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Information Elicitation Without Verification

Illustrative examples:
Participatory sensing
Emotional response to content
Consumer surveys
Algorithm feedback
Peer grading in MOOCs

Effort is costly. Need to reward informative responses, but without
any ground truth; avoid unintended equilibria, collusion.

How to do this?
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Simple Output agreement

Two agents, joint signal distribution P(X1, X2)
Signals , j ∈ {1, . . . ,m}
Take reports {r1, r2}, provide payment to each agent:

report r2
1 2
� �

report r1
1 1 0
2 0 1

(Strict) proper: truthful reporting is a Bayes-Nash equilibrium.

Need P(X2 = 1|X1 = 1) > P(X2 = 2|X1 = 1); and there are
uninformative equilibria with greater payment.
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The Peer Prediction Method

Miller, Resnick and Zeckhauser, 2005:
Receive report r1, and form belief b1 = P(X2|X1 = r1)
Use proper scoring rule t1(b1, r2)

Strict proper.

Problems: (1) designer needs model; (2) uninformative equilibria
with greater payment.
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1/Prior, Shadowing Method

Faltings et al. (2012); Witkowski and Parkes (2012):
Assume knowledge of marginal probability, P(X)

report r2
1 2

� �

report r1
1 1

P(1) 0

2 0 1
P(2)

Strict proper (under restrictions for m> 2 signals).

Problems: (1) designer needs marginal probabilities; (2)
uninformative equilibria with greater payment.
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Mechanism Desiderata

For peer prediction to be used in practice:
Minimal mechanism
(Strictly) Proper
Low knowledge requirements on designer
Truthful reports maximize expected payments:

Strong-truthfulness (in case of a tie⇒ permutation)
Informed-truthfulness (in case of a tie⇒ informed strategy)

Heterogeneous agents (i.e., qualities, tastes)

Can assume multiple (independent) tasks.
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What do we know?

Jurca and Faltings, 2009.
n ≥ 4 agents, knock-out pure, uninformative equil. Ignore
mixed equilibria, binary-signal only, require model.

Dasgupta and Ghosh, 2013.
Multiple tasks. Strict-proper, strong-truthful. Binary-signal only.

Radonovic and Faltings, 2015.
Multiple tasks. Strict-proper, strong-truthful amongst
symmetric strategies. Multi-signal, but results only hold
asymptotically, and need homogeneous agents.

Kamble et al., 2015.
Multiple tasks. Strict-proper, strong-truthful amongst
symmetric strategies. Multi-signal, but results only hold
asymptotically, and need homogeneous agents.

Cai, Daskalakis and Papadimitriou, 2015.
Multiple tasks (with distinct, known context). Non-binary effort.
Optimal effort in unique, DSE. Multi-signal, but ignore
misreports (not strong-truthful, not proper.)
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Experimental evidence

Gao, Mao, Chen and Adams, 2014.
This matters! mTurk experiment (see either collusion, or
confusion.)
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Our Contributions: Robust, Multi-Signal Methods

OA-mechanism. Strict-proper and strong-truthful for
multi-signal, categorical domains (generalizes DG’13).

With some domain knowledge:
01-mechanism. Informed-truthful and proper for general,
multi-signal domains (allow heterogeneity).
ABCD-mechanism. Strong-truthful (symmetric) for general,
multi-signal domains w/ het. Not proper, but all equil strictly
worse than truth in large system.

Empirical analysis:
∼100 questions across ∼30 exercises in 17 MOOCs. Around
325,000 peer-evaluation responses.
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Basic Set-up

Agents 1, 2
Tasks k (≥ 3); Signals , j ∈ {1, . . . ,m} (require effort)
Joint distribution P(X1 = , X2 = j) (possibly asymmetric)
Overlapping tasks: shared Ks, agent 1 K1, agent 2 K2.
Multi-task peer prediction: for each k ∈ Ks, payment
{rk1 , r

k
2 , r

K1
1 , rK22 } 7→ R

Strategies: Fr = P(r1 = r|X1 = ) Gjr = P(r2 = r|X2 = j)
Informed strategy: Fr 6= Fjr , some  6= j, some r
Truthful strategy: F∗
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Solution Concepts

E(F,G): expected payment for a shared task
Bayes-Nash equil.
(Strict) Proper: E(F∗, G∗) ≥ E(F,G∗), for all F 6= F∗

Strong-truthful: E(F∗, G∗) ≥ E(F,G), for all F,G (tie⇒
permutation); also strict proper
Informed-truthful: E(F∗, G∗) ≥ E(F,G), for all F,G (tie⇒
informed); also proper
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Family of Mechanisms

Parameterized by score S : {1, . . . ,m}× {1, . . . ,m} 7→ R

Assign agents to tasks, get reports
For shared k ∈ Ks, pay both 1 and 2

S(rk1 , r
k
2)− S(r

ℓ
1, r

m
2 ),

for ℓ ∈ K1 and m ∈ K2 (can also take empirical average)

Idea: Reward ‘excess agreement’ not ‘default agreement.’

Zero payment if say ‘1’ all the time, or random report.
For S as the identify (output-agreement) matrix, this is
multi-signal generalization of DG’13.
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Analysis: Expected Payment

For identity score-matrix:

E(F,G) =
∑

j

P(, j)
∑

r

FrGjr −
∑

j

P()P(j)
∑

r

FrGjr

=
∑

j

Δj
∑

r

FrGjr .

Delta matrix:
Δj = P(, j)− P()P(j); if Δj > 0 then P(j|) > P(j)

Example: P:
�

0.4 0.15
0.15 0.3

�

Δ ≈
�

0.1 −0.1
−0.1 0.1

�

or,
�

+ −
− +

�

For general S:

E(F,G) =
∑

j

Δj
∑

r1,r2

Sr1,r2Fr1Gjr2
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Deterministic Strategies

Lemma 1

Deterministic F,G maximize E(F,G).

E(F,G) =mx
F
mx
G

h(F,G) =mx
F

OBJ(F),

where h(F,G) is linear in either argument. Fixing F, opt G is
deterministic. OBJ(F) is convex, and opt F is deterministic.

Can focus on deterministic strategies:
sufficient to prove strong-truthful, or and informed-truthful.
sufficient to check for deviations from truthful
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Simplified analysis

Deterministic strategies F(), G(j).

For identity-matrix S:

E(F,G) =
∑

j

ΔjI(F() = G(j))

For general score matrix S:

E(F,G) =
∑

j

ΔjSF(),G(j)

The game is to find ‘which scores to pick’ for each (i,j) pair.
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The OA-Mechanism

S is the identity matrix.

Categorical domain:

sig(Δ) :







+ − −
− + −
− − +







Image labeling {swim, fly, walk}, vs. grading {76, 78, 79, . . .}

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the
world is categorical.

Obtain DG’13 as a corollary. Theorem is tight.
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The OA-mechanism

Theorem 1

The OA-mechanism is strict-proper and strongly-truthful if the
world is categorical.

E(F∗, G∗) =
∑



Δ =
∑

j:Δj>0

Δj ≥
∑

j

ΔjI(F() = G(j)) = E(F,G),

for all F,G.
Also need: tie in payment⇒ permutation strategy.

Case 1: Not permutation, and symmetric. Must be two , j
( 6= j) that map to r. Assign Δj < 0 pair to score Sr,r = 1.
Worse!
Case 2: Asymmetric, e.g., agent 1 strategy  7→ r, agent 2
strategy  7→ r′. Assign Δ > 0 pair to score Sr,r′ = 0. Worse!
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Are we done? Let’s look at some data.

Peer-evaluation responses to 100 questions across 30
exercises in 17 MOOCs
Vast majority of questions have m ∈ {2,3,4}.

Example rubric element: “Not much of a style at all”,
“Communicative style”, and “Strong, flowing writing style”.
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The 01-mechanism

Sj =
�

1 , if Δj > 0
0 o.w. Δ =







+ + −
+ + −
− − +






S =







1 1 0
1 1 0
0 0 1







Theorem 2

For general domains, the 01-mechanism is informed truthful (and
proper).

E(F∗, G∗) =
∑

j

ΔjSj =
∑

j:Δj>0

Δj ≥ E(F,G), ∀F,G

Also need to show uninformed⇒ strictly less payment.
Fix G, consider uninformed F (e.g., F() = ‘1′, for all ). Have
E(F,G) =

∑

j ΔjS1,G(j) < E(F∗, G∗).

Note: indifference between ‘1→ 1, 2→ 2’ and ‘1→ 1, 2→ 1’.
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The ABCD-mechanism

Parameterized 0 ≤  < b < c < d

Scores: S=
�

b , if Δ ≤ 0
c o.w. Sj=

�

 , if Δj ≤ 0
d o.w.

Theorem 3

For general domains, the ABCD-mechanism is strong-truthful
amongst symmetric strategies.

Expected payment E(F∗, G∗) =
∑

j ΔjSj
Consider a non-permutation, symmetric strategy. Must be , j
( 6= j) that map to same r. Assigns score Sr,r ∈ {b, c} to (, j)
and (j, ), worse because  < {b, c} < d.

Not proper. But, any equil. in a large economy has strictly less
payment. Prisoner’s dilemma!
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Delta matrices: MOOC Data

17 courses, 104 questions, ∼325,000 reports.

2 3 4 5

Average ∆ matrices

0.10

0.05

0.00

0.05

0.10

Positive correlation.

For models of size 4 and 5, see failure of categorical (e.g., score 2
is +ve correlated with score 3.) Ordinal domain.
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Delta matrices: MOOC Data
2x2 ∆ matrices

3x3 ∆ matrices

4x4 ∆ matrices

5x5 ∆ matrices
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Empirical observations

34 of 104 worlds are categorical:
All mechanisms are strong-truthful and strict-proper.

In the other 70 worlds:
OA-mechanism not strong-truthful or proper.
01-mechanism is informed-truthful and proper. It is also
strict-proper in 19/70 worlds.
ABCD-mechanism is strong-truthful (symmetric). It is also
strict-proper in 12/70 worlds.
An incomplete, heuristic search for score matrices yields
strong-truthful mechanisms in 49/70 worlds.
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Review: Our Results

OA-mechanism (generalizes DG’13) is strong-truthful (and
strict-proper) for categorical domains.
01-mechanism is informed-truthful (and proper) for general
domains. Needs knowledge of sign structure of correlations.
ABCD-mechanism is strong-truthful (symmetric) for general
domains, may not be proper. Needs knowledge of sign
structure of correlations.
Empirical analysis supports the need for these mechanisms.
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Discussion

Is there a proper and strong-truthful (symmetric) mechanism
for general domains? Perhaps leveraging two S matrices?
Can heterogeneity be handled (e.g., “pushing” reports
towards categorical)?
Prior-free design: can we use observed data to design and
then apply a score matrix?
Population learning: does strong- or informed-truthful
promote convergence to truthful equilibrium?
Richer models of effort.
Experiments and applications.
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Thank you
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