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Data Structure Lower Bounds

Yao - FOCS ’78
Predecessor (static)
• Ajtai - Combinatorica ’88 (incorrect) (Communication complexity)
• Miltersen - STOC’ 94
• Miltersen, Nisan, Safra, Wigdersen - STOC ’95
• Beame, Fich - STOC ’99
• Sen - ICALP ’01

Dynamic problems (partial sums, union find)
• Fredman, Saks - STOC ’89 (Chronogram technique)
• Ben-Amram, Galil - FOCS ’91
• Miltersen, Subramanian, Vitter, Tamassia - TCS ’94
• Husfeldt, Rauhe, Skyum - SWAT ’96 (planar connectivity)
• Fredman, Henzinger - Algorithmica ’98 (non-determinism)
• Alstrup, Husfeldt, Rauhe - FOCS ’98 (marked ancestor)
• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)
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• Alstrup, Husfeldt, Rauhe - SODA ’01 (2D NN)
• Alstrup, Ben-Amram, Rauhe - STOC ’99 (union-find)

First Ω (log n) lower bound using information
transfer.

M. Pǎtraşcu and E. Demaine
Tight bounds for the partial-sums problem
SODA 2004
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x13 ?

︸ ︷︷ ︸
n

v0 v1 v2 v4v3 v5 v6 v7

Stream of numbers from [q]

x12x11x10x9x8x1 x2 x3 x4 x5 x6 x7

Fixed vector
V ∈ [q]n

V ·(last n digits of stream) =
n−1∑
i=0

vix(i+ leftmost aligned index)

Output dot product (modulo q):

Lower bound: Ω

(
δ

w
log n

)
δ = log q, word size w.
C., Jalsenius. Lower Bounds for Online Integer Multiplication and
Convolution in the Cell-Probe Mode. ICALP 2011
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A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)
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Previous bounds

M. J. Fischer and L. J. Stockmeyer
Fast on-line integer multiplication
STOC ’73

C., K. Efremenko, B. Porat and E. Porat
A black box for online approximate pattern matching
Information and Computation 209(4):731–736, 2011

• O(log2 n) time per arriving symbol (pair)

Better online lower bound
⇒

super linear lower bound for
offline convolution and multiplication
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transfer
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Not including cells that
were overwritten before
being read

The cells in IT (t, `)
provide sufficient
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Unknown value
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Fixed value

The conditional entropy

H(the outputs during | all fixed)

6 w + 2w · E [|IT (t, `)| | all fixed]

w bits per cell

Cell Address Contents
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w bits
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w bits

34123|IT (t, `)|
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01882

76112
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w bits to encode
|IT (t, `)|
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Information transfer

??????? ?
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1︸ ︷︷ ︸
Contributes to the dot product
with the same value at each
alignment
(δ = log q bits of information)
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Total number of cell reads

1 162 3 4 5 6 7 8 9 10 11 12 13 14 15

Feed the algorithm with n values chosen uniformly at
random from [q].

The number of cell reads during the n inputs is at least∑
internal node v

|IT (tv, `v)|

No double counting of a
cell read!

The expected number of cell reads is at least

E

[ ∑
internal node v

|IT (tv, `v)|

]
=

∑
internal node v

E [|IT (tv, `v)|]

>
∑

internal node v

δ

4w
`v −

1

2

= Ω

(
δ

w
· n log n

)So. . .
The amortised time lower
bound per output is
Ω
(
δ
w log n

)



What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

Ω

(
log n

w

)
= Ω(1).

But...

I What if each output is in {0, . . . , n}?

I Total entropy of n/ log n outputs could therefore be Ω(n).

I We could then use a new lop-sided information transfer
technique instead.
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Pattern matching with address errors

Message sent: eleven plus two

Message received: twelve plus one

I The L2-rearrangement distance defined to be
minπ∈Π

∑n−1
j=0 (j − π(j))2 (AABLLPSV:2009)

I Online: O(log2 n) time per arriving symbol (CS:2011).

Example

The L2-rearrangement distance of 11100 and 10110 is
02 + 12 + 12 + 22 + 02 = 6.
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minπ∈Π
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Example
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Pattern matching with address errors

For binary inputs, our new lower bound is:

Ω

(
lg2 n

w · lg lg n

)

To do this we must find an input distribution such that:

I The conditional entropy of the outputs is high.

I It is possible to sum the contributions from many interval
lengths without double counting.



Lop-sided information transfer - Mind the gap

To sum contributions, we introduce a gap:

U

t0 = t t1 t2 t3

the first interval the second intervalthe gap

`
4`

logn`log `

The lengths ` are taken from:{
n1/4 · (lg n)2i

∣∣∣∣ i ∈
{

0, 1, 2, . . . ,
lg n

4 lg lg n

} }
.



Lop-sided information transfer - Mind the gap

Upper bound on entropy

H(A`,t | Ũ`,t = ũ`,t) ≤ 2w + 2w · E[I`,t + G`,t | Ũ`,t = ũ`,t ].

Lower bound on entropy

Lemma
For the L2-rearrangement distance problem there exists a hard
input distribution such that

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lg n,

for any fixed ũ`,t .
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For the L2-rearrangement distance problem there exists a hard
input distribution such that

H(A`,t | Ũ`,t = ũ`,t) ≥ κ · ` · lg n,

for any fixed ũ`,t .



Lop-sided information transfer - Mind the gap

We remove the conditioning by taking expectation over Ũ`,t under
random U giving:

E[I`,t ] ≥
κ · ` · lg n

2w
− 1− E[G`,t ].

By carefully choosing T` we get:

E

∑
`∈L

∑
t∈T`

I`,t

 ∈ Ω

(
n · lg2 n

w · lg lg n

)
.



The hard distribution for L2-rearrangement
We let the incoming streaming be randomly sampled from:

{0101, 1010}∗

Different bits of the output give different bits of the stream.

U`

`+ 4`− 4

F`,0 F`,1 F`,2 F`,3F`

`̀`̀`̀``̀`̀`̀

denotes a repeated stretch of 1001)((

F 0
` F 1

` F 2
` F 3

`

U1
` U3

` U5
` U7

`U0
` U2

` U4
` U6

`

1010

output = 9 = 0 0 11 (in binary)

0101 1010

8 4 2 1

0101
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We let the incoming streaming be randomly sampled from:

{0101, 1010}∗

Different bits of the output give different bits of the stream.

U`

`+ 4`− 4

F`,0 F`,1 F`,2 F`,3F`

`̀`̀`̀``̀`̀`̀

denotes a repeated stretch of 1001)((

F 0
` F 1

` F 2
` F 3

`

U1
` U3

` U5
` U7

`U0
` U2

` U4
` U6

`

1010
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A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).
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A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

I What is the entropy of n/ log n consecutive overlapping inner
products?

111011←→

1 0 1 1
1 1 0 1
1 1 1 0


Conjecture

Let x ∈ {0, 1}` be sampled at random. There exist `/ log ` by `
Toeplitz matrices M such such that H(Mx) ∈ Ω(`).

Thank you!


