Deterministic Edge Connectivity in Near-Linear Time

Ken-ichi Kawarabayashi

National Institute of Informatics, Japan

Edge connectivity and global min-cut

- Simple graph $G=(V, E)$ (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

Edge connectivity and global min-cut

- Simple graph $G=(V, E)$ (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- Cut defined by $U \subseteq V, \emptyset \neq U \neq V$. Two sides U and $T=V \backslash U$, cut edges $E(U, T)=\partial U=\partial T$ between sides.

Result Find edge connectivity including minimum cut deterministically in near linear time.

Edge connectivity and global min-cut

- Simple graph $G=(V, E)$ (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- Cut defined by $U \subseteq V, \emptyset \neq U \neq V$. Two sides U and $T=V \backslash U$, cut edges $E(U, T)=\partial U=\partial T$ between sides.
- Result Find edge connectivity including minimum cut deterministically in near linear time.

Edge connectivity and global min-cut

- Simple graph $G=(V, E)$ (no parallel edges).
- Edge connectivity is smallest number of edges whose removal disconnects G.

- Cut defined by $U \subseteq V, \emptyset \neq U \neq V$. Two sides U and $T=V \backslash U$, cut edges $E(U, T)=\partial U=\partial T$ between sides.
- Result Find edge connectivity including minimum cut deterministically in near linear time.

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq$ min-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq$ min-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq$ min-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s- t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq$ min-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s- t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq$ min-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O\left(\lambda n^{2}\right)=O(n m)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O\left(n m+n^{2} \log n\right)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq \min$-degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s- t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O\left(\lambda n^{2}\right)=O(n m)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O\left(n m+n^{2} \log n\right)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq m i n-$ degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O\left(\lambda n^{2}\right)=O(n m)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O\left(n m+n^{2} \log n\right)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi Ibaraki 1992] In $O(m)$ time, find subgraph with $O(k n)$ edges preserving k-edge connectivity (unweighted).

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq m i n-$ degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O\left(\lambda n^{2}\right)=O(n m)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O\left(n m+n^{2} \log n\right)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi lbaraki 1992] In $O(m)$ time, find subgraph with $O(k n)$ edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time $(2+\varepsilon)$-approximation of the edge-connectivity λ.
- In $O(m)$ time, find subgraph with $O(\lambda n)$ edges and same \rightarrow Henceforth assume $m=\Theta(\lambda n)$.

History

$n=|V|, m=|E|$, edge conectivity $\lambda \leq m i n-$ degree $\delta \leq 2 m / n$.

- [Gomory Hu 1961] global min-cut via $n-1$ min s-t cuts:
- $O(\lambda n m)$ with Ford Fulkerson [1956], or
- $O\left(n m^{3 / 2}\right)$ time with Even and Tarjan [1975].
- [Podderyugin 1973] global min-cut for simple graphs in $O\left(\lambda n^{2}\right)=O(n m)$ time. Same bound [Karzanov and Timofeev 1986, Matula 1987]
- [Nagamochi Ibaraki 1990] Global min-cut for weighted graphs in $O\left(n m+n^{2} \log n\right)$ time. Same bound and more [Hao Orlin 1992, Frank 1994, Stoer and Wagner 1997]
- [Nagamochi lbaraki 1992] In $O(m)$ time, find subgraph with $O(k n)$ edges preserving k-edge connectivity (unweighted).
- [Matula 1993] Linear time $(2+\varepsilon)$-approximation of the edge-connectivity λ.
- In $O(m)$ time, find subgraph with $O(\lambda n)$ edges and same edge-connectivity λ.
\rightarrow Henceforth assume $m=\Theta(\lambda n)$.

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.
- [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.
- [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in $O\left(m \log ^{3} n\right)$ time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.
- [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in $O\left(m \log ^{3} n\right)$ time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
graphs in $O\left(m \log ^{12} n\right)=O(m)$ time .

History cont'd

$n=|V|, m=|E|$, edge conectivity $\lambda=\Theta(m / n)$.

- [Gabow 1993] Global min-cut in $O(\lambda m \log (n / \lambda))$ time for simple graphs. Implicit $O(\lambda m \log n)$ for multigraphs.
- 1993 Karger starts applying randomized Monte Carlo to global min-cut (never sure that there is no smaller cut)
- [Karger and Stein 1993] Global min-cut in $O\left(n^{2} \log ^{3} n\right)$ time but randomized Monte Carlo.
- [Karger 1994] Global min-cut in $O(\sqrt{\lambda} m)$ time but randomized Monte Carlo.
- [Karger 1996] Global min-cut in $O\left(m \log ^{3} n\right)$ time even for weighted graphs but randomized Monte Carlo.
- [Karger 1996] Most efficient way to verify min-cut (for Las Vegas) is using Gabow's deterministic algorithm.
- [This paper] Global min-cut deterministically for simple graphs in $O\left(m \log ^{12} n\right)=\widetilde{O}(m)$ time.

Underlying result

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

Underlying result

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

Underlying result

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Multigraph?

Underlying result

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Multigraph?

Underlying result

- A cut is trivial if one side is a single vertex.
- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Multigraph?

all edges in non-trivial min-cuts.

Underlying result

- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Run Gabow's min-cut (or cactus) algorithm on G in $\widetilde{O}(\lambda \bar{m})=\widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from G should be included.

Underlying result

- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Run Gabow's min-cut (or cactus) algorithm on \bar{G} in $\widetilde{O}(\lambda \bar{m})=\widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from G should be included.
- Gives min-cut (or cactus) for original G in $O(m)$ total time.

Underlying result

- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Run Gabow's min-cut (or cactus) algorithm on \bar{G} in $\widetilde{O}(\lambda \bar{m})=\widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from G should be included.
- Gives min-cut (or cactus) for original G in $O(m)$ total time.

Underlying result

- For simple graph with min-degree δ, in near-linear time, contract edges producing graph \bar{G} with $\bar{m}=\widetilde{O}(m / \delta)$ edges, preserving all non-trivial min-cuts of G.

- Run Gabow's min-cut (or cactus) algorithm on \bar{G} in $\widetilde{O}(\lambda \bar{m})=\widetilde{O}(m)$ time.
- Check against δ to see if trivial min-cuts from G should be included.
- Gives min-cut (or cactus) for original G in $\widetilde{O}(m)$ total time.

Involving cut conductance

- The volume of vertex set $U \subseteq V$ is \# edge end-points in U :

$$
\operatorname{vol}(U)=\sum_{v \in U} d(v)
$$

- Recall $\partial U=E(U, V \backslash U)$.
- Conductance of cut around U is

$$
\Phi(U)=\frac{|\partial U|}{\min \{\operatorname{vol}(U), 2 m-\operatorname{vol}(U)\}}=\Phi(V \backslash U)
$$

Involving cut conductance

- The volume of vertex set $U \subseteq V$ is \# edge end-points in U :

$$
\operatorname{vol}(U)=\sum_{v \in U} d(v)
$$

- Recall $\partial U=E(U, V \backslash U)$.
- Conductance of cut around U is

$$
\Phi(U)=\frac{|\partial U|}{\min \{\operatorname{vol}(U), 2 m-\operatorname{vol}(U)\}}=\Phi(V \backslash U)
$$

non-trivial

Non-trivial min-cuts have low-conductance
Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.

Non-trivial min-cuts have low-conductance
Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.

- $|\partial S| \geq|S|(\delta-(|S|-1))$.

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.

- $|\partial S| \geq|S|(\delta-(|S|-1))$.
- $|\partial S| \leq \delta$ and $|S|>1 \Longrightarrow|S| \geq \delta$.
- so vol $(S) \geq \delta^{2}$ and $\Phi(S)=|\partial S| / v o \mid(S) \leq 1 / \delta$.

We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.

- $|\partial S| \geq|S|(\delta-(|S|-1))$.
- $|\partial S| \leq \delta$ and $|S|>1 \Longrightarrow|S| \geq \delta$.
- $\operatorname{so} \operatorname{vol}(S) \geq \delta^{2}$ and $\Phi(S)=|\partial S| / \operatorname{vol}(S) \leq 1 / \delta$.

We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.

Non-trivial min-cuts have low-conductance

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.

- $|\partial S| \geq|S|(\delta-(|S|-1))$.
- $|\partial S| \leq \delta$ and $|S|>1 \Longrightarrow|S| \geq \delta$.
- so vol $(S) \geq \delta^{2}$ and $\Phi(S)=|\partial S| / \operatorname{vol}(S) \leq 1 / \delta$.

We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.

Certify-or-cut

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.
We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.
Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance $o(1 / \log m)$.

Both (i) and (ii) alone are difficult deterministically.

Certify-or-cut

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.
We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.
Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance $o(1 / \log m)$.

Both (i) and (ii) alone are difficult deterministically. As hard as certifying edge connectivity k

Certify-or-cut

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.
We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.
Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance $o(1 / \log m)$.

Both (i) and (ii) alone are difficult deterministically.

$$
\begin{aligned}
& \text { (i) As hard as certifying edge connectivity } k \\
& \text { (ii) Using PageRank, need to guess good vertex in } S \text {. }
\end{aligned}
$$

Certify-or-cut

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.
We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.
Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance $o(1 / \log m)$.

Both (i) and (ii) alone are difficult deterministically.
(i) As hard as certifying edge connectivity k

(ii) Using PageRank, need to guess good vertex in S.

Certify-or-cut

Obs Any non-trivial min-cut S has conductance $\leq 1 / \delta$.
We assume min-degree $\delta \geq \lg ^{6} n$; otherwise apply Gabow.
Certify-or-cut(G) In near-linear time, we will either
(i) certify all min-cuts of G are trivial, or
(ii) find cut T with conductance $o(1 / \log m)$.

Both (i) and (ii) alone are difficult deterministically.
(i) As hard as certifying edge connectivity k

(ii) Using PageRank, need to guess good vertex in S.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut($C, G)$
- if we get low-conductance cut (A, B) of C

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- Contract cores of components C of H in G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Lemma Most edges remain in components C of H :

- charge cut edges as o(1/log m) per small-side edge.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Lemma Most edges remain in components C of H :

- charge cut edges as $o(1 / \log m)$ per small-side edge.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G. No proof in this talk

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Lemma Most edges remain in components C of H :

- charge cut edges as $o(1 / \log m)$ per small-side edge.
- each edge land in small side $\lg m$ times.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Need to recurse, but contractions create parallel edges.
\square
Thm After enough recursions G has $O(m / \delta)$ edges and
preserves all original non-trivial min-cuts.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Need to recurse, but contractions create parallel edges.
Thm After enough recursions G has $\widetilde{O}(m / \delta)$ edges and preserves all original non-trivial min-cuts.

Overall algorithm

Really, we need something more elaborate
Certify-or-cut $(C, G) C$ subgraph of G with min-degree $\frac{2}{5} \delta$.
(i) certify no min-cut of G splits more than 2 vertices from C.
(ii) find a cut (A, B) of conductance $o(1 / \log m)$ of C

Claim If C has been certified, we can contract a large "core" of C in G preserving all non-trivial cuts of G.

- Set $H=G$.
- While some component C of H has not been certified.
- Certify-or-cut(C, G)
- if we get low-conductance cut (A, B) of C
- remove cut edges $E(A, B)$ from H.
- repeatedly remove v with $d_{H}(v) \leq \frac{2}{5} d_{G}(v)$.
- Contract cores of components C of H in G.

Need to recurse, but contractions create parallel edges.
Thm After enough recursions G has $\widetilde{O}(m / \delta)$ edges and preserves all original non-trivial min-cuts. Many details in paper.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

Recall both (i) and (ii) alone are difficult.
(i) As hard as certifying edge connectivity k
(ii) Using PageRank, need to quess good vertex in S.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

Recall both (i) and (ii) alone are difficult.
(i) As hard as certifying edge connectivity k

(ii) Using PageRank, need to guess good vertex in S.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

- We use PageRank emulating random walk.
- Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

- We use PageRank emulating random walk.
- Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
- We need success (ii) only if non-trivial min-cut exists \neg (i). bypassing the need for guessing.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

- We use PageRank emulating random walk.
- Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
- We need success (ii) only if non-trivial min-cut exists \neg (i).
- This gives us enough structure for deterministic algorithm,
bypassing the need for guessing.

Certify-or-cut

Rest of talk focussed on our simplified toy problem:
Certify-or-cut(G) For simple graph G, in near-linear time, either
(i) certify all min-cuts of G are trivial, or
(ii) find a cut U of conductance $O(1 / \lg m)$.

- We use PageRank emulating random walk.
- Normally PageRank is Monte Carlo randomized that needs to guess good start vertex to find low-conductance cut.
- We need success (ii) only if non-trivial min-cut exists \neg (i).
- This gives us enough structure for deterministic algorithm, bypassing the need for guessing.

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank $\left(p^{\circ}, \alpha, \varepsilon\right)$
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank $\left(p^{\circ}, \alpha, \varepsilon\right)$
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with residual density $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with residual density $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0 \text {. }
\end{aligned}
$$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with residual density $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :
- $p(v)=p(v)+\alpha r(v)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$.

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=\sum_{v \in V} p^{\circ}(v)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with residual density $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0 \text {. }
\end{aligned}
$$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$) initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :
- $p(v)=p(v)+\alpha r(v)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$.
- order vertices v by decreasing density $p(v) / d(v)$.
- find best cuts defined by any prefix.

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$) initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0 \text {. }
\end{aligned}
$$

- order vertices v by decreasing density $p(v) / d(v)$.
- find best cuts defined by any prefix.

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank ($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$
teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0 \text {. }
\end{aligned}
$$

- order vertices v by decreasing density $p(v) / d(v)$.
- find best cuts defined by any prefix.

Pushing over $O(1 /(\alpha \varepsilon))$ edges in total, so $O(1 /(\alpha \varepsilon))$ total time.

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)

initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { - for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0 \text {. }
\end{aligned}
$$

- order vertices v by decreasing density $p(v) / d(v)$.
- find best cuts defined by any prefix.

Pushing over $O(1 /(\alpha \varepsilon))$ edges in total, so $O(1 /(\alpha \varepsilon))$ total time.
But when can we promise finding low-conductance cut?

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$ teleportation constant $\alpha=1 / \lg ^{5} n$ slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :
- $p(v)=p(v)+\alpha r(v)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$
teleportation constant $\alpha=1 / \lg ^{5} n$
slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0
\end{aligned}
$$

Unique (abstract) limit mass distribution $p^{*} \leftarrow p$ for $\varepsilon \rightarrow 0$.

$$
\mathrm{PR}_{\alpha}\left(p^{\circ}\right)=p+\mathrm{PR}_{\alpha}(r)
$$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$
teleportation constant $\alpha=1 / \lg ^{5} n$
slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0
\end{aligned}
$$

Unique (abstract) limit mass distribution $p^{*} \leftarrow p$ for $\varepsilon \rightarrow 0$. $\mathrm{PR}_{\alpha}\left(p^{\circ}\right)=p^{*}$ linear transformation such that

$$
\mathrm{PR}_{\alpha}\left(p^{\circ}\right)=p+\mathrm{PR}_{\alpha}(r)
$$

PageRank [Andersen, Chung, Lang FOCS'06]

PageRank($p^{\circ}, \alpha, \varepsilon$)
initial mass distribution $p^{\circ}: V \rightarrow \mathbb{R}_{\geq 0}, p^{\circ}(V)=1$
teleportation constant $\alpha=1 / \lg ^{5} n$
slack $\varepsilon \in(0,1)$.

- residual mass distribution $r=p^{\circ}$
- settled mass distribution $p=0^{V}$
- while $v \in V$ with $r(v) / d(v) \geq \varepsilon$
- Push (α, v) :

$$
\begin{aligned}
& \text { - } p(v)=p(v)+\alpha r(v) \\
& \text { for }(v, w) \in E \text { do } r(w)=r(w)+(1-\alpha) r(v) / d(v) \\
& \text { - } r(v)=0
\end{aligned}
$$

Unique (abstract) limit mass distribution $p^{*} \leftarrow p$ for $\varepsilon \rightarrow 0$. $\mathrm{PR}_{\alpha}\left(p^{\circ}\right)=p^{*}$ linear transformation such that

$$
\mathrm{PR}_{\alpha}\left(p^{\circ}\right)=p+\mathrm{PR}_{\alpha}(r)
$$

Stationary mass distribution $q=\mathrm{PR}_{\alpha}(q)$ iff all $v \in V$ have same density $q(v) / d(v)=\sigma$.

Limit concentration and cuts

Thm [ACL'06] If $S \subseteq V$ has $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ then PageRank finds T with conductance $\Phi(T)=o(1 / \log m)$ with $\operatorname{vol}(T)=\widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.

Limit concentration and cuts

Thm [ACL'06] If $S \subseteq V$ has $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ then PageRank finds T with conductance $\Phi(T)=o(1 / \log m)$ with $\operatorname{vol}(T)=\widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time. In [ACL06], if $\Phi(S) \leq 1 / \lg ^{10} m$ and we start with $p^{\circ}(v)=1$ from random $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ with good probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with $p^{\circ}(v)=1$ for any $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$.

Limit concentration and cuts

Thm [ACL'06] If $S \subseteq V$ has $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ then PageRank finds T with conductance $\Phi(T)=o(1 / \log m)$ with $\operatorname{vol}(T)=\widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.
In [ACL06], if $\Phi(S) \leq 1 / \lg ^{10} m$ and we start with $p^{\circ}(v)=1$ from random $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ with good probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with $p^{\circ}(v)=1$ for any $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$.
and if that fails we have
New analysis of end-game

Limit concentration and cuts

Thm [ACL'06] If $S \subseteq V$ has $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ then
PageRank finds T with conductance $\Phi(T)=o(1 / \log m)$ with $\operatorname{vol}(T)=\widetilde{O}(\operatorname{vol}(S))$ in $\widetilde{O}(\operatorname{vol}(T))$ time.
In [ACL06], if $\Phi(S) \leq 1 / \lg ^{10} m$ and we start with $p^{\circ}(v)=1$ from random $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$ with good probability, but here we do not want to guess..

We will prove that if S non-trivial min-cut and we start with $p^{\circ}(v)=1$ for any $v \in S$, we get $p^{*}(S)-\operatorname{vol}(S) /(2 m)=\Omega(1)$.
and if that fails we have
New analysis of end-game
Thm If $v \in V$ has $1 /(2 m)-p^{*}(v) / d(v)=\Omega(1 /(2 m))$ then PageRank finds T, vol $(T) \leq m$, with $\Phi(T)=o(1 / \log m)$ either in $\widetilde{O}(\operatorname{vol}(T))$ time or T contains all v with $p^{*}(v) / d(v)=(1-\Omega(1)) /(2 m)$.

Mass flows from ACL'06

Recall

- Push (α, v) :
- $p(v)=p(v)+\alpha r(r)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$

Lemma Starting from p°, with settled mass p, netflow over (u, v) was $(1-\alpha)(p(u) / d(u)-p(v) / d(v)) / \alpha$.

Mass flows from ACL'06
Recall

- Push (α, v) :
- $p(v)=p(v)+\alpha r(r)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$

Lemma Starting from p°, with settled mass p, netflow over (u, v) was $(1-\alpha)(p(u) / d(u)-p(v) / d(v)) / \alpha$.

Lemma If $r(v) / d^{\prime}(w)<\sigma$ for all $v \in V$, henceforth, netflow over any edge

Mass flows from ACL'06

Recall

- Push(α, v):
- $p(v)=p(v)+\alpha r(r)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$

Lemma Starting from p°, with settled mass p, netflow over (u, v) was $(1-\alpha)(p(u) / d(u)-p(v) / d(v)) / \alpha$.

Mass flows from ACL'06

Recall

- Push (α, v) :
- $p(v)=p(v)+\alpha r(r)$
- for $(v, w) \in E$ do $r(w)=r(w)+(1-\alpha) r(v) / d(v)$
- $r(v)=0$

Lemma Starting from p°, with settled mass p, netflow over (u, v) was $(1-\alpha)(p(u) / d(u)-p(v) / d(v)) / \alpha$.
Lemma If $r(v) / d(v) \leq \sigma$ for all $v \in V$, henceforth, netflow over any edge $\leq \sigma(1-\alpha) / \alpha<\sigma / \alpha$.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$. - Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$
- On every vertex u, residual density $r(u) / d(u) \leq 1 / \delta^{2}$.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$
- On every vertex u, residual density $r(u) / d(u) \leq 1 / \delta^{2}$.
- Henceforth pushing, netflow over any edge $<1 /\left(\alpha \delta^{2}\right)$,

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$
- On every vertex u, residual density $r(u) / d(u) \leq 1 / \delta^{2}$.
- Henceforth pushing, netflow over any edge $<1 /\left(\alpha \delta^{2}\right)$,
- so $\lambda /\left(\alpha \delta^{2}\right) \leq 1 / \lg m=o(1)$ flow over edges leaving S.

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$
- On every vertex u, residual density $r(u) / d(u) \leq 1 / \delta^{2}$.
- Henceforth pushing, netflow over any edge $<1 /\left(\alpha \delta^{2}\right)$,
- so $\lambda /\left(\alpha \delta^{2}\right) \leq 1 / \lg m=o(1)$ flow over edges leaving S.
- Thus $1 / 2-o(1)$ mass remains in S, so

$$
p^{*}(v)-\operatorname{vol}(S) /(2 m) \geq 1 / 2-o(1)-(m / 2) /(2 m)=\Omega(1)
$$

Starting from any vertex on small side of min-cut

- We have min-degree $\delta \geq \lg ^{6} n$ and $\alpha=1 / \lg ^{5} n$.
- Let S with $\operatorname{vol}(S) \leq m / 2$ be small side of min-cut.
- For arbitrary $v \in S$, start with $p^{\circ}(v)=1$ and push from v

- At least half mass stays in S.
- On every vertex u, residual mass $r(u) \leq 1 / d(v) \leq 1 / \delta$
- On every vertex u, residual density $r(u) / d(u) \leq 1 / \delta^{2}$.
- Henceforth pushing, netflow over any edge $<1 /\left(\alpha \delta^{2}\right)$,
- so $\lambda /\left(\alpha \delta^{2}\right) \leq 1 / \lg m=o(1)$ flow over edges leaving S.
- Thus $1 / 2-o(1)$ mass remains in S, so

$$
p^{*}(v)-\operatorname{vol}(S) /(2 m) \geq 1 / 2-o(1)-(m / 2) /(2 m)=\Omega(1)
$$

- By ACL, PageRank finds T with $\Phi(T)=o(1 / \log m)$

Balanced min－cut

－Suppose min－cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$ ． －<16 vertices incident to $\geq \delta / 8$ cut edges．

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.
- One v has $7 / 8$ neighbors on same side.

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.
- One v has $7 / 8$ neighbors on same side. - Pushing to limit from v, we get

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.
- One v has $7 / 8$ neighbors on same side.
- Pushing to limit from v, we get
$p^{*}(S)-\operatorname{vol}(S) /(2 m) \geq 7 / 8-o(1)-(3 m / 2) /(2 m)=\Omega(1)$.
* By ACL, PageRank finds T with $\phi(T)=\sigma^{(1 /(\log m)}$

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.
- One v has $7 / 8$ neighbors on same side.
- Pushing to limit from v, we get

$$
p^{*}(S)-\operatorname{vol}(S) /(2 m) \geq 7 / 8-o(1)-(3 m / 2) /(2 m)=\Omega(1)
$$

- By ACL, PageRank finds T with $\Phi(T)=O(1 / \log m)$

Balanced min-cut

- Suppose min-cut side S with $m / 2 \leq \operatorname{vol}(S) \leq 3 m / 2$.
- <16 vertices incident to $\geq \delta / 8$ cut edges.
- Trying 16 vertices separately.
- One v has $7 / 8$ neighbors on same side.
- Pushing to limit from v, we get

$$
p^{*}(S)-\operatorname{vol}(S) /(2 m) \geq 7 / 8-o(1)-(3 m / 2) /(2 m)=\Omega(1)
$$

- By ACL, PageRank finds T with $\Phi(T)=O(1 / \log m)$

Any non-trivial min-cut

- For some $s \leq m / 2, \operatorname{know} \operatorname{vol}(S) \leq s$ for any min-cut S. Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.

Any non-trivial min-cut

- For some $s \leq m / 2, \operatorname{know} \operatorname{vol}(S) \leq s$ for any min-cut S.

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.
- Give each of them initial mass $s \alpha /(8 m)$
and density $\leq s \alpha /(8 m \delta)$. Apply page rank.

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.
- Give each of them initial mass $s \alpha /(8 m)$ and density $\leq s \alpha /(8 m \delta)$. Apply page rank.

\rightarrow Netflow over min-cut into $S \leq \lambda(s \alpha /(8 m \delta)) / \alpha \leq s /(8 m)$.

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.
- Give each of them initial mass $s \alpha /(8 m)$ and density $\leq s \alpha /(8 m \delta)$. Apply page rank.

- Netflow over min-cut into $S \leq \lambda(\boldsymbol{s} \alpha /(8 m \delta)) / \alpha \leq \boldsymbol{s} /(8 m)$.
\square

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.
- Give each of them initial mass $s \alpha /(8 m)$ and density $\leq s \alpha /(8 m \delta)$. Apply page rank.

- Netflow over min-cut into $S \leq \lambda(\boldsymbol{s} \alpha /(8 m \delta)) / \alpha \leq \boldsymbol{s} /(8 m)$.
- So average limit density in S is

$$
p^{*}(S) / \operatorname{vol}(S) \leq(s /(8 m)) /(s / 2)=1 /(4 m)
$$

Any non-trivial min-cut

- For some $s \leq m / 2$, know $\operatorname{vol}(S) \leq s$ for any min-cut S.
- Look for min-cut S with $1<s / 2 \leq \operatorname{vol}(S) \leq s$.
- Using ACL, in $\widetilde{O}(s)$ time, if $v \in S^{\prime}$ for min-cut S^{\prime} with $\operatorname{vol}\left(S^{\prime}\right) \leq s$, find T with $\Phi(T) \leq o(1 / \log m)$.
- Try $8 m /(s \alpha)$ different v in $O(m)$ time. None succeeds.
- Give each of them initial mass $s \alpha /(8 m)$ and density $\leq s \alpha /(8 m \delta)$. Apply page rank.

- Netflow over min-cut into $S \leq \lambda(\boldsymbol{s} \alpha /(8 m \delta)) / \alpha \leq \boldsymbol{s} /(8 m)$.
- So average limit density in S is

$$
p^{*}(S) / \operatorname{vol}(S) \leq(s /(8 m)) /(s / 2)=1 /(4 m)
$$

- By new end-game theorem, get T with $\Phi(T) \leq o(1 / \log m)$.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v) / 2+2$ neighbors in C.

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v) / 2+2$ neighbors in C.
- Then $\geq d(v) / 2+1$ neighbors in $T \cap C$,

Cores to contract in full algorithm

- C subgraph of G with min-degree $\frac{2}{5} \delta$.
- Certified: no min-cut of G splits >2 vertices from C.
- Vertex $v \in C$ loose if $\leq d(v) / 2+1$ neighbors in C.
- All other vertics of C in core.

Lemma Core of C can be contracted preserving all non-trivial cuts of G.

- Consider non-trivial min-cut (U, T) of G.
- If (U, T) cuts C, at most two verteces, v and w in $U \cap C$.
- Suppose v not loose with $\geq d(v) / 2+2$ neighbors in C.
- Then $\geq d(v) / 2+1$ neighbors in $T \cap C$,
- so smaller cut if we move v to T.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $O(\mathrm{~m} / \delta)$ edges while preserving all non-trivial min-cuts of G.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with $\widetilde{O}(n)$ edges and $\widetilde{O}(n / \delta)$ vertices, preserving all non-trivial cuts of size at most $(2-\varepsilon) \delta$ for any constant $\varepsilon>0$.
$\begin{aligned} & \text { So with edge connectivity } \lambda \text { there are at most } \\ & n+\widetilde{O}\left((n / \delta)^{2}\right) \text { cuts of size at most }(2-\varepsilon) \lambda \text {. } \\ - & \text { What about multi-graphs or weighted graphs? }\end{aligned}$

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with $\widetilde{O}(n)$ edges and $\widetilde{O}(n / \delta)$ vertices, preserving all non-trivial cuts of size at most $(2-\varepsilon) \delta$ for any constant $\varepsilon>0$.
- So with edge connectivity λ there are at most $n+\widetilde{O}\left((n / \delta)^{2}\right)$ cuts of size at most $(2-\varepsilon) \lambda$.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with $\widetilde{O}(n)$ edges and $\widetilde{O}(n / \delta)$ vertices, preserving all non-trivial cuts of size at most $(2-\varepsilon) \delta$ for any constant $\varepsilon>0$.
- So with edge connectivity λ there are at most $n+\widetilde{O}\left((n / \delta)^{2}\right)$ cuts of size at most $(2-\varepsilon) \lambda$.
- What about multi-graphs or weighted graphs?

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with $\widetilde{O}(n)$ edges and $\widetilde{O}(n / \delta)$ vertices, preserving all non-trivial cuts of size at most $(2-\varepsilon) \delta$ for any constant $\varepsilon>0$.
- So with edge connectivity λ there are at most $n+\widetilde{O}\left((n / \delta)^{2}\right)$ cuts of size at most $(2-\varepsilon) \lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.

Concluding remarks

- Presented deterministic near-linear time algorithm to find edge-connectivity, min-cut, and cactus of simple graph.
- For simple graph G with n nodes, m edges, min-degree δ, we contracted all but $\widetilde{O}(m / \delta)$ edges while preserving all non-trivial min-cuts of G.
- Can futher contract down to graph with $\widetilde{O}(n)$ edges and $\widetilde{O}(n / \delta)$ vertices, preserving all non-trivial cuts of size at most $(2-\varepsilon) \delta$ for any constant $\varepsilon>0$.
- So with edge connectivity λ there are at most $n+\widetilde{O}\left((n / \delta)^{2}\right)$ cuts of size at most $(2-\varepsilon) \lambda$.
- What about multi-graphs or weighted graphs?
- Explore ramifications of new end-game analysis for other PageRank related algorithms.
- How about s - t-edge connectivity $\lambda_{s, t}$ in simple graph? Can we beat $\tilde{O}\left(\lambda_{s, t} m\right)$ time by Ford-Fulkerson [1956], or the randomized $\tilde{O}\left(m+\lambda_{s, t} n\right)$ expected time by Karger and Levine [STOC'02].

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost k/2" - $(2+\varepsilon)$-approximation in linear time. Karger [1996] "most likely, but perhaps not" -Monte Carlo randomization in near-linear time.

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost $k / 2$ " - $(2+\varepsilon)$-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" -Monte Carlo randomization in near-linear time.
 deterministic solution, but

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost $k / 2$ " - $(2+\varepsilon)$-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" -Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but
- We can now give exact answer deterministically in near-linear time.

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost $k / 2$ " - $(2+\varepsilon)$-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" —Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but
- We can now give exact answer deterministically in near-linear time.

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost $k / 2$ " - $(2+\varepsilon)$-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" -Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but
- We can now give exact answer deterministically in near-linear time.

Is my graph safely connected against k arbitrary edge-cuts?

- We did have other near-linear time answers:
- Matula [1993] "perhaps not k, but almost $k / 2$ " - $(2+\varepsilon)$-approximation in linear time.
- Karger [1996] "most likely, but perhaps not" -Monte Carlo randomization in near-linear time.
- Such weak answers very interesting if we cannot find exact deterministic solution, but
- We can now give exact answer deterministically in near-linear time.
For more fun with algorithms, do PhD/Postdoc in Copenhagen.

