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Clique-width

Let G be a graph, and let t be a positive integer.

A t-graph is a graph whose vertices are labeled by integers from
{1, 2, . . . , t}.

We call the t-graph consisting of exactly one vertex v labeled by
some integer i from {1, 2, . . . , t} an initial t-graph.
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Clique-width

The clique-width cwd(G ) is the smallest integer t such that G can
be constructed by means of repeated application of the following
four operations:

construction of an initial t-graph with vertex v labeled by i
(denoted by i(v)),

disjoint union (denoted by ⊕),

relabel: changing the labels of each vertex labeled i to j
(denoted by ρi→j), and

join: connecting all vertices labeled by i with all vertices
labeled by j by edges (denoted by ηi ,j).
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Clique-width

An expression tree of a graph G is a rooted tree T :

the nodes of T are of four types: i , ⊕, η and ρ;

introduce nodes i(v) are leaves of T for initial t-graphs with
vertices v , which are labeled i ;

a union node ⊕ stands for a disjoint union of graphs
associated with its children;

a relabel node ρi→j for the t-graph resulting from the
relabeling operation ρi→j applied to the child;

a join node ηi ,j for the t-graph resulting from the join
operation ηi ,j applied to the child;

the graph G is isomorphic to the graph associated with the
root of T (with all labels removed).

The width of the tree T is the number of different labels appearing
in T .
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Clique-width
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Clique-width

Theorem (Courcelle, Makowsky, and Rotics, 2000)

All problems expressible in MSO1-logic are fixed parameter
tractable (FPT), when parameterized by the clique-width of the
input graph. Or in other words, any problem expressible in
MSO1-logic can be solved, for graphs of clique-width at most t, in
time f (t) · |I |O(1), where |I | is the size of the input and f is a
computable function depending on the parameter t only.
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Our results

We obtain the asymptotically tight bounds for Max-Cut and
Edge Dominating Set by showing that both problems

cannot be solved in time f (t)no(t), unless ETH collapses; and

can be solved in time nO(t),

where f is an arbitrary function of t, on input of size n and
clique-width at most t.

Similar results can be obtained for some variants of these
problems, e.g., for Maximum (Minimum) Bisection.
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Our results

We give tight algorithmic lower and upper bounds for some
double-parameterized graph problems when the clique-width of the
input graph is one of the parameters. We prove the following for
n-vertex graphs G of clique-width at most t,

The Dense (Sparse) k-Subgraph problem, can be solved
in time kO(t) · n, but it cannot be solved in time
2o(t log k) · nO(1) unless ETH fails.

The d-Regular Induced Subgraph problem, can be solved in
time dO(t) · n, but it cannot be solved in time 2o(t log d) · nO(1)

unless ETH fails.
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Algorithmic upper bound for Max-Cut

XtX2X1 Xi Xj

Partial solution for a node of the expression tree
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Algorithmic upper bounds for Max-Cut

kj

X2X1 Xi Xj Xtηi ,j

ki

Partial solution for a node of the expression tree
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Algorithmic lower bounds

Theorem (Cai and Juedes 2001, Downey et al. 2003, Chen
et al. 2006)

There is no algorithm for k-Clique (finding a clique of size k)
running in time f (k)no(k) unless ETH fails.

Corollary

There is no algorithm for Multicolored k-Clique (finding a
clique of size k in a k-partite graph) running in time f (k)no(k)

unless ETH fails.
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Capacitated Domination

2 31

Red-blue Capacitated Dominating Set
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Capacitated Domination

Problem (Red-Blue CDS)

Input: A graph G with a partition (R,B) of V (G ), a
capacity function c : R → N and a positive integer k.

Question: Is there a capacitated dominating set S ⊆ R of size
at most k?

Red-Blue Saturated CDS: each vertex v ∈ S is assigned
exactly c(v) neighbors to dominate.

Red-Blue Exact Saturated CDS: a variant of Red-Blue
Saturated CDS, where |S | = k.
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Algorithmic lower bounds

Theorem

There is no algorithm for Red-blue CDS (Red-Blue
Saturated CDS, Red-Blue Exact Saturated CDS)
running in time f (t)no(t) unless ETH fails, where t is the feedback
vertex number of an input graph even if the input restricted to
graphs G such that

every minimum feedback vertex set X is independent, and

only leaves of the forest G − X are adjacent to X and each
leaf is adjacent to exactly one vertex of X .
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Algorithmic lower bounds

Vi

û v̂xi xj

xi ,j
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yi zi yj zj

(k − 1)vup-arrow

(k − 1)vdown-arrow

udown-arrow uup-arrow vdown-arrow vup-arrow
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(k − 1)udown-arrow

Vj

Reduction for Red-blue CDS
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Algorithmic lower bounds

Corollary

There is no algorithm for Red-blue CDS (Red-Blue
Saturated CDS, Red-Blue Exact Saturated CDS)
running in time f (t)no(t) unless ETH fails, where t is the
clique-width of an input graph/clique-width of the incidence graph
of an input graph, even if an expression tree
(clique-decomposition) of width at most t is given.
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Lower bound for Edge Dominating Set

Theorem

Edge Dominating Set cannot be solved in time f (t) · no(t)
unless the ETH fails even if an expression tree
(clique-decomposition) of width at most t is given.
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The idea of reduction

Consider an instance of Red-Blue Exact Saturated CDS.

2 31
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The idea of reduction

n

k

Selection gadget
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Double parameterization

Theorem (Lokshtanov, Marx, and Saurabh, 2011)

The k × k-Clique problem (the variant of Multicolored
k-Clique where all sets of the k-partition have size k) cannot be
solved in time 2o(k log k) · nO(1), where n is the number of vertices
of the input graph G , unless ETH fails.

Theorem

The Dense (Sparse) k-Subgraph problem, can be solved in
time kO(t) · n, but it cannot be solved in time 2o(t log k) · nO(1)

unless ETH fails.
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Open problems

Is it possible to obtain tight bounds for the aforementioned
problems parameterized by the rank-width of an input graph?

Is it possible to give tight algorithmic upper and lower bounds
for Hamiltonian Cycle when parameterized by the
clique-width of the input graph?

Is it possible to give tight algorithmic upper and lower bounds
for d-Regular Induced Subgraph when parameterized
by the tree-width of the input graph?
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Thank You!
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