Lower Bounds and Open Problems in Streams

Raphaël Clifford
Joint work with
Markus Jalsenius and Benjamin Sach

Cell-probe model

The CPU does not remember anything in between operations.

Cells

Cell-probe model

The CPU does not remember anything in between operations.

Cells

The CPU has unlimited computational power.

Data Structure Lower Bounds

Yao - FOCS '78
Predecessor (static)

- Ajtai - Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen - STOC' 94
- Miltersen, Nisan, Safra, Wigdersen - STOC '95
- Beame, Fich - STOC '99
- Sen - ICALP '01

Dynamic problems (partial sums, union find)

- Fredman, Saks - STOC '89 (Chronogram technique)
- Ben-Amram, Galil - FOCS '91
- Miltersen, Subramanian, Vitter, Tamassia - TCS '94
- Husfeldt, Rauhe, Skyum - SWAT '96 (planar connectivity)
- Fredman, Henzinger - Algorithmica '98 (non-determinism)
- Alstrup, Husfeldt, Rauhe - FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe - SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe - STOC '99 (union-find)

Data Structure Lower Bounds

Yao - FOCS '78
Predecessor (static)

- Ajtai - Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen - STOC' 94
- Miltersen, Nisan, Safra, Wigdersen - STOC '95
- Beame, Fich - STOC '99
- Sen - ICALP '01

Dynamic problems (partial sums, union find)

- Fredman, Saks - STOC '89 (Chronogram technique)
- Ben-Amram, Galil - Fi
- Miltersen, Subramania
- Husfeldt, Rauhe, Skyu
- Fredman, Henzinger -
- Alstrup, Husfeldt, Raц

Best lower bound

- Alstrup, Husfeldt, Rauhe - SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe - STOC '99 (union-find)

Data Structure Lower Bounds

Yao - FOCS '78
Predecessor (static)

- Ajtai - Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen - STOC' 94
- Miltersen, Nisan, Safra, Wigdersen - STOC '95
- Be
- Sel First $\Omega(\log n)$ lower bound using information transfer.
Dynan
- Fre
- Be
M. Pǎtrașcu and E. Demaine
- Mi Tight bounds for the partial-sums problem
- Hu SODA 2004

- Alstrup, Husfeldt, Rauhe - FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe - SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe - STOC '99 (union-find)

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

Convolution

Stream of numbers from [q]

Output dot product (modulo q):
$V \cdot($ last n digits of stream $)=\sum_{i=0}^{n-1} v_{i} x_{(i+\text { leftmost aligned index })}$

$$
\text { Lower bound: } \Omega\left(\frac{\delta}{w} \log n\right)
$$

$\delta=\log q$, word size w.
C., Jalsenius. Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Mode. ICALP 2011

Previous bounds

M. J. Fischer and L. J. Stockmeyer

Fast on-line integer multiplication
STOC '73
C., K. Efremenko, B. Porat and E. Porat

A black box for online approximate pattern matching Information and Computation 209(4):731-736, 2011

- $O\left(\log ^{2} n\right)$ time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer

Fast on-line integer multiplication
STOC '73
C., K. Efremenko, B. Porat and E. Porat

A black box for online approximate pattern matching Information and Computation 209(4):731-736, 2011

- $O\left(\log ^{2} n\right)$ time per arriving symbol (pair)

Offline cell probe complexity is linear!

$$
\Rightarrow
$$

online upper bound of $O(\log n)$

Previous bounds

M. J. Fischer and L. J. Stockmeyer

Fast on-line integer multiplication
STOC '73
C., K. Efremenko, B. Porat and E. Porat

A black box for online approximate pattern matching Information and Computation 209(4):731-736, 2011

- $O\left(\log ^{2} n\right)$ time per arriving symbol (pair)

Better online lower bound

$$
\Rightarrow
$$

super linear lower bound for offline convolution and multiplication

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs

Memory cells

Information transfer

\square Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs
Cells read during the next ℓ inputs $\xlongequal{\wedge}$

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs
Cells read during the next ℓ inputs $\xlongequal{\wedge}$

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs
Cells read during the next ℓ inputs $\xlongequal{\wedge}$

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs
Cells read during the next ℓ inputs $\xlongequal{\wedge}$

Information transfer

\square
Fixed value
? Unknown value chosen uniformly at random from $[q]$

Cell written during the ? -inputs

Memory cells
 were overwritten before being read

Cells read during the next ℓ inputs $\xlongequal{\wedge}$

Information transfer

\square Fixed value
? Unknown value chosen uniformly at random from $[q]$

The cells in $I T(t, \ell)$ provide sufficient
information in order to give correct output during

Memory cells

$I T(t, \ell)$
Not including cells that were overwritten before being read
inputs $\xlongequal{\wedge}$

Information transfer

\square
\square Fixed value
? Unknown value chosen uniformly at random from $[q]$

Memory cells

The conditional entropy H (the outputs during

$$
\leqslant w+2 w \cdot \mathbb{E}[|I T(t, \ell)| \mid \text { all } \square \text { fixed }]
$$

w bits per cell

Information transfer

\square

Fixed value
 ? Unknown value chosen uniformly at random from [q]

The conditional entropy

$\|I T(t, \ell)\|$	Cell	Address	Contents
		00124	76112
		34123	88819
		92540	01882
w bits to encode$\|I T(t, \ell)\|$		w bits	w bits

$$
\leqslant w+2 w \cdot \mathbb{E}[|I T(t, \ell)| \mid \text { all } \square \text { fixed }]
$$

w bits per cell

Information transfer

\square

Fixed value
 ? Unknown value chosen uniformly at random from $[q]$

The conditional entropy
 H (the outputs during \square

$$
\leqslant w+2 w \cdot \mathbb{E}[|I T(t, \ell)| \mid \text { all } \square \text { fixed }]
$$

w bits per cell

Information transfer

How much information about ? ? ? ? ? ? do we need in order to give correct outputs during $\square \square$?

Information transfer

How much information about ? ? ? ? ? ? do we need in order to give correct outputs during $\square \square$?

Information transfer

Output is always 0 (no information)

Information transfer

Contributes to the dot product with the same value at each alignment
($\delta=\log q$ bits of information)

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2

Information transfer

1 if the position is a power of 2
$\mathbf{R}=$ a recovered value
(recall that ? is chosen uniformly at random from [q], hence contributes with $\delta=\log q$ bits to the entropy)

Information transfer

1 if the position is a power of 2
$\mathbf{R}=$ a recovered value
(recall that ? is chosen uniformly at random from [q], hence contributes with $\delta=\log q$ bits to the entropy)

Information transfer

1 if the position is a power of 2
$\mathbf{R}=$ a recovered value
(recall that ? is chosen uniformly at random from [q], hence contributes with $\delta=\log q$ bits to the entropy)

Information transfer

1 if the position is a power of 2
$\mathbf{R}=$ a recovered value
(recall that ? is chosen uniformly at random from [q], hence contributes with $\delta=\log q$ bits to the entropy)

Information transfer

1 if the position is a power of 2
$\mathbf{R}=$ a recovered value
(recall that ? is chosen uniformly at random from [q], hence contributes with $\delta=\log q$ bits to the entropy)

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Information transfer

The conditional entropy
H (the outputs during
 all fixed) $\geqslant \frac{\ell}{2} \delta$

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Information transfer

The conditional entropy
H (the outputs during
 all fixed) $\geqslant \frac{\ell}{2} \delta$

The conditional information transfer $\mathbb{E}[|I T(t, \ell)| \mid$ all \square fixed $] \geqslant \frac{\delta}{4 w} \ell-\frac{1}{2}$
w bits per cell

Information transfer

Suppose that all values (\square and ?) from the stream are chosen uniformly at random from $[q]$.
By linearity of expectation...
The conditional information transfer
$\mathbb{E}[|I T(t, \ell)| \mid$ all \square fixed $] \geqslant \frac{\delta}{4 w} \ell-\frac{1}{2}$
w bits per cell

Information transfer

Suppose that all values (\square and ?) from the stream are chosen uniformly at random from $[q]$.
By linearity of expectation...
The conditional information transfer
$\mathbb{E}[|I T(t, \ell)|] \mid$ all \square fixed $] \geqslant \frac{\delta}{4 w} \ell-\frac{1}{2}$
w bits per cell

Total number of cell reads

0000000 1]000 1]0 1] 0

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 [1]000 1]0 1]1]

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

0000000 1]000 1]0 1] 0

n

Feed the algorithm with n values chosen uniformly at random from $[q]$.

Total number of cell reads

The number of cell reads during the n inputs is at least

$$
\sum\left|I T\left(t_{v}, \ell_{v}\right)\right|
$$

internal node v

Total number of cell reads

The number of cell reads during the n inputs is at least

$$
\sum\left|I T\left(t_{v}, \ell_{v}\right)\right|
$$

internal node v

No double counting of a cell read!

$$
\bullet _I T(t=1, \ell=8)
$$

Total number of cell reads

The number of cell reads during the n inputs is at least

$$
\sum\left|I T\left(t_{v}, \ell_{v}\right)\right|
$$

internal node v
The expected number of cell reads is at least

$$
\begin{aligned}
\mathbb{E}\left[\sum_{\text {internal node } v}\left|I T\left(t_{v}, \ell_{v}\right)\right|\right] & =\sum_{\text {internal node } v} \mathbb{E}\left[\left|I T\left(t_{v}, \ell_{v}\right)\right|\right] \\
& \geqslant \sum_{\text {internal node } v} \frac{\delta}{4 w} \ell_{v}-\frac{1}{2} \\
& =\Omega\left(\frac{\delta}{w} \cdot n \log n\right)
\end{aligned}
$$

Total number of cell reads

The number of cell reads during the n inputs is at least

$$
\sum\left|I T\left(t_{v}, \ell_{v}\right)\right|
$$

internal node v
The expected number of cell reads is at least

So...
The amortised time lower bound per output is
$\Omega\left(\frac{\delta}{w} \log n\right)$

$$
\geqslant \sum \frac{\delta}{4 w} \ell_{v}-\frac{1}{2}
$$

$$
=\Omega\left(\frac{\delta}{w} \cdot n \log n\right)
$$

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

$$
\Omega\left(\frac{\log n}{w}\right)=\Omega(1)
$$

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

$$
\Omega\left(\frac{\log n}{w}\right)=\Omega(1)
$$

But...

- What if each output is in $\{0, \ldots, n\}$?
- Total entropy of $n / \log n$ outputs could therefore be $\Omega(n)$.
- We could then use a new lop-sided information transfer technique instead.

Pattern matching with address errors

Message sent: eleven plus two

Pattern matching with address errors

Message sent: eleven plus two
Message received: twelve plus one

Pattern matching with address errors

Message sent: eleven plus two
Message received: twelve plus one

- The L_{2}-rearrangement distance defined to be $\min _{\pi \in \Pi} \sum_{j=0}^{n-1}(j-\pi(j))^{2}(A A B L L P S V: 2009)$
- Online: $O\left(\log ^{2} n\right)$ time per arriving symbol (CS:2011).

Example
The L_{2}-rearrangement distance of 11100 and 10110 is $0^{2}+1^{2}+1^{2}+2^{2}+0^{2}=6$.

Pattern matching with address errors

For binary inputs, our new lower bound is:

$$
\Omega\left(\frac{\lg ^{2} n}{w \cdot \lg \lg n}\right)
$$

To do this we must find an input distribution such that:

- The conditional entropy of the outputs is high.
- It is possible to sum the contributions from many interval lengths without double counting.

Lop-sided information transfer - Mind the gap

To sum contributions, we introduce a gap:

The lengths ℓ are taken from:

$$
\left\{n^{1 / 4} \cdot(\lg n)^{2 i} \left\lvert\, \quad i \in\left\{0,1,2, \ldots, \frac{\lg n}{4 \lg \lg n}\right\}\right.\right\}
$$

Lop-sided information transfer - Mind the gap

Upper bound on entropy

$$
H\left(A_{\ell, t} \mid \widetilde{U}_{\ell, t}=\widetilde{u}_{\ell, t}\right) \leq 2 w+2 w \cdot \mathbb{E}\left[\ell_{\ell, t}+G_{\ell, t} \mid \widetilde{U}_{\ell, t}=\widetilde{u}_{\ell, t}\right]
$$

Lop-sided information transfer - Mind the gap

Upper bound on entropy

$$
H\left(A_{\ell, t} \mid \widetilde{U}_{\ell, t}=\widetilde{u}_{\ell, t}\right) \leq 2 w+2 w \cdot \mathbb{E}\left[l_{\ell, t}+G_{\ell, t} \mid \widetilde{U}_{\ell, t}=\widetilde{u}_{\ell, t}\right] .
$$

Lower bound on entropy
Lemma
For the L_{2}-rearrangement distance problem there exists a hard input distribution such that

$$
H\left(A_{\ell, t} \mid \widetilde{U}_{\ell, t}=\widetilde{u}_{\ell, t}\right) \geq \kappa \cdot \ell \cdot \lg n
$$

for any fixed $\widetilde{u}_{\ell, t}$.

Lop-sided information transfer - Mind the gap

We remove the conditioning by taking expectation over $\widetilde{U}_{\ell, t}$ under random U giving:

$$
\mathbb{E}\left[\ell_{\ell, t}\right] \geq \frac{\kappa \cdot \ell \cdot \lg n}{2 w}-1-\mathbb{E}\left[G_{\ell, t}\right] .
$$

By carefully choosing T_{ℓ} we get:

$$
\mathbb{E}\left[\sum_{\ell \in L} \sum_{t \in T_{\ell}} I_{\ell, t}\right] \in \Omega\left(\frac{n \cdot \lg ^{2} n}{w \cdot \lg \lg n}\right) .
$$

The hard distribution for L_{2}-rearrangement

We let the incoming streaming be randomly sampled from:
$\{0101,1010\}^{*}$

The hard distribution for L_{2}-rearrangement

We let the incoming streaming be randomly sampled from:

$$
\{0101,1010\}^{*}
$$

Different bits of the output give different bits of the stream.

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

- What is the entropy of $n / \log n$ consecutive overlapping inner products?

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

- What is the entropy of $n / \log n$ consecutive overlapping inner products?

$$
111011 \longleftrightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Conjecture
Let $x \in\{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ
Toeplitz matrices M such such that $H(M x) \in \Omega(\ell)$.

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

- What is the entropy of $n / \log n$ consecutive overlapping inner products?

$$
111011 \longleftrightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Conjecture
Let $x \in\{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ
Toeplitz matrices M such such that $H(M x) \in \Omega(\ell)$.

A lower bound for convolution?

For convolution we hit a tricky mathematical hurdle.

- What is the entropy of $n / \log n$ consecutive overlapping inner products?

$$
111011 \longleftrightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Conjecture
Let $x \in\{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ
Toeplitz matrices M such such that $H(M x) \in \Omega(\ell)$.

Thank you!

