
Theory of Data Streams

S. Muthu Muthukrishnan

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a permuted order and
leaves out one of the numbers.

I B has to determine the missing number.

I Key: B has only O(logn) bits.

I Solution: B maintains the running sum s of numbers seen.
Missing number is n(n+1)

2 � s .

Familiar Puzzle: Missing Number

I A shows B numbers 1; : : : ;n but in a permuted order and
leaves out one of the numbers.

I B has to determine the missing number.

I Key: B has only O(logn) bits.

I Solution: B maintains the running sum s of numbers seen.
Missing number is n(n+1)

2 � s .

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .
I Key: A is allowed to store only one word of memory (of

logn bits).

I Each ij generated independently and randomly from some
unknown distribution D over integers [1;n].

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .
I Key: A is allowed to store only one word of memory (of

logn bits).
I Each ij generated independently and randomly from some

unknown distribution D over integers [1;n].

I Solution. Maintain �j .
If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

A New Puzzle: One Word Median

I A sees items i1; i2; : : : arrive in a stream.
I A has to maintain the median mj of the items i1; : : : ; ij .
I Key: A is allowed to store only one word of memory (of

logn bits).
I Each ij generated independently and randomly from some

unknown distribution D over integers [1;n].
I Solution. Maintain �j .

If ij+1 > �j , �j+1 �j + 1.
If ij+1 < �j , �j+1 �j � 1.

This Talk

I Two basic primitives and applications with data stream
algorithms.

I Count-Min sketch, applications to compressed sensing
I L0 sampling, applications to graph problems

I Some topics:
I L2 sketches and applications
I Nonstreaming applications of streaming results
I Distributed streaming
I Pan-privacy
I Cryptography

This Talk

I Two basic primitives and applications with data stream
algorithms.
I Count-Min sketch, applications to compressed sensing
I L0 sampling, applications to graph problems

I Some topics:
I L2 sketches and applications
I Nonstreaming applications of streaming results
I Distributed streaming
I Pan-privacy
I Cryptography

A Basic Problem: Indexing

I Imagine a virtual array F [1 � � �n]

I Updates: F [i] + +, F [i]��
I Assume F [i] � 0 at all times
I Query: F [i] =?

I Key: Use o(n) space, may be O(logn) space

Count-Min Sketch

I For each update F [i] + +,

I for each j = 1; : : : ; log(1=�), update cm [hj (i)] + +.

I Estimate ~F (i) = minj=1;:::;log(1=�) cm [hj (i)].

F [i] + +

h1(i)

h2(i)

1

2

log(1/δ)

1 2 e/ε

+1

+1

+1

+1

cm array

Count-Min Sketch Analysis
I F [i] � ~F [i]. With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j)) < e� log(1=�) = �

Count-Min Sketch Analysis
I F [i] � ~F [i]. With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j)) < e� log(1=�) = �

Count-Min Sketch Analysis
I F [i] � ~F [i]. With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]:

I Xi ;j is the expected contribution of F [j] to the bucket
containing i , for any h .

E(Xi ;j) =
"

e

X

j 6=i

F [j]:

I Consider Pr(~F [i] > F [i] + "
P

j 6=i F [j]):

Pr() = Pr(8j ;F [i] + Xi ;j > F [i] + "
X

j 6=i

F [j])

= Pr(8j ;Xi ;j � eE(Xi ;j)) < e� log(1=�) = �

Count-Min Sketch

I Claim: F [i] � ~F [i]. With probability at least 1� �,

~F [i] � F [i] + "
X

j 6=i

F [j]

I Space used is O(1
" log

1
�).

I Time per update is O(log 1
�). Indep of n .

G. Cormode and S. Muthukrishnan: An improved data stream sum-
mary: count-min sketch and its applications. Journal of Algorithms,
55(1): 58-75 (2005).

Improve Count-Min Sketch?

I Index Problem:
I ALICE has n long bitstring and sends messages to BOB who

wishes to compute the ith bit.
I Needs
(n) bits of communication.

I Reduction of estimating F [i] in data stream model.
I I [1 � � � 1=(2")] such that

I I [i] = 1! F [i] = 2
I I [i] = 0! F [i] = 0;F [0] F [0] + 2

I Observe that jjF jj =
P

i F [i] = 1="

I Estimating F [i] � ~F [i] � F [i] + "jjF jj implies,
I I [i] = 0! F [i] = 0! 0 � ~F [i] � 1
I I [i] = 1! F [i] = 2! 2 � ~F [i] � 3

and reveals I [i].
I Therefore,
(1=") space lower bound for index problem.

Improve Count-Min Sketch?

I Index Problem:
I ALICE has n long bitstring and sends messages to BOB who

wishes to compute the ith bit.
I Needs
(n) bits of communication.

I Reduction of estimating F [i] in data stream model.
I I [1 � � � 1=(2")] such that

I I [i] = 1! F [i] = 2
I I [i] = 0! F [i] = 0;F [0] F [0] + 2

I Observe that jjF jj =
P

i F [i] = 1="

I Estimating F [i] � ~F [i] � F [i] + "jjF jj implies,
I I [i] = 0! F [i] = 0! 0 � ~F [i] � 1
I I [i] = 1! F [i] = 2! 2 � ~F [i] � 3

and reveals I [i].
I Therefore,
(1=") space lower bound for index problem.

Count-Min Sketch, The Challenges
I Not all projections, dimensionality reduction are the same:

I All prior work
(1="2) space, via Johnson-Lindenstrauss

I Not all hashing algorithms are the same:
I Pairwise independence

I Not all approximations are sampling.
I Recovering F [i] to �0:1jF j accuracy will retrieve each item

precisely.

Count-Min Sketch, The Challenges
I Not all projections, dimensionality reduction are the same:

I All prior work
(1="2) space, via Johnson-Lindenstrauss
I Not all hashing algorithms are the same:

I Pairwise independence

I Not all approximations are sampling.
I Recovering F [i] to �0:1jF j accuracy will retrieve each item

precisely.

Count-Min Sketch, The Challenges
I Not all projections, dimensionality reduction are the same:

I All prior work
(1="2) space, via Johnson-Lindenstrauss
I Not all hashing algorithms are the same:

I Pairwise independence
I Not all approximations are sampling.

I Recovering F [i] to �0:1jF j accuracy will retrieve each item
precisely.

Using Count-Min Sketch

I For each i , determine ~F [i]
I Keep the set S of heavy hitters (~F [i] � 2"jjF jj).

I Guaranteed that S contains i such that F [i] � 2"jjF jj and
no F [i] � "jjF jj

I Extra logn factor space for n queries

Problem is of database interest.

I Faster recovery: In each bucket, recover majority i
(F [i] >

P
j same bucket as i F [j]=2)

I Takes O(logn) extra time, space
I Gives compressed sensing in L1:

jjF � ~Fk jj1 � jjF � F �

k jj1 + "jjF jj1

Sparse recovery experiments: http://groups.csail.mit.edu/toc/sparse/
wiki/index.php?title=Sparse_Recovery_Experiments

http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments
http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments

Using Count-Min Sketch

I For each i , determine ~F [i]
I Keep the set S of heavy hitters (~F [i] � 2"jjF jj).

I Guaranteed that S contains i such that F [i] � 2"jjF jj and
no F [i] � "jjF jj

I Extra logn factor space for n queries

Problem is of database interest.
I Faster recovery: In each bucket, recover majority i

(F [i] >
P

j same bucket as i F [j]=2)

I Takes O(logn) extra time, space
I Gives compressed sensing in L1:

jjF � ~Fk jj1 � jjF � F �

k jj1 + "jjF jj1

Sparse recovery experiments: http://groups.csail.mit.edu/toc/sparse/
wiki/index.php?title=Sparse_Recovery_Experiments

http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments
http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments

Using Count-Min Sketch

I For each i , determine ~F [i]
I Keep the set S of heavy hitters (~F [i] � 2"jjF jj).

I Guaranteed that S contains i such that F [i] � 2"jjF jj and
no F [i] � "jjF jj

I Extra logn factor space for n queries

Problem is of database interest.
I Faster recovery: In each bucket, recover majority i

(F [i] >
P

j same bucket as i F [j]=2)

I Takes O(logn) extra time, space
I Gives compressed sensing in L1:

jjF � ~Fk jj1 � jjF � F �

k jj1 + "jjF jj1

Sparse recovery experiments: http://groups.csail.mit.edu/toc/sparse/
wiki/index.php?title=Sparse_Recovery_Experiments

http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments
http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse_Recovery_Experiments

Count-Min Sketch: Summary

I Solves many problems:
I Heavy hitters, compressed sensing, inner products, ...

I Applications to other CS/EE areas:
I NLP, ML, Password checking.

I Systems, code, hardware.
I Gigascope, CMON, Sawzall, MillWheel, ...

Wiki: http://sites.google.com/site/countminsketch/

L0 Sampling

I Imagine a virtual array F [1 � � �n]

I Updates: F [i] + +, F [i]��
I Assume F [i] � 0 at all times

I Query: inverse sample?
Return i ;F [i] 6= 0 with prob 1

jfi jF [i]�0gj

I Key: Use o(n) space, may be O(logn) space

I Solutions use O(1="2) space.

Application of L0 Sampling
I Graph Sketch: For node i , let ai be vector indexed by node

pairs. ai [i ; j] = 1 if j > i and ai [i ; j] = �1 if j < i .
I For any subset S � V ; support(

P
i2S ai) = E(S ;V � S)

I Prob: Is G connected?
I Algorithm (Spanning Forest):

I For each node, select an incident edge
I Contract selected edges. Repeat until no edges

I Data structure: L0 sketch C for each aj .
I Use Caj to get incident edge. Then, run algorithm above.

Observe:
X

j2S

Caj = C (
X

j2S

aj)! e 2 support(
X

j2S

E(S ;V � S))

Ahn, Guha, McGregor: Analyzing graph structure via
linear measurements. SODA12.
Dynamic graph connectivity in polylogarithmic worst
case time. B. Kapron, V. King, B. Mountjoy. SODA13

Application of L0 Sampling
I Graph Sketch: For node i , let ai be vector indexed by node

pairs. ai [i ; j] = 1 if j > i and ai [i ; j] = �1 if j < i .
I For any subset S � V ; support(

P
i2S ai) = E(S ;V � S)

I Prob: Is G connected?
I Algorithm (Spanning Forest):

I For each node, select an incident edge
I Contract selected edges. Repeat until no edges

I Data structure: L0 sketch C for each aj .
I Use Caj to get incident edge. Then, run algorithm above.

Observe:
X

j2S

Caj = C (
X

j2S

aj)! e 2 support(
X

j2S

E(S ;V � S))

Ahn, Guha, McGregor: Analyzing graph structure via
linear measurements. SODA12.
Dynamic graph connectivity in polylogarithmic worst
case time. B. Kapron, V. King, B. Mountjoy. SODA13

Topics: L2 approximation

I L2 estimate: jjF jj2 =
P

i F [i]2

I Yj =
P

i=1;:::;w=2(cmF [hj (2i � 1)]� cmF [hj (2i)])2

I Gives^jjF jj2 � (1+ ")jjF jj2
I Space O(1="2), update time is O(log 1=�)

I Ex: Least squares approximation
I Problem: Given matrix A 2 Rn�d and a vector b 2 Rn ,

find x 2 Rd such that z = jjAx � bjj2 is minimized.
I Result: Can find y such that jjAy � bjj2 � (1+ �)z in

O(nd log d) randomized time.
I Solution: Consider TA and Tb, where T 2 RO(d=��d)

I Extends to low rank matrix approx, classification,...

Low Rank Approximation and Regression in Input Sparsity
Time. K. Clarkson, D. Woodruff, STOC 13

Topics: L2 approximation

I L2 estimate: jjF jj2 =
P

i F [i]2

I Yj =
P

i=1;:::;w=2(cmF [hj (2i � 1)]� cmF [hj (2i)])2

I Gives^jjF jj2 � (1+ ")jjF jj2
I Space O(1="2), update time is O(log 1=�)

I Ex: Least squares approximation
I Problem: Given matrix A 2 Rn�d and a vector b 2 Rn ,

find x 2 Rd such that z = jjAx � bjj2 is minimized.
I Result: Can find y such that jjAy � bjj2 � (1+ �)z in

O(nd log d) randomized time.
I Solution: Consider TA and Tb, where T 2 RO(d=��d)

I Extends to low rank matrix approx, classification,...

Low Rank Approximation and Regression in Input Sparsity
Time. K. Clarkson, D. Woodruff, STOC 13

Topics: Nonstreaming Problems

I Compute the Discrete Fourier Transform of signal of size n
I Classical: O(n logn) time.
I Recent result: There exists a randomized O(k logn) time

algorithm for k -sparse case.

Nearly Optimal Sparse Fourier Transform H. Hassanieh, P. In-
dyk, D. Katabi, E. Price. STOC 12

Topics: Distributed Learning

I Alice has data DA and Bob has DB , and learn linear
classifier. Minimize communication. h� is optimal.

I ED(h) is the number of points misclassified by h on D .
I g has "- error if ED(g)� ED(h�) � "jD j.
I There is a O(log 1=") round two way communication

protocol with O(1) bits per round and "-error.

Efficient Protocols for Distributed Classification and Opti-
mization. H. Daume, J. Phillips, A. Saha, S. Venkatasub-
ramanian. ALT12
Distributed Learning, Communication Complexity and Pri-
vacy. N. Balcan, A. Blum, S. Fine, Y. Mansour. ICML12

Topics: Pan Privacy

I Well known notion of differential privacy (DP). What if the
internal state is breached?

I Pan-Privacy. For every two neighboring streams, at any
time, internal state and final output should be DP.

I Use count-min and L0 sketches to get approximate
pan-private algorithms.

Pan-private algorithms via statistics on sketches. D. Mir, S.
Muthukrishnan, A. Nikolov and R. Wright, PODS11.

Topics: Streaming Cryptography

I Cryptography against polynomial time adversaries using a
streaming algorithm?

I Recent result: Streaming algorithms for one-way functions
and pseudorandom generators with O(1) passes over two
read-write tapes, under suitable assumptions.

Cryptography with streaming algorithms P. Papakon-
stantinou, G. Yang. Manuscript, 13.

Conclusions

I Two basic primitives and applications with data stream
algorithms.
I Count-Min sketch, applications to compressed sensing
I L0 sampling, applications to graph problems

I Some topics:
I L2 sketches and applications
I Nonstreaming applications of streaming results
I Distributed streaming
I Pan-privacy
I Cryptography

Area continues to grow tentacles

