectivity is smallest number of edges whose

removal disconnects G.

I Cut defined by U ⊆ V , ∅ 6= U 6= V .
Two sides U and T = V \ U,
cut edges E(U,T ) = ∂U = ∂T between sides.

I Result Find edge connectivity including minimum cut
deterministically in near linear time.
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History
n = |V |, m = |E |, edge conectivity λ ≤ min-degree δ ≤ 2m/n.
I [Gomory Hu 1961] global min-cut via n − 1 min s-t cuts:

I O(λnm) with Ford Fulkerson [1956], or
I O(nm3/2) time with Even and Tarjan [1975].

I [Podderyugin 1973] global min-cut for simple graphs in
O(λn2) = O(nm) time. Same bound [Karzanov and
Timofeev 1986, Matula 1987]

I [Nagamochi Ibaraki 1990] Global min-cut for weighted
graphs in O(nm + n2 log n) time. Same bound and more
[Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

I [Nagamochi Ibaraki 1992] In O(m) time, find subgraph with
O(kn) edges preserving k -edge connectivity (unweighted).

I [Matula 1993] Linear time (2 + ε)-approximation of the
edge-connectivity λ.

I In O(m) time, find subgraph with O(λn) edges and same
edge-connectivity λ.
→ Henceforth assume m = Θ(λn).
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History cont’d
n = |V |, m = |E |, edge conectivity λ = Θ(m/n).

I [Gabow 1993] Global min-cut in O(λm log(n/λ)) time for
simple graphs. Implicit O(λm log n) for multigraphs.

I 1993 Karger starts applying randomized Monte Carlo to
global min-cut (never sure that there is no smaller cut)

I [Karger and Stein 1993] Global min-cut in O(n2 log3 n) time
but randomized Monte Carlo.

I [Karger 1994] Global min-cut in O(
√
λm) time but

randomized Monte Carlo.
I [Karger 1996] Global min-cut in O(m log3 n) time even for

weighted graphs but randomized Monte Carlo.
I [Karger 1996] Most efficient way to verify min-cut (for Las

Vegas) is using Gabow’s deterministic algorithm.
I [This paper] Global min-cut deterministically for simple

graphs in O(m log12 n) = Õ(m) time.
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Underlying result
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edges, preserving all non-trivial min-cuts of G.
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I Check against δ to see if trivial min-cuts from G should be
included.

I Gives min-cut (or cactus) for original G in Õ(m) total time.
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Involving cut conductance
I The volume of vertex set U ⊆ V is # edge end-points in U:

vol(U) =
∑
v∈U

d(v).

I Recall ∂U = E(U,V \ U).
I Conductance of cut around U is

Φ(U) =
|∂U|

min{vol(U), 2m − vol(U)}
= Φ(V \ U)
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I Recall ∂U = E(U,V \ U).
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Non-trivial min-cuts have low-conductance
Obs Any non-trivial min-cut S has conductance ≤ 1/δ.

I |∂S| ≥ |S|(δ − (|S| − 1)).
I |∂S| ≤ δ and |S| > 1 =⇒ |S| ≥ δ.
I so vol(S) ≥ δ2 and Φ(S) = |∂S|/vol(S) ≤ 1/δ. �

We assume min-degree δ ≥ lg6 n; otherwise apply Gabow.
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Certify-or-cut
Obs Any non-trivial min-cut S has conductance ≤ 1/δ.

We assume min-degree δ ≥ lg6 n; otherwise apply Gabow.

Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance o(1/ log m).

Both (i) and (ii) alone are difficult deterministically.

(i) As hard as certifying edge connectivity k
(ii) Using PageRank, need to guess good vertex in S.
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Overall algorithm
Really, we need something more elaborate
Certify-or-cut(C,G) C subgraph of G with min-degree 2

5δ.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A,B) of conductance o(1/ log m) of C

Claim If C has been certified, we can contract a large “core” of
C in G preserving all non-trivial cuts of G. No proof in this talk
I Set H = G.
I While some component C of H has not been certified.

I Certify-or-cut(C,G)
I if we get low-conductance cut (A,B) of C

I remove cut edges E(A,B) from H.
I repeatedly remove v with dH(v) ≤ 2

5dG(v).
I Contract cores of components C of H in G.

Lemma Most edges remain in components C of H:
I charge cut edges as o(1/ log m) per small-side edge.
I each edge land in small side lg m times. �
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preserves all original non-trivial min-cuts. Many details in paper.
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Rest of talk focussed on our simplified toy problem:

Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance o(1/ lg m).

Recall both (i) and (ii) alone are difficult.

(i) As hard as certifying edge connectivity k
(ii) Using PageRank, need to guess good vertex in S.
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PageRank [Andersen, Chung, Lang FOCS’06]
PageRank(p◦, α, ε)

initial mass distribution p◦ : V → R≥0, p◦(V ) =
∑

v∈V p◦(v) = 1
teleportation constant α = 1/ lg5 n
slack ε ∈ (0,1).
I residual mass distribution r = p◦

I settled mass distribution p = 0V

I while v ∈ V with residual density r(v)/d(v) ≥ ε
I Push(α, v):

I p(v) = p(v) + αr(v)
I for (v ,w) ∈ E do r(w) = r(w) + (1− α)r(v)/d(v)
I r(v) = 0.
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But when can we promise finding low-conductance cut?
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all v ∈ V have same density q(v)/d(v) = σ.
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PRα(p◦) = p∗ linear transformation such that

PRα(p◦) = p + PRα(r)

Stationary mass distribution q = PRα(q) iff
all v ∈ V have same density q(v)/d(v) = σ.



Limit concentration and cuts
Thm [ACL’06] If S ⊆ V has p∗(S)− vol(S)/(2m) = Ω(1) then
PageRank finds T with conductance Φ(T ) = o(1/ log m)

with vol(T ) = Õ(vol(S)) in Õ(vol(T )) time.

In [ACL06], if Φ(S) ≤ 1/ lg10 m and we start with p◦(v) = 1 from
random v ∈ S, we get p∗(S)− vol(S)/(2m) = Ω(1) with good
probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with
p◦(v) = 1 for any v ∈ S, we get p∗(S)− vol(S)/(2m) = Ω(1).

and if that fails we have

New analysis of end-game

Thm If v ∈ V has 1/(2m)− p∗(v)/d(v) = Ω(1/(2m)) then
PageRank finds T , vol(T ) ≤ m, with Φ(T ) = o(1/ log m)

either in Õ(vol(T )) time
or T contains all v with p∗(v)/d(v) = (1− Ω(1))/(2m).
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Mass flows from ACL’06
Recall

I Push(α, v):
I p(v) = p(v) + αr(r)
I for (v ,w) ∈ E do r(w) = r(w) + (1− α)r(v)/d(v)
I r(v) = 0

Lemma Starting from p◦, with settled mass p, netflow over
(u, v) was (1− α)(p(u)/d(u)− p(v)/d(v))/α.

Lemma If r(v)/d(v) ≤ σ for all v ∈ V , henceforth, netflow over
any edge ≤ σ(1− α)/α < σ/α.
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Starting from any vertex on small side of min-cut
I We have min-degree δ ≥ lg6 n and α = 1/ lg5 n.
I Let S with vol(S) ≤ m/2 be small side of min-cut.
I For arbitrary v ∈ S, start with p◦(v) = 1 and push from v

I At least half mass stays in S.
I On every vertex u, residual mass r(u) ≤ 1/d(v) ≤ 1/δ
I On every vertex u, residual density r(u)/d(u) ≤ 1/δ2.
I Henceforth pushing, netflow over any edge < 1/(αδ2),
I so λ/(αδ2) ≤ 1/ lg m = o(1) flow over edges leaving S.
I Thus 1/2− o(1) mass remains in S, so

p∗(v)− vol(S)/(2m) ≥ 1/2− o(1)− (m/2)/(2m) = Ω(1).

I By ACL, PageRank finds T with Φ(T ) = o(1/ log m)
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Balanced min-cut

I Suppose min-cut side S with m/2 ≤ vol(S) ≤ 3m/2.
I < 16 vertices incident to ≥ δ/8 cut edges.
I Trying 16 vertices separately.
I One v has 7/8 neighbors on same side.
I Pushing to limit from v , we get

p∗(S)− vol(S)/(2m) ≥ 7/8− o(1)− (3m/2)/(2m) = Ω(1).

I By ACL, PageRank finds T with Φ(T ) = o(1/ log m)
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Any non-trivial min-cut
I For some s ≤ m/2, know vol(S) ≤ s for any min-cut S.
I Look for min-cut S with 1 < s/2 ≤ vol(S) ≤ s.
I Using ACL, in Õ(s) time,

if v ∈ S′ for min-cut S′ with vol(S′) ≤ s,
find T with Φ(T ) ≤ o(1/ log m).

I Try 8m/(sα) different v in Õ(m) time. None succeeds.
I Give each of them initial mass sα/(8m)

and density ≤ sα/(8mδ). Apply page rank.

I Netflow over min-cut into S ≤ λ(sα/(8mδ))/α ≤ s/(8m).
I So average limit density in S is

p∗(S)/vol(S) ≤ (s/(8m))/(s/2) = 1/(4m).

I By new end-game theorem, get T with Φ(T ) ≤ o(1/ log m).
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Cores to contract in full algorithm

I C subgraph of G with min-degree 2
5δ.

I Certified: no min-cut of G splits > 2 vertices from C.
I Vertex v ∈ C loose if ≤ d(v)/2 + 1 neighbors in C.
I All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial
cuts of G.
I Consider non-trivial min-cut (U,T ) of G.
I If (U,T ) cuts C, at most two verteces, v and w in U ∩ C.
I Suppose v not loose with ≥ d(v)/2 + 2 neighbors in C.
I Then ≥ d(v)/2 + 1 neighbors in T ∩ C,
I so smaller cut if we move v to T . �
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Concluding remarks
I Presented deterministic near-linear time algorithm to find

edge-connectivity, min-cut, and cactus of simple graph.
I For simple graph G with n nodes, m edges, min-degree δ,

we contracted all but Õ(m/δ) edges while preserving all
non-trivial min-cuts of G.

I Can futher contract down to graph with Õ(n) edges and
Õ(n/δ) vertices, preserving all non-trivial cuts of size at
most (2− ε)δ for any constant ε > 0.

I So with edge connectivity λ there are at most
n + Õ((n/δ)2) cuts of size at most (2− ε)λ.

I What about multi-graphs or weighted graphs?
I Explore ramifications of new end-game analysis for other

PageRank related algorithms.
I How about s-t-edge connectivity λs,t in simple graph? Can

we beat Õ(λs,tm) time by Ford-Fulkerson [1956], or the
randomized Õ(m + λs,tn) expected time by Karger and
Levine [STOC’02].



Concluding remarks
I Presented deterministic near-linear time algorithm to find

edge-connectivity, min-cut, and cactus of simple graph.
I For simple graph G with n nodes, m edges, min-degree δ,
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we contracted all but Õ(m/δ) edges while preserving all
non-trivial min-cuts of G.

I Can futher contract down to graph with Õ(n) edges and
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randomized Õ(m + λs,tn) expected time by Karger and
Levine [STOC’02].



Concluding remarks
I Presented deterministic near-linear time algorithm to find

edge-connectivity, min-cut, and cactus of simple graph.
I For simple graph G with n nodes, m edges, min-degree δ,
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Is my graph safely connected against k arbitrary
edge-cuts?

I We did have other near-linear time answers:
I Matula [1993] “perhaps not k , but almost k/2”

—(2 + ε)-approximation in linear time.
I Karger [1996] ‘‘most likely, but perhaps not”

—Monte Carlo randomization in near-linear time.
I Such weak answers very interesting if we cannot find exact

deterministic solution, but
I We can now give exact answer deterministically in

near-linear time.
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For more fun with algorithms, do PhD/Postdoc in Copenhagen.




