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The Many Faces of Computing



The Terrain of the On-Line World

Political blogs
(Adamic-Glance, 2005)

Anti-war chain letter (LibenNowell-Kleinberg 2008)

The terrain of the on-line world is
geographic, social, and graph-theoretic.

Computations on graphs form a central part of our understanding.



Is There Life on Earth?



A Portion of the Earth, as Seen from Flickr



Maps as Social Objects



Organize Traces of Human Behavior Around Hot Spots

Organize activities around “hot-spots” in space and time.

Use geo-tagged data from millions of people,
via photos, search engine queries, mobile devices

[Backstrom-Kleinberg-Kumar-Novak 2008, Kennedy-Naaman 2008,

Crandall-Backstrom-Huttenlocher-Kleinberg 2009]

Hot-spot analysis

Where are the hot-spots?

How “intense” are they?

What’s distinctive in them?

Backstrom et al 2008, Kennedy-Naaman 2008, Crandall et al 2009



How Do We Find and Describe Hot-Spots?

Start with a local-search heuristic
to find hot-spots.

Identifying Distinctive Features of a Hot-Spot.

First: textual tags.

Significance of a tag t at a hot-spot based on Bayes’ Rule.

Roughly: probability of seeing this density of photos w/ tag t,
if tag were generated from world’s background distribution?

Next: identify distinctive photos at a location
[Snavely-Seitz-Szeliski 2006, Kennedy-Naaman 2008]

Try this for the global Flickr dataset, using two mean-shift scales:

100 km: metropolitan scale

100 m: landmark scale



Top landmark 2nd landmark 3rd landmark 4th landmark 5th landmark 6th landmark 7th landmark 8th landmark
1. manhattan empirestate timessquare grandcentral applestore stpatricks museumofmodernartnyse themet
2. london trafalgarsquare tatemodern eye bigben piccadillycircus britishmuseum toweroflondon buckingham
3. sanfrancisco coittower sealions unionsquare lombardstreet prison ferrybuilding embarcadero exploratorium
4. losangeles disneyland hollywood gettycenter disneyhall disneyland neworleanssquare santamonicapier griffithobservatory
5. paris eiffel cathedral sacrecoeur pyramid arcdetriomphe pompidou trocadero placedelaconcorde
6. washingtondc lincolnmemorial monument wwiimemorial capitol vietnammemorial whitehouse thomasjefferson airandspacemuseum

7. chicago cloudgate michiganavenue gehry artinstitute sears hancock wrigleyfield marinacity
8. seattle spaceneedle market emp library olympicsculpture gasworks kerrypark fountain
9. boston fenwaypark trinitychurch faneuilhall publicgarden statehouse aquarium harvardsquare harvardyard

10. sandiego balboapark sandiegozoo seals ussmidway starofindia padres mission oldtown
11. amsterdam dam annefrank nieuwmarkt museumplein station leidseplein europe spui
12. rome colosseum sanpietro pantheon fontanaditrevi basilica piazzadispagna vittoriano angel
13. barcelona sagradafamilia parcguell boqueria casamil catedral spain spain macba
14. berlin brandenburggate reichstag potsdamerplatz holocaustmemorial sonycenter tvtower berlinerdom checkpoint
15. monterey montereybay downtown canneryrow boardwalk mac fishermanswharf amusementpark pigeon
16. lasvegas paris bellagio mgm hooverdam venetian flamingo luxor venetian
17. toronto cntower phillipssquare dundassquare rom eatoncentre unionstation bluejays hockeyhalloffame
18. vancouver granvilleisland artgallery aquarium downtown gastown englishbay vpl commodore
19. firenze cathedral pontevecchio firenze piazzadelcampo florence santacroce bridge florence
20. philadelphia libertybell artmuseum cityhall jfkplaza logancircle rittenhouse citizensbankpark carpentershall



The Earth, as Seen from Flickr



U.S. and Canada (Crandall et al 2009)
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Europe



Lower Manhattan



Bringing Network Structure Into the Picture

Wu et al 2012

Network structure as a crucial ingredient in new approaches to studying
collective human behavior.

Can we link individual-level models of decision-making to macroscopic
models of large networks and populations?

To what extent is collective human behavior predictable?

Applications to political processes, economic outcomes,
formation of public opinion, collective problem-solving,
new kinds of social organization.

Understanding the strange geography of our collective social experience.



Network structure via neighborhoods

Start with network neighborhoods



Network structure via neighborhoods

Start with network neighborhoods

Think of Facebook not as a billion-node network, but instead as
a collection of a billion (relatively dense) small networks.



Network structure via neighborhoods

Start with network neighborhoods

Describe neighborhood G by vector of subgraph frequencies: For small k,
and each k-node graph H, let fG (H) = frac. of k-node sets inducing H.



Characterizing neighborhoods

fG (H) = frac. of k-node sets in G
that induce H.

Triad census: Davis-Leinhardt 71

Network motifs: Milo et al 02

Frequent subgraph mining:
Yan-Han 02, Kuramochi-Karypis 04

Subgraph homomorphism density:
Borgs et al 06

Characterizing neighborhoods:
Ugander et al 13



The geography of Facebook neighborhoods

Axes: triad frequencies

“Coastlines:” freq of
1-edge triad is ≤ 3/4.

Unpopulated areas: freq
of 2-edge triad never
close to 3/4 in real life.

Full feasible region would imply

[Razborov 2007].

Gn,p is the “river” that runs through the points.

With deviations based on triadic closure and clustering.
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Diffusion and Contagion

Book recommendations (Leskovec et al 2006)
Anti-war chain letter (LibenNowell-Kleinberg 2008)

A basic “transport mechanism” for these systems:

The movement of information through a social network.

Long history of research in diffusion:

Agricultural, medical innovations [Ryan-Gross 1943, Coleman et al 1966]

Media influence and two-stage flow [Lazarsfeld et al 1944]

Collective action, social movements [McAdam 1986, Chwe 1999]

“Virality” of news, rumors, marketing strategies, political messages, ...
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Diffusion Curves

Long-standing framework: probability of adopting a behavior
depends on number of network neighbors already adopting.

[Bass 1969, Granovetter 1978, Schelling 1978]

k = number of friends adopting

Prob.
of 

adoption

k = number of friends adopting

Prob.
of 

adoption

Key issue: qualitative shape of the curves.

Diminishing returns? Critical mass?

We still have very little understanding of simple threshold models.



Basic Threshold Model

Each node v has d neighbors, chooses threshold f (v) at the start,
from a distribution µ over {0, 1, 2, . . . , d + 1}.

v will adopt as soon as it has f (v) adopting neighbors.

1

0 4

2 2

0 2 2

2 2 0 0 1 2

Despite simple formulation, a challenging model to analyze.

Special-case results for diminishing thresholds (µ(1) ≥ µ(2) ≥ · · · )
[Kempe-Kleinberg-Tardos 03, Mossel-Roch 07].

Special-case results when graph G is a tree [Dodds-Watts 04],
lattice [Cox-Durrett 91], or clique [Granovetter 78, Schelling 78].

General networks with d neighbors per node
[Blume-Easley-Kleinberg-Kleinberg-Tardos 11].



Cliques vs. Trees

Subtle trade-offs in this model, based on
“structural diversity” of neighborhoods.

Trees can have high contagion probability due to large size.

Cliques can have high contagion probability because of correlated
outcomes among neighbors.

Compare cliques vs. trees on distributions

(µ(0), µ(1), µ(2)) = (s, t, 1− s − t)

where s and t are both small.

1
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2

Lower contagion prob. for
(s, 1 − s, 0) and

(s, 0, 1 − s)

2

0 2 2

2 2 0 0 1 2

Lower contagion prob. for

(s, ε, 1 − s − ε)



Spread of Information

Book recommendations (Leskovec et al 2006)
Anti-war chain letter (LibenNowell-Kleinberg 2008)

In on-line data:

Can we use thresholds for prediction tasks?

Does structural diversity of network neighbors play a role?



Decisions in Social Media

x y z

Social networks where people make decisions about new behaviors.

User-defined groups in on-line communities;
participation in on-line collaborative projects;
decision to use a hashtag on Twitter; ...

Many instances in Facebook data: accepting an invitation to join the site;
clicking on an ad; liking a page; commenting on a post.

Does set/structure of adopting neighbors help predict tendency to
adopt?

Backstrom et al. 2006, Crandall et al. 2008, Romero et al. 2011



Diffusion Curves

Long-standing framework: probability of adopting a behavior
depends on number of network neighbors already adopting.

[Bass 1969, Granovetter 1978, Schelling 1978]
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Diffusion Curves
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Probability of joining a community when k friends are already members

(a) Joining a LiveJournal group
[Backstrom et al. 06]

(b) Editing a Wikipedia article
[Crandall et al. 08]

(c) Purchasing a product.
[Leskovec et al 06]



Prediction and Potential Influence

You’re more likely to do something when more friends are doing it.
Why is that?

The issue of homophily/selection vs. influence
[Cohen 77, Kandel 78, Manski 93, Aral et al. 09, Shalizi-Thomas 11]

An experiment to sort out these effects
[Bakshy-Eckles-Yan-Rosenn 2012]



Structural Diversity

Dependence on number of friends:
a first step toward general prediction.

Given the full pattern of
connections among your friends,
estimate probability of adopting a
new behavior.

x y z

Structural diversity
[Ugander-Backstrom-Marlow-Kleinberg]

Data from invitations to
join Facebook.



Structural Diversity

With four neighbors:



The Flow of Information

Book recommendations (Leskovec et al 2006)
Anti-war chain letter (LibenNowell-Kleinberg 2008)

Design questions: Many ways to show present someone with information;
choices must now be made automatically billions of times per day.

Graph structure of neighborhoods as a feature in conversational curation
[Backstrom-Kleinberg-Lee-DanescuNiculescuMizil 2013]

Incentives to propagate information: e.g. Query incentive networks
[Kleinberg-Raghavan 2005], DARPA Network Challenge [Pickard et al
2011], Bitcoin [Babaioff et al 2012].

Simultaneous evolution of network structure and behavior.



Final Reflections

MySpace is doubly awkward because it
makes public what should be private.
It doesn’t just create social networks, it
anatomizes them. It spreads them out like a
digestive tract on the autopsy table.
You can see what’s connected to what,
who’s connected to whom.

– Toronto Globe and Mail, June 2006.

Social networks — implicit for millenia — are being recorded
at high resolution.

What is the right framework for capturing the structures and
phenomena that we see?

What are the dangers of stockpiling this much personal data?

An opportunity for fundamental models in computing to
inform the next steps on all these questions.



Final Reflections: The Challenge of Prediction

With accurate models and enough data, can we predict outcomes?

MusicLab [Salganik, Dodds, and Watts 2006]:

Music download site: preview songs, then download.

A “leaderboard” showing the most downloaded songs.

Can we predict which songs will come out on top?



Final Reflections: Toward a Model of You

Not just data on massive populations, but each of us individually.

Software that understands your behavior better than you do.

Example: How rapidly do you reply to e-mail?

What fraction of your messages do you answer on the
day of arrival? 1 day later? 2 days? 3 days? ... 60 days? ...

theoretical 
prediction

my e-mail
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