Lower Bounds and Open Problems in Streams

Raphaël Clifford

Joint work with Markus Jalsenius and Benjamin Sach

Cell-probe model

Cell-probe model

computational power.

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Beame, Fich STOC '99
- Sen ICALP '01

Dynamic problems (partial sums, union find)

- Fredman, Saks STOC '89 (Chronogram technique)
- Ben-Amram, Galil FOCS '91
- Miltersen, Subramanian, Vitter, Tamassia TCS '94
- Husfeldt, Rauhe, Skyum SWAT '96 (planar connectivity)
- Fredman, Henzinger Algorithmica '98 (non-determinism)
- Alstrup, Husfeldt, Rauhe FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe STOC '99 (union-find)

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Beame, Fich STOC '99
- Sen ICALP '01

Dynamic problems (partial sums, union find)

• Fredman, Saks - STOC '89 (Chronogram technique)

Data Structure Lower Bounds

Yao - FOCS '78

Predecessor (static)

- Ajtai Combinatorica '88 (incorrect) (Communication complexity)
- Miltersen STOC' 94
- Miltersen, Nisan, Safra, Wigdersen STOC '95
- Be
- Set First $\Omega(\log n)$ lower bound using *information transfer*.

Dynan

- Fre
- Be M. Pătrașcu and E. Demaine
- Mi Tight bounds for the partial-sums problem
- Hu SODA 2004
- Freeman, menzinger Aigontinnica 30 (non-acterininsin)
- Alstrup, Husfeldt, Rauhe FOCS '98 (marked ancestor)
- Alstrup, Husfeldt, Rauhe SODA '01 (2D NN)
- Alstrup, Ben-Amram, Rauhe STOC '99 (union-find)

Stream of numbers from $\left[q\right]$

 $\delta = \log q$, word size w.

C., Jalsenius. Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Mode. ICALP 2011

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Previous bounds

M. J. Fischer and L. J. Stockmeyer Fast on-line integer multiplication STOC '73

C., K. Efremenko, B. Porat and E. Porat A black box for online approximate pattern matching Information and Computation 209(4):731–736, 2011

• $O(\log^2 n)$ time per arriving symbol (pair)

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Yao's minimax principle

A lower bound on the expected running time for

implies that the same lower bound holds for

Unknown value chosen uniformly at random from [q]

?

at random from $\left[q\right]$

Unknown value chosen uniformly at random from [q]

?

Fixed value

?

Unknown value chosen uniformly at random from [q]

chosen uniformly at random from [q]

Fixed value

?

Unknown value chosen uniformly at random from [q]

Memory cells

chosen uniformly at random from [q]

the <u>?</u>-inputs

Cell written during

w bits per cell

How much information about ???? do we need

in order to give correct outputs during

?

in order to give correct outputs during

?

Output is always 0 (no information)

Contributes to the dot product with the same value at each alignment $(\delta = \log q \text{ bits of information})$

R = a recovered value (recall that ? is chosen uniformly at random from [q], hence contributes with $\delta = \log q$ bits to the entropy)

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Conclusion: If ℓ is a power of 2 then we recover $\frac{\ell}{2}$ values

Suppose that all values (and ?) from the stream are chosen uniformly at random from [q].

By linearity of expectation...

The conditional information transfer

 $\mathbb{E}\left[|IT(t,\ell)| \mid \mathsf{all} \quad \mathsf{fixed}\right] \geq \frac{\delta}{4w}\ell - \frac{1}{2}$

w bits per cell

Suppose that all values (and ?) from the stream are chosen uniformly at random from [q].

By linearity of expectation...

The conditional information transfer

 $\mathbb{E}\left[|IT(t,\ell)|\right]| \text{ all } \text{ fixed}\right] \ge \frac{\delta}{4w}\ell - \frac{1}{2}$

w bits per cell

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

$$\Omega\left(\frac{\log n}{w}\right) = \Omega(1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What happens if the alphabet is binary?

For binary alphabet and sensible word size, we get useless

$$\Omega\left(\frac{\log n}{w}\right) = \Omega(1).$$

But...

- ▶ What if each output is in {0,...,n}?
- Total entropy of $n/\log n$ outputs *could* therefore be $\Omega(n)$.
- We could then use a new *lop-sided information transfer* technique instead.

Message sent: eleven plus two

Message sent: *eleven plus two* Message received: *twelve plus one*

Message sent: *eleven plus two* Message received: *twelve plus one*

- The L₂-rearrangement distance defined to be min_{π∈Π} ∑_{j=0}ⁿ⁻¹(j − π(j))² (AABLLPSV:2009)
- Online: $O(\log^2 n)$ time per arriving symbol (CS:2011).

Example

The *L*₂-rearrangement distance of 11100 and 10110 is $0^2 + 1^2 + 1^2 + 2^2 + 0^2 = 6.$

For binary inputs, our new lower bound is:

$$\Omega\left(\frac{\lg^2 n}{w\cdot \lg \lg n}\right)$$

To do this we must find an input distribution such that:

- The conditional entropy of the outputs is high.
- It is possible to sum the contributions from many interval lengths without double counting.

The lengths ℓ are taken from:

$$\left\{ n^{1/4} \cdot (\lg n)^{2i} \mid i \in \left\{ 0, 1, 2, \dots, \frac{\lg n}{4\lg \lg n} \right\} \right\}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Upper bound on entropy

$$H(A_{\ell,t} \mid \widetilde{U}_{\ell,t} = \widetilde{u}_{\ell,t}) \leq 2w + 2w \cdot \mathbb{E}[I_{\ell,t} + G_{\ell,t} \mid \widetilde{U}_{\ell,t} = \widetilde{u}_{\ell,t}].$$

Upper bound on entropy

$$H(A_{\ell,t} \mid \widetilde{U}_{\ell,t} = \widetilde{u}_{\ell,t}) \leq 2w + 2w \cdot \mathbb{E}[I_{\ell,t} + G_{\ell,t} \mid \widetilde{U}_{\ell,t} = \widetilde{u}_{\ell,t}].$$

Lower bound on entropy

Lemma

For the L₂-rearrangement distance problem there exists a hard input distribution such that

$$H(A_{\ell,t} \mid \widetilde{U}_{\ell,t} = \widetilde{u}_{\ell,t}) \geq \kappa \cdot \ell \cdot \lg n,$$

for any fixed $\tilde{u}_{\ell,t}$.

э

We remove the conditioning by taking expectation over $U_{\ell,t}$ under random U giving:

$$\mathbb{E}[I_{\ell,t}] \geq \frac{\kappa \cdot \ell \cdot \lg n}{2w} - 1 - \mathbb{E}[G_{\ell,t}].$$

By carefully choosing T_{ℓ} we get:

$$\mathbb{E}\left[\sum_{\ell\in L}\sum_{t\in T_{\ell}}I_{\ell,t}\right]\in \Omega\left(\frac{n\cdot\lg^2 n}{w\cdot\lg\lg n}\right).$$

э

・ロト ・日下・ ・ 田下・

The hard distribution for L_2 -rearrangement

We let the incoming streaming be randomly sampled from:

 $\{0101,1010\}^*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The hard distribution for L_2 -rearrangement

We let the incoming streaming be randomly sampled from:

 $\{0101, 1010\}^*$

Different bits of the output give different bits of the stream.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

For convolution we hit a tricky mathematical hurdle.

What is the entropy of n / log n consecutive overlapping inner products?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For convolution we hit a tricky mathematical hurdle.

What is the entropy of n / log n consecutive overlapping inner products?

$$111011 \longleftrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Conjecture

Let $x \in \{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ Toeplitz matrices M such such that $H(Mx) \in \Omega(\ell)$.

For convolution we hit a tricky mathematical hurdle.

What is the entropy of n / log n consecutive overlapping inner products?

$$111011 \longleftrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Conjecture

Let $x \in \{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ Toeplitz matrices M such such that $H(Mx) \in \Omega(\ell)$.

For convolution we hit a tricky mathematical hurdle.

What is the entropy of n / log n consecutive overlapping inner products?

$$111011 \longleftrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Conjecture

Let $x \in \{0,1\}^{\ell}$ be sampled at random. There exist $\ell / \log \ell$ by ℓ Toeplitz matrices M such such that $H(Mx) \in \Omega(\ell)$.

Thank you!