Lower Bounds for Problems Parameterized by Clique-width

Petr A. Golovach¹

¹Department of Informatics, University of Bergen

Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time Algorithms Berkeley, November 6, 2015

KORK STRATER STRAKER

The talk is based on the following papers:

- ¹ F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh, Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width. SIAM J. Comput. 43(5): 1541-1563 (2014)
- ² H. Broersma, P. A. Golovach, and V. Patel, Tight complexity bounds for FPT subgraph problems parameterized by the clique-width. Theor. Comput. Sci. 485: 69-84 (2013)

KORK ERKER ADE YOUR

Outline

1 [Introduction](#page-3-0)

- **•** [Clique-width](#page-3-0)
- **[Our results](#page-21-0)**
- 2 [Upper bounds](#page-28-0)
- 3 [Lower bounds](#page-31-0)
- 4 [Edge Dominating Set](#page-41-0)
- 5 [Double parameterization](#page-48-0)
- 6 [Conclusion and open problems](#page-49-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Clique-width

Let G be a graph, and let t be a positive integer.

Clique-width

Let G be a graph, and let t be a positive integer.

A *t*-graph is a graph whose vertices are labeled by integers from $\{1, 2, \ldots, t\}.$

Let G be a graph, and let t be a positive integer.

A *t*-graph is a graph whose vertices are labeled by integers from $\{1, 2, \ldots, t\}.$

We call the t -graph consisting of exactly one vertex v labeled by some integer *i* from $\{1, 2, \ldots, t\}$ an initial *t*-graph.

The clique-width $\text{cwd}(G)$ is the smallest integer t such that G can be constructed by means of repeated application of the following four operations:

KORK STRATER STRAKER

The clique-width cwd(G) is the smallest integer t such that G can be constructed by means of repeated application of the following four operations:

• construction of an initial t-graph with vertex v labeled by i (denoted by $i(v)$),

The clique-width cwd(G) is the smallest integer t such that G can be constructed by means of repeated application of the following four operations:

• construction of an initial t-graph with vertex v labeled by i (denoted by $i(v)$),

KORK ERKER ADE YOUR

• disjoint union (denoted by \oplus),

The clique-width cwd(G) is the smallest integer t such that G can be constructed by means of repeated application of the following four operations:

- construction of an initial t-graph with vertex v labeled by i (denoted by $i(v)$),
- disjoint union (denoted by \oplus),
- relabel: changing the labels of each vertex labeled i to j (denoted by $\rho_{i\rightarrow i}$), and

The clique-width cwd(G) is the smallest integer t such that G can be constructed by means of repeated application of the following four operations:

- construction of an initial t-graph with vertex v labeled by i (denoted by $i(v)$),
- disjoint union (denoted by \oplus),
- \bullet relabel: changing the labels of each vertex labeled \overline{i} to \overline{j} (denoted by $\rho_{i\rightarrow i}$), and
- \bullet join: connecting all vertices labeled by *i* with all vertices labeled by *j* by edges (denoted by $\eta_{i,j}$).

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Clique-width

An expression tree of a graph G is a rooted tree T :

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Clique-width

An expression tree of a graph G is a rooted tree T :

• the nodes of T are of four types: i, \oplus, η and ρ ;

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;

KORK STRATER STRAKER

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;

KORK STRATER STRAKER

• a union node $oplus$ stands for a disjoint union of graphs associated with its children;

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;

- a union node $oplus$ stands for a disjoint union of graphs associated with its children;
- a relabel node $\rho_{i\rightarrow j}$ for the t -graph resulting from the relabeling operation $\rho_{i\rightarrow i}$ applied to the child;

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;
- a union node $oplus$ stands for a disjoint union of graphs associated with its children;
- a relabel node $\rho_{i\rightarrow j}$ for the t -graph resulting from the relabeling operation $\rho_{i\rightarrow i}$ applied to the child;
- a join node $\eta_{i,j}$ for the *t*-graph resulting from the join operation $\eta_{i,j}$ applied to the child;

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;
- a union node $oplus$ stands for a disjoint union of graphs associated with its children;
- a relabel node $\rho_{i\rightarrow j}$ for the t -graph resulting from the relabeling operation $\rho_{i\rightarrow i}$ applied to the child;
- a join node $\eta_{i,j}$ for the *t*-graph resulting from the join operation $\eta_{i,j}$ applied to the child;
- \bullet the graph G is isomorphic to the graph associated with the root of T (with all labels removed).

An expression tree of a graph G is a rooted tree T :

- the nodes of T are of four types: i, \oplus, η and ρ ;
- introduce nodes $i(v)$ are leaves of T for initial t-graphs with vertices v , which are labeled i ;
- a union node $oplus$ stands for a disjoint union of graphs associated with its children;
- a relabel node $\rho_{i\rightarrow j}$ for the t -graph resulting from the relabeling operation $\rho_{i\rightarrow i}$ applied to the child;
- a join node $\eta_{i,j}$ for the *t*-graph resulting from the join operation $\eta_{i,j}$ applied to the child;
- \bullet the graph G is isomorphic to the graph associated with the root of T (with all labels removed).

The width of the tree T is the number of different labels appearing in T.

Clique-width

Clique-width

Theorem (Courcelle, Makowsky, and Rotics, 2000)

All problems expressible in $MSO₁$ -logic are fixed parameter tractable (FPT), when parameterized by the clique-width of the input graph. Or in other words, any problem expressible in MSO1-logic can be solved, for graphs of clique-width at most t, in time $f(t) \cdot |I|^{O(1)}$, where $|I|$ is the size of the input and f is a computable function depending on the parameter t only.

We obtain the asymptotically tight bounds for $MAX-CUT$ and EDGE DOMINATING SET by showing that both problems

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We obtain the asymptotically tight bounds for $MAX-CUT$ and EDGE DOMINATING SET by showing that both problems

cannot be solved in time $f(t)n^{o(t)}$, unless ETH collapses; and

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We obtain the asymptotically tight bounds for $MAX-CUT$ and EDGE DOMINATING SET by showing that both problems

cannot be solved in time $f(t)n^{o(t)}$, unless ETH collapses; and

KORK ERKER ADE YOUR

can be solved in time $n^{O(t)}$,

where f is an arbitrary function of t , on input of size n and clique-width at most t .

We obtain the asymptotically tight bounds for $MAX-CUT$ and EDGE DOMINATING SET by showing that both problems

cannot be solved in time $f(t)n^{o(t)}$, unless ETH collapses; and

KORKAR KERKER EL VOLO

can be solved in time $n^{O(t)}$,

where f is an arbitrary function of t , on input of size n and clique-width at most t .

Similar results can be obtained for some variants of these problems, e.g., for MAXIMUM (MINIMUM) BISECTION.

We give tight algorithmic lower and upper bounds for some double-parameterized graph problems when the clique-width of the input graph is one of the parameters. We prove the following for n-vertex graphs G of clique-width at most t ,

KORK STRATER STRAKER

We give tight algorithmic lower and upper bounds for some double-parameterized graph problems when the clique-width of the input graph is one of the parameters. We prove the following for n-vertex graphs G of clique-width at most t ,

• The DENSE (SPARSE) k -SUBGRAPH problem, can be solved in time $k^{O(t)} \cdot n$, but it cannot be solved in time $2^{o(t \log k)} \cdot n^{O(1)}$ unless ETH fails.

KORKAR KERKER EL VOLO

We give tight algorithmic lower and upper bounds for some double-parameterized graph problems when the clique-width of the input graph is one of the parameters. We prove the following for n-vertex graphs G of clique-width at most t ,

- The DENSE (SPARSE) k -SUBGRAPH problem, can be solved in time $k^{O(t)} \cdot n$, but it cannot be solved in time $2^{o(t \log k)} \cdot n^{O(1)}$ unless ETH fails.
- The d-Regular Induced Subgraph problem, can be solved in time $d^{O(t)} \cdot n$, but it cannot be solved in time $2^{o(t\log d)} \cdot n^{O(1)}$ unless ETH fails.

KORK (FRAGE) EL POLO

Algorithmic upper bound for Max-Cut

KORK STRAIN A BAR SHOP

Algorithmic upper bounds for Max-Cut

KORK STRAIN A BAR SHOP

Algorithmic upper bounds for Max-Cut

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Algorithmic lower bounds

Theorem (Cai and Juedes 2001, Downey et al. 2003, Chen et al. 2006)

There is no algorithm for k -CLIQUE (finding a clique of size k) running in time $f(k)n^{o(k)}$ unless ETH fails.

Algorithmic lower bounds

Theorem (Cai and Juedes 2001, Downey et al. 2003, Chen et al. 2006)

There is no algorithm for k -CLIQUE (finding a clique of size k) running in time $f(k)n^{o(k)}$ unless ETH fails.

Corollary

There is no algorithm for MULTICOLORED k -CLIQUE (finding a clique of size k in a k-partite graph) running in time $f(k)n^{o(k)}$ unless ETH fails.

Capacitated Domination

Red-blue Capacitated Dominating Set

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Capacitated Domination

Red-blue Capacitated Dominating Set

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Capacitated Domination

Problem (Red-Blue CDS)

Input: A graph G with a partition (R, B) of $V(G)$, a capacity function $c: R \to \mathbb{N}$ and a positive integer k.

KORK STRAIN A BAR SHOP

Question: Is there a capacitated dominating set $S \subseteq R$ of size at most k?

Capacitated Domination

Problem (Red-Blue CDS)

Input: A graph G with a partition (R, B) of $V(G)$, a capacity function $c: R \to \mathbb{N}$ and a positive integer k.

KORK ERKER ADE YOUR

Question: Is there a capacitated dominating set $S \subseteq R$ of size at most k?

RED-BLUE SATURATED CDS: each vertex $v \in S$ is assigned exactly $c(v)$ neighbors to dominate.

Capacitated Domination

Problem (Red-Blue CDS)

Input: A graph G with a partition (R, B) of $V(G)$, a capacity function $c: R \to \mathbb{N}$ and a positive integer k.

Question: Is there a capacitated dominating set $S \subseteq R$ of size at most k?

RED-BLUE SATURATED CDS: each vertex $v \in S$ is assigned exactly $c(v)$ neighbors to dominate.

Red-Blue Exact Saturated CDS: a variant of Red-Blue Saturated CDS, where $|S| = k$.

Algorithmic lower bounds

Theorem

There is no algorithm for RED-BLUE CDS (RED-BLUE) SATURATED CDS, RED-BLUE EXACT SATURATED CDS) running in time $f(t)n^{o(t)}$ unless ETH fails, where t is the feedback vertex number of an input graph even if the input restricted to graphs G such that

- \bullet every minimum feedback vertex set X is independent, and
- only leaves of the forest $G X$ are adjacent to X and each leaf is adjacent to exactly one vertex of X .

Algorithmic lower bounds

Reduction for RED-BLUE CDS

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Algorithmic lower bounds

Corollary

There is no algorithm for $RED-BLUE$ CDS ($RED-BLUE$ SATURATED CDS, RED-BLUE EXACT SATURATED CDS) running in time $f(t)n^{o(t)}$ unless ETH fails, where t is the clique-width of an input graph/clique-width of the incidence graph of an input graph, even if an expression tree (clique-decomposition) of width at most t is given.

Lower bound for Edge Dominating Set

Theorem

EDGE DOMINATING SET cannot be solved in time $f(t) \cdot n^{o(t)}$ unless the ETH fails even if an expression tree (clique-decomposition) of width at most t is given.

KORK STRAIN A BAR SHOP

The idea of reduction

Consider an instance of RED-BLUE EXACT SATURATED CDS.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

The idea of reduction

Consider an instance of RED-BLUE EXACT SATURATED CDS.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

The idea of reduction

Consider an instance of RED-BLUE EXACT SATURATED CDS.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The idea of reduction

Consider an instance of RED-BLUE EXACT SATURATED CDS.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The idea of reduction

Selection gadget

イロン イ部ン イ君ン イ君ン

Ε

 2990

The idea of reduction

Selection gadget

イロン イ部ン イ君ン イ君ン

Ε

 2990

Double parameterization

Theorem (Lokshtanov, Marx, and Saurabh, 2011)

The $k \times k$ -CLIQUE problem (the variant of MULTICOLORED k -CLIQUE where all sets of the k-partition have size k) cannot be solved in time 2 $^{o(k\log k)}\cdot n^{O(1)}$, where n is the number of vertices of the input graph G, unless ETH fails.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Double parameterization

Theorem (Lokshtanov, Marx, and Saurabh, 2011)

The $k \times k$ -CLIQUE problem (the variant of MULTICOLORED k -CLIQUE where all sets of the k -partition have size k) cannot be solved in time 2 $^{o(k\log k)}\cdot n^{O(1)}$, where n is the number of vertices of the input graph G, unless ETH fails.

Theorem

The $DENSE$ (SPARSE) $k-SUBGRAPH$ problem, can be solved in time $k^{O(t)} \cdot n$, but it cannot be solved in time $2^{O(t \log k)} \cdot n^{O(1)}$ unless ETH fails.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Open problems

• Is it possible to obtain tight bounds for the aforementioned problems parameterized by the rank-width of an input graph?

Open problems

- Is it possible to obtain tight bounds for the aforementioned problems parameterized by the rank-width of an input graph?
- Is it possible to give tight algorithmic upper and lower bounds for HAMILTONIAN CYCLE when parameterized by the clique-width of the input graph?

KORKAR KERKER EL VOLO

Open problems

- Is it possible to obtain tight bounds for the aforementioned problems parameterized by the rank-width of an input graph?
- Is it possible to give tight algorithmic upper and lower bounds for HAMILTONIAN CYCLE when parameterized by the clique-width of the input graph?
- Is it possible to give tight algorithmic upper and lower bounds for d -REGULAR INDUCED SUBGRAPH when parameterized by the tree-width of the input graph?

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Thank You!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @