
Sub-exponential Approximation

Schemes: From Dense to Almost-Sparse

Dimitris Fotakis Michael Lampis Vangelis Paschos

NTU Athens Université Paris Dauphine

Nov 5, 2015

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)
• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)
• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Running time 2n
c
.

Question: Is c optimal?

Use ETH to prove it.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Running time 2n
c
.

Question: Is c optimal?

Use ETH to prove it.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Running time 2n
c
.

Question: Is c optimal?

Use ETH to prove it.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Overview

Sub-Exponential Approximation Schemes 2 / 18

Things you will hear in this talk:

• CSPs, Max-Cut, Max-3-SAT,. . .

Topic: Approximating Max-k-CSP

(k fixed)

• This is hard in polynomial time.

Solution: sub-exponential time.

• Running time 2n
c
.

Question: Is c optimal?

Use ETH to prove it.

• Satisfiability

• Lower Bounds

• Tight Results

• Exponential-time Algorithms

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

Jack Edmonds Juris Hartmanis Richard Stearns

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

• Everything is NP-hard!(∗) (’70s)

Stephen Cook Richard Karp Garey& Johnson

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

• Everything is NP-hard!(∗) (’70s)

• So, we should approximate (’80s)

David Johnson V. Vazirani Williamson&Shmoys

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

• Everything is NP-hard!(∗) (’70s)

• So, we should approximate (’80s)

• Everything is APX-hard!(∗) (’90s)

Christos Papadimitriou Sanjeev Arora Johan Håstad

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

• Everything is NP-hard!(∗) (’70s)

• So, we should approximate (’80s)

• Everything is APX-hard!(∗) (’90s)

• More than poly-time? Everything ETH-hard (’00s)

Mike Fellows Russell Impagliazzo Fomin&Kratsch

Motivation – Sub-Exponential Approximation

Sub-Exponential Approximation Schemes 3 / 18

(50 years in a slide)

• Efficient = Poly-time (’60s)

• Everything is NP-hard!(∗) (’70s)

• So, we should approximate (’80s)

• Everything is APX-hard!(∗) (’90s)

• More than poly-time? Everything ETH-hard (’00s)

Bottom line:

• Most problems hard to solve exactly in 2o(n) time

• Most problems hard to approximate in nO(1) time

• → Perhaps we can approximate in 2o(n) time?

Dead on Arrival?

Sub-Exponential Approximation Schemes 4 / 18

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Dead on Arrival?

Sub-Exponential Approximation Schemes 4 / 18

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Probably won’t work

(at least for Max-3-SAT)

Dead on Arrival?

Sub-Exponential Approximation Schemes 4 / 18

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Håstad)

give tight inapproximability for Max-3-SAT even for 2n
1−ǫ

time.

(Credit: Dana Moshkovitz)

Dead on Arrival?

Sub-Exponential Approximation Schemes 4 / 18

• Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,. . . , in

sub-exponential time?

If this is the “normal” behavior of APX problems, what’s the point of

sub-exponential approximation?

• Is this the “normal” behavior?

• What about problems outside APX?

• E.g., r-approximation in time 2n/r for Ind. Set ([Chalermsook,

Laekhanukit, Nanongkai ’13])

• r-approximation in time 2n/r
2

for Max Minimal VC

log(n/r)-approximation in time 2n/r for ATSP

([Bonnet,L.,Paschos arxiv ’15]).

• What else?

Strategy

Sub-Exponential Approximation Schemes 5 / 18

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

Strategy

Sub-Exponential Approximation Schemes 5 / 18

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

An island of tractability:

• Max-k-CSP admits a PTAS (a (1− ǫ)-approximation for all ǫ > 0) for

dense instances

• (Arora, Karger, Karpinski ’99), (de la Vega ’96)

Strategy

Sub-Exponential Approximation Schemes 5 / 18

• We cannot get better than 7/8 for Max-3-SAT in sub-exp time (under

ETH).

• We will therefore try to get something else:

An island of tractability:

• Max-k-CSP admits a PTAS (a (1− ǫ)-approximation for all ǫ > 0) for

dense instances

• (Arora, Karger, Karpinski ’99), (de la Vega ’96)

Extending the island:

• We give a version of the AKK scheme which can handle sparser

instances, at the expense of needing sub-exponential time.

• Our scheme provides a smooth trade-off

• For dense instances we get a PTAS

• As instances gradually get more sparse, we need more time. . .

• . . . until our scheme does not work any more

Summary of results

Sub-Exponential Approximation Schemes 6 / 18

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

Summary of results

Sub-Exponential Approximation Schemes 6 / 18

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

• Note: This includes the AKK PTAS as a special case (δ = 1)

• Advantage: we provide a smooth trade-off from the “easy case”

(dense instances) to more general cases

Summary of results

Sub-Exponential Approximation Schemes 6 / 18

For any ǫ > 0, δ ∈ [0, 1] and fixed k ≥ 2 we have the following:

• Given a Max-k-CSP instance with nk−1+δ constraints

• We can produce a (1− ǫ)-approximate solution

• In time 2O(n1−δ lnn/ǫ3)

• Note: This includes the AKK PTAS as a special case (δ = 1)

• Advantage: we provide a smooth trade-off from the “easy case”

(dense instances) to more general cases

• We will also give some “tight” bounds, ruling out natural possible

improvements.

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

We are given a dense graph for which we want to find a large cut

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

Randomly select a “sample” of its vertices

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

Guess their correct partition

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

For every vertex outside the sample, examine its neighbors in the sample

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

Greedily set its value depending on this neighborhood

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

• The sample we select has size O(logn) (hidden constants depend on

degree and ǫ)
• → running time nO(1) (will try all partitions of sample)

Basic scheme (Max Cut)

Sub-Exponential Approximation Schemes 7 / 18

• The sample we select has size O(logn) (hidden constants depend on

degree and ǫ)
• → running time nO(1) (will try all partitions of sample)

Why this works (intuitively):

• Because graph is dense → every vertex outside sample S has many

neighbors in S
• → examining N(u) ∩ S is (whp) a good representation of N(u) in the

optimal solution

• If a vertex in V \ S has >> 50% of its neighbors on one side in the

optimal solution, it will (whp) have >> 50% of its neighbors on that side

in S

(de la Vega ’96)

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

(i,j)∈E
xi(1− xj) + xj(1− xi)

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max-2-SAT:

max
∑

(i,j)∈C
xi(1− xj) + xj(1− xi) + xixj

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max-3-SAT:

max
∑

(i,j,k)∈C
xi(1− xj)(1− xk) + (1− xi)xj(1− xk) + . . .+ xixjxk

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max-k-CSP:

max p(~x)

where p() is a degree k polynomial.

The AKK scheme offers a PTAS that finds an assignment almost

maximizing p when the polynomial has at least Ω(nk) terms.

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

(i,j)∈E
xi(1− xj) + xj(1− xi)

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

(i,j)

cijxixj +
∑

i

cixi + C

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

i

xiri

where ri(~x− xi) is the (linear) polynomial of the remaining variables I

obtain if I factor out xi.

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

i

xiri

where ri(~x− xi) is the (linear) polynomial of the remaining variables I

obtain if I factor out xi.

Main idea: Estimate the values of the ri’s using brute force on a small

sample.

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

i

xiri

s.t.

r̂i − ǫn ≤
∑

j∈N(i) cijxj ≤ r̂i + ǫn

where r̂i is the estimate I have for ri.

This is now a linear program.

General scheme (Max-k-CSP)

Sub-Exponential Approximation Schemes 8 / 18

Max Cut:

max
∑

i

xiri

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Sub-exponential Extension (Max Cut)

Sub-Exponential Approximation Schemes 9 / 18

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Sub-exponential Extension (Max Cut)

Sub-Exponential Approximation Schemes 9 / 18

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample

Sub-exponential Extension (Max Cut)

Sub-Exponential Approximation Schemes 9 / 18

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample

• Suppose graph has average degree ∆ = nδ

• We sample n logn
∆ = n1−δ logn vertices

• → whp r̂i ≈ ri.

Sub-exponential Extension (Max Cut)

Sub-Exponential Approximation Schemes 9 / 18

Summary of algorithm:

• Estimate the ri values using a sample

• Need large enough sample to guarantee r̂i ≈ ri
• This turns QIP → ILP

• Solve fractional relaxation of ILP

• Round solution

Main idea: Use larger sample
We are almost done!

• Must prove sample size enough for r̂i

• Pitfall: Additive error ǫn no longer negligible!

• Must prove rounding step still works

Don’t worry, it all works!

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

How about Max-3-SAT?

• In poly time can solve instances with n3 clauses

• In 2
√
n time can solve instances with . . . clauses?

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

Summary so far k = 2:

• AKK: Average degree Ω(n), sample of O(logn) vertices

• Extension: Average degree nδ, sample of n1−δ logn
• → in time 2

√
n can “solve” Max-Cut for |E| ≥ n1.5

How about Max-3-SAT?

• In poly time can solve instances with n3 clauses

• In 2
√
n time can solve instances with n2.5 clauses

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑

j xjrij
• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑

j xjrij
• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

Note: In order for this to work, all rij... polynomials must be dense

• This is true if original polynomial was dense.

General scheme k ≥ 3

Sub-Exponential Approximation Schemes 10 / 18

AKK scheme for k ≥ 3

• Write p(~x) as
∑

i xiri
• Each ri has degree k − 1
• Write ri =

∑

j xjrij
• Each rij has degree k − 2
• . . .

• Until we get to linear → write ILP

• In our scheme, if p has nk−1+δ terms

• ri has nk−2+δ terms

• rij has nk−3+δ terms

• . . .

It seems that the “right” density to require is nk−1+δ?

General scheme – summary

Sub-Exponential Approximation Schemes 11 / 18

• Input: Max-k-CSP isntance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

General scheme – summary

Sub-Exponential Approximation Schemes 11 / 18

• Input: Max-k-CSP isntance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

• Works for any CSP (for fixed k)

• Covers “all instances” for k = 2

General scheme – summary

Sub-Exponential Approximation Schemes 11 / 18

• Input: Max-k-CSP isntance with nk−1+δ constraints

• Algorithm:

• Sample 2n
1−δ logn/ǫ3 variables, guess their value

• Write CSP as a polynomial optimization problem

• Estimate non-linear coefficients using sample

• Solve fractional LP

• Round solution

• Works for any CSP (for fixed k)

• Covers “all instances” for k = 2

Can we do better?

• Smaller sample/faster running time?

• Handle k ≥ 3 better?

Summary – with a picture

Sub-Exponential Approximation Schemes 12 / 18

Complexity/Density trade-off for Max-k-CSP

Summary – with a picture

Sub-Exponential Approximation Schemes 12 / 18

Possible Improvements? Faster? More general?

Density lower bound

Sub-Exponential Approximation Schemes 13 / 18

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Density lower bound

Sub-Exponential Approximation Schemes 13 / 18

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

In English: For density less than nk−1 we need exponential time to get

(1− ǫ)-approximation.

Density lower bound

Sub-Exponential Approximation Schemes 13 / 18

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).

Density lower bound

Sub-Exponential Approximation Schemes 13 / 18

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).
Proof: (k = 3)

• Add n new variables y1, . . . , yn
• For each clause (xi ∨ xj), for each k ∈ {1, . . . , n} we construct the

clauses (xi ∨ xj ∨ yk) and (xi ∨ xj ∨ ¬yk)
• Gap remains!

• Number of clauses ≈ n2

Density lower bound

Sub-Exponential Approximation Schemes 13 / 18

Theorem: Assuming ETH, for all k ≥ 3, ∃r < 1 s.t. ∀ǫ > 0 no algorithm

can r-approximate Max-k-SAT with m ≤ nk−1 in time 2n
1−ǫ

Starting Point: Max-2-SAT is “APX-ETH”-hard on instances with |V | = n
and m = O(|V |).
Proof: (k = 3)

• Add n new variables y1, . . . , yn
• For each clause (xi ∨ xj), for each k ∈ {1, . . . , n} we construct the

clauses (xi ∨ xj ∨ yk) and (xi ∨ xj ∨ ¬yk)
• Gap remains!

• Number of clauses ≈ n2

Reduction similar for k > 3

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

In English: Our sample size is optimal. For density nδ we need time

2n
1−δ

.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on instances with |V | = n
and |E| = O(|V |).

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

• A constant gap remains for any ∆
• |V ′| = n∆, |E| = n∆2, Avg. degree = ∆
• If we cound do better than 2|V

′|/∆ then ¬ETH

Running time lower bound

Sub-Exponential Approximation Schemes 14 / 18

Theorem: Assuming ETH, for all δ ∈ (0, 1), ∃r < 1 s.t. ∀ǫ > 0 no

algorithm can r-approximate Max Cut with |E| = n1+δ in time 2n
1−δ−ǫ

Starting Point: Max Cut is “APX-ETH”-hard on 5-regular instances with

|V | = n.

• A constant gap remains for any ∆
• |V ′| = n∆, |E| = n∆2, Avg. degree = ∆
• If we cound do better than 2|V

′|/∆ then ¬ETH

• Bonus: The two reductions compose! Optimal running times

everywhere!

Extensions: k-Densest

Sub-Exponential Approximation Schemes 15 / 18

• Find k vertices that induce max edges

• AKK scheme works for k = Θ(n)

• Reason: Then OPT = Θ(n2)

Extensions: k-Densest

Sub-Exponential Approximation Schemes 15 / 18

• Find k vertices that induce max edges

• AKK scheme works for k = Θ(n)

• Reason: Then OPT = Θ(n2)

• How to get something for any k?

• Simple win/win algorithm

• If k “large”, we can run our algorithm

• If k “small”, brute force
(n
k

)

• Balancing gives 2n
1−δ/3 logn/ǫ3 time for |E| = n1+δ

Extensions: k-Densest

Sub-Exponential Approximation Schemes 15 / 18

• Find k vertices that induce max edges

• AKK scheme works for k = Θ(n)

• Reason: Then OPT = Θ(n2)

• How to get something for any k?

• Simple win/win algorithm

• If k “large”, we can run our algorithm

• If k “small”, brute force
(n
k

)

• Balancing gives 2n
1−δ/3 logn/ǫ3 time for |E| = n1+δ

• Can we do better?

Extensions: 3-Coloring

Sub-Exponential Approximation Schemes 16 / 18

• 3-Coloring is in P for graphs with large minimum degree

• Dense graphs contain a dominating set of size O(logn)
• Guess its coloring

• Coloring remaining graph is 2-List Coloring (in P)

Extensions: 3-Coloring

Sub-Exponential Approximation Schemes 16 / 18

• 3-Coloring is in P for graphs with large minimum degree

• Dense graphs contain a dominating set of size O(logn)
• Guess its coloring

• Coloring remaining graph is 2-List Coloring (in P)

• Can extend this to graphs with minimum degree ∆

• Exists dominating set with size n
∆ log n

• Guess its coloring

• . . .

Conclusions

Sub-Exponential Approximation Schemes 17 / 18

• Density is a crucial parameter for approximating Max-k-CSP

• Especially useful in sub-exponential setting

• Smooth trade-off between performance and generality

• “Tight” bounds

• Questions:

• Other applications?

• Other interesting sub-exponential approximations?

Thank you!

Sub-Exponential Approximation Schemes 18 / 18

	Overview
	Motivation – Sub-Exponential Approximation
	Dead on Arrival?
	Strategy
	Summary of results
	Basic scheme (Max Cut)
	General scheme (Max-k-CSP)
	Sub-exponential Extension (Max Cut)
	General scheme k3
	General scheme – summary
	Summary – with a picture
	Density lower bound
	Running time lower bound
	Extensions: k-Densest
	Extensions: 3-Coloring
	Conclusions
	Thank you!

