Sub-exponential ApproximationSchemes: From Dense to Almost-Sparse

Dimitris Fotakis Michael Lampis Vangelis Paschos

NTU Athens **Manual Computer Université Paris Dauphine**

Nov 5, 2015

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP(k fixed)
- \bullet **Satisfiability**
- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP(k fixed)
- \bullet **Satisfiability**

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.
- \bullet **Satisfiability**

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.

 \bullet **Satisfiability**

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.
- •• Running time 2^{n^c} . Question: Is c optimal? Use ETH to prove it.

 \bullet **Satisfiability**

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.
- •• Running time 2^{n^c} . Question: Is c optimal? Use ETH to prove it.

 \bullet **Satisfiability**

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.
- •• Running time 2^{n^c} . Question: Is c optimal? Use ETH to prove it.
- \bullet **Satisfiability**
- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

Things you will hear in this talk:

- \bullet CSPs, Max-Cut, Max-3-SAT,. . . Topic: Approximating Max-k-CSP $(k \text{ fixed})$
- \bullet This is hard in polynomial time. Solution: **sub**-exponential time.
- \bullet • Running time 2^{n^c} . Question: Is c optimal? Use ETH to prove it.

- \bullet Lower Bounds
- \bullet Tight Results
- \bullet Exponential-time Algorithms

 \bullet Efficient ⁼ Poly-time ('60s)

Jack Edmonds Juris Hartmanis Richard Stearns

Motivation – Sub-Exponential Approximation

(50 years in ^a slide)

- \bullet Efficient ⁼ Poly-time ('60s)
- \bullet Everything is NP-hard!([∗]) ('70s)

Stephen Cook Richard Karp Garey& Johnson

- \bullet Efficient ⁼ Poly-time ('60s)
- •Everything is NP-hard!([∗]) ('70s)
- \bullet So, we should approximate ('80s)

- \bullet Efficient ⁼ Poly-time ('60s)
- \bullet Everything is NP-hard!([∗]) ('70s)
- \bullet So, we should approximate ('80s)
- \bullet Everything is APX-hard!([∗]) ('90s)

Christos Papadimitriou Sanjeev Arora

Johan Håstad

- \bullet Efficient ⁼ Poly-time ('60s)
- \bullet Everything is NP-hard!([∗]) ('70s)
- \bullet So, we should approximate ('80s)
- \bullet Everything is APX-hard!([∗]) ('90s)
- \bullet More than poly-time? Everything ETH-hard ('00s)

Mike Fellows **Russell Impagliazzo** Fomin&Kratsch

- \bullet Efficient ⁼ Poly-time ('60s)
- \bullet Everything is NP-hard!([∗]) ('70s)
- \bullet So, we should approximate ('80s)
- \bullet Everything is APX-hard!([∗]) ('90s)
- \bullet More than poly-time? Everything ETH-hard ('00s)

Bottom line:

- \bullet • Most problems hard to solve exactly in $2^{o(n)}$ time
- Most problems hard to approximate in $n^{O(1)}$ time \bullet
- \bullet \rightarrow Perhaps we can approximate in $2^{o(n)}$ time?

Dead on Arrival?

•• Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT,..., in **sub-exponential time**?

 \bullet • Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT,..., in **sub-exponential time**?

Probably won't work

(at least for Max-3-SAT)

 \bullet • Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT,..., in **sub-exponential time**?

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Håstad) give tight inapproximability for Max-3-SAT even for $2^{n^{1-\epsilon}}$ time. (Credit: Dana Moshkovitz)

Dead on Arrival?

 \bullet • Better than $3/2$ for TSP, $4/3$ for Max-3-DM, $7/8$ for Max-3-SAT,..., in **sub-exponential time**?

If this is the "normal" behavior of APX problems, what's the point of sub-exponential approximation?

- •Is this the "normal" behavior?
- What about problems outside APX? \bullet
	- E.g., *r*-approximation in time $2^{n/r}$ for Ind. Set ([Chalermsook, Laekhanukit, Nanongkai '13])
	- *r*-approximation in time $2^{n/r^2}$ for Max Minimal VC $\log(n/r)$ -approximation in time $2^{n/r}$ for ATSP ([Bonnet,L.,Paschos arxiv '15]).
- •**What else?**

Strategy

- \bullet We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- \bullet We will therefore try to get something else:

Strategy

- \bullet We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- \bullet We will therefore try to get something else:
- An island of tractability:
- \bullet • Max-k-CSP admits a PTAS (a $(1 - \epsilon)$ -approximation for all $\epsilon > 0$) for **dense** instances
- \bullet (Arora, Karger, Karpinski '99), (de la Vega '96)

Strategy

- \bullet We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- \bullet We will therefore try to get something else:
- An island of tractability:
- \bullet • Max-k-CSP admits a PTAS (a $(1 - \epsilon)$ -approximation for all $\epsilon > 0$) for **dense** instances
- \bullet (Arora, Karger, Karpinski '99), (de la Vega '96)

Extending the island:

- \bullet We give ^a version of the AKK scheme which **can handle sparser instances**, at the expense of needing **sub-exponential time**.
- \bullet Our scheme provides ^a smooth trade-off
	- For dense instances we get ^a PTAS
	- As instances gradually get more sparse, we need more time. . . \bullet
	- •. . . until our scheme does not work any more

Summary of results

For any $\epsilon > 0, \, \delta \in [0,1]$ and fixed $k \geq 2$ we have the following:

- \bullet • Given a Max-k-CSP instance with $n^{k-1+\delta}$ constraints
- \bullet We can produce a $(1 - \epsilon)$ -approximate solution
- \bullet • In time $2^{O(n^{1-\delta}\ln n/\epsilon^3)}$

Summary of results

For any $\epsilon > 0, \, \delta \in [0,1]$ and fixed $k \geq 2$ we have the following:

- \bullet • Given a Max-k-CSP instance with $n^{k-1+\delta}$ constraints
- \bullet We can produce a $(1 - \epsilon)$ -approximate solution
- \bullet • In time $2^{O(n^{1-\delta}\ln n/\epsilon^3)}$
- \bullet Note: This includes the AKK PTAS as a special case $(\delta = 1)$
- \bullet Advantage: we provide ^a smooth trade-off from the "easy case" (dense instances) to more general cases

For any $\epsilon > 0, \, \delta \in [0,1]$ and fixed $k \geq 2$ we have the following:

- \bullet • Given a Max-k-CSP instance with $n^{k-1+\delta}$ constraints
- \bullet We can produce a $(1 - \epsilon)$ -approximate solution
- \bullet • In time $2^{O(n^{1-\delta}\ln n/\epsilon^3)}$
- \bullet Note: This includes the AKK PTAS as a special case $(\delta = 1)$
- \bullet Advantage: we provide ^a smooth trade-off from the "easy case" (dense instances) to more general cases
- \bullet We will also give some "tight" bounds, ruling out natural possibleimprovements.

We are given ^a dense graph for which we want to find ^a large cut

Randomly select ^a "sample" of its vertices

Guess their correct partition

For every vertex outside the sample, examine its neighbors in the sample

Greedily set its value depending on this neighborhood

- \bullet • The sample we select has size $O(\log n)$ (hidden constants depend on degree and $\epsilon)$
- \bullet \bullet \rightarrow \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

- \bullet • The sample we select has size $O(\log n)$ (hidden constants depend on degree and $\epsilon)$
- \bullet \bullet \rightarrow \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

Why this works (intuitively):

- \bullet • Because graph is dense $→$ every vertex outside sample S has many neighbors in S neighbors in S
- \rightarrow examining $N(u) \cap S$ is (whp) a good representation of $N(u)$ in the optimal solution \bullet optimal solution
- If a vertex in $V \setminus S$ has $>> 50\%$ of its neighbors on one side in the
continual solution it will (what have $>> 50\%$ of its neighbors on that \bullet optimal solution, it will (whp) have $>>50\%$ of its neighbors on that side
in G in S

(de la Vega '96)

General scheme (Max-k-CSP)

Max Cut:

$$
\max \sum_{(i,j) \in E} x_i (1 - x_j) + x_j (1 - x_i)
$$

General scheme (Max-k-CSP)

Max-2-SAT:

$$
\max \sum_{(i,j)\in C} x_i (1 - x_j) + x_j (1 - x_i) + x_i x_j
$$

General scheme (Max-k-CSP)

Max-3-SAT:

$$
\max \sum_{(i,j,k)\in C} x_i(1-x_j)(1-x_k) + (1-x_i)x_j(1-x_k) + \ldots + x_ix_jx_k
$$

Max- $k\text{-}\mathsf{CSP}\text{:}$

 $\max p(\vec{x})$

where $p()$ is a degree k polynomial.

The AKK scheme offers ^a PTAS that finds an assignment almost maximizing p when the polynomial has at least $\Omega(n^k$ $^k)$ terms.

Max Cut:

$$
\max \sum_{(i,j) \in E} x_i (1 - x_j) + x_j (1 - x_i)
$$

Max Cut:

$$
\max \sum_{(i,j)} c_{ij} x_i x_j + \sum_i c_i x_i + C
$$

Max Cut:

where $r_i(\vec{x}$ obtain if I factor out $x_i.$ $-x_i)$ is the (linear) polynomial of the remaining variables I

Max Cut:

$$
\max \sum_i x_i r_i
$$

where $r_i(\vec{x}$ obtain if I factor out $x_i.$ $-x_i)$ is the (linear) polynomial of the remaining variables I

Main idea: Estimate the values of the r_i 's using brute force on a small sample.

Max Cut:

$$
\max \sum_i x_ir_i
$$

s.t.

$$
\hat{r}_i - \epsilon n \leq \sum_{j \in N(i)} c_{ij} x_j \leq \hat{r}_i + \epsilon n
$$

where \hat{r}_i is the estimate I have for $r_i.$

This is now ^a **linear** program.

Max Cut:

$$
\max \sum_i x_ir_i
$$

Summary of algorithm:

- \bullet **•** Estimate the r_i values using a sample
	- \bullet • Need large enough sample to guarantee $\hat{r}_i\approx r_i$
	- •• This turns $\mathsf{QIP}\to\mathsf{ILP}$
- \bullet Solve fractional relaxation of ILP
- \bullet Round solution

- \bullet **•** Estimate the r_i values using a sample
	- \bullet • Need large enough sample to guarantee $\hat{r}_i\approx r_i$
	- •• This turns $\mathsf{QIP}\to\mathsf{ILP}$
- \bullet Solve fractional relaxation of ILP
- \bullet Round solution

- \bullet **•** Estimate the r_i values using a sample
	- \bullet • Need large enough sample to guarantee $\hat{r}_i\approx r_i$
	- •• This turns $\mathsf{QIP}\to\mathsf{ILP}$
- \bullet Solve fractional relaxation of ILP
- \bullet Round solution

Main idea: **Use larger sample**

- \bullet **•** Estimate the r_i values using a sample
	- •• Need large enough sample to guarantee $\hat{r}_i\approx r_i$
	- This turns QIP→ ILP
- \bullet Solve fractional relaxation of ILP
- \bullet Round solution

Main idea: **Use larger sample**

- \bullet • Suppose graph has average degree $\Delta = n^{\delta}$
- \bullet • We sample $\frac{n \log n}{\Delta}$ $\frac{\Delta}{\Delta}=\frac{n}{n}$ 1 $^{-\delta}\log n$ vertices
- \rightarrow whp $\hat{r}_i \approx r_i$. \bullet

- \bullet **•** Estimate the r_i values using a sample
	- •• Need large enough sample to guarantee $\hat{r}_i\approx r_i$
	- •• This turns $\mathsf{QIP}\to\mathsf{ILP}$
- \bullet Solve fractional relaxation of ILP
- \bullet Round solution

Main idea: **Use larger sample**We are almost done!

- \bullet • Must prove sample size enough for \hat{r}_i
	- \bullet • Pitfall: Additive error ϵn no longer negligible!
- \bullet Must prove rounding step still works

Don't worry, it all works!

Summary so far $k=2$:

- •• AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- \bullet **Extension: Average degree** n^{δ} **, sample of** $n^{1-\delta} \log n$
- \bullet \bullet \rightarrow $i\rightarrow$ in time $2^{\sqrt{n}}$ can "solve" Max-Cut for $|E|\ge n^{1.5}$

Summary so far $k=2$:

- \bullet • AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- •**Extension: Average degree** n^{δ} **, sample of** $n^{1-\delta} \log n$
- \bullet \bullet \rightarrow $i\to$ in time $2^{\sqrt{n}}$ can "solve" Max-Cut for $|E|\geq n^{1.5}$

How about Max-3-SAT?

- \bullet • In poly time can solve instances with n^3 clauses
- \bullet • In $2^{\sqrt{n}}$ time can solve instances with ... clauses?

Summary so far $k=2$:

- \bullet • AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- •**Extension: Average degree** n^{δ} **, sample of** $n^{1-\delta} \log n$
- \bullet \bullet \rightarrow $i\to$ in time $2^{\sqrt{n}}$ can "solve" Max-Cut for $|E|\geq n^{1.5}$

How about Max-3-SAT?

- \bullet • In poly time can solve instances with n^3 clauses
- \bullet • In $2^{\sqrt{n}}$ time can solve instances with $n^{2.5}$ clauses

General scheme $k \geq 3$

AKK scheme for $k \geq 3$

- •• Write $p(\vec{x})$ as $\sum_i x_i r_i$
- •• Each r_i has degree $k-1$
- \bullet • Write $r_i = \sum_j x_j r_{ij}$
- \bullet • Each r_{ij} has degree $k-2$
- \bullet . . .
- \bullet • Until we get to linear \rightarrow write ILP

AKK scheme for $k \geq 3$

- \bullet • Write $p(\vec{x})$ as $\sum_i x_i r_i$
- \bullet • Each r_i has degree $k-1$
- \bullet • Write $r_i = \sum_j x_j r_{ij}$
- \bullet • Each r_{ij} has degree $k-2$
- \bullet . . .
- \bullet • Until we get to linear \rightarrow write ILP

Note: In order for this to work, all $r_{ij...}$ polynomials must be **dense**

 \bullet This is true if original polynomial was dense.

General scheme $k \geq 3$

AKK scheme for $k \geq 3$

- \bullet • Write $p(\vec{x})$ as $\sum_i x_i r_i$
- \bullet • Each r_i has degree $k-1$
- \bullet • Write $r_i = \sum_j x_j r_{ij}$
- \bullet • Each r_{ij} has degree $k-2$
- \bullet . . .
- \bullet • Until we get to linear \rightarrow write ILP
- \bullet • In our scheme, if p has $n^{k-1+\delta}$ terms
- \bullet r_i has $n^{k-2+\delta}$ terms
- \bullet r_{ij} has $n^{k-3+\delta}$ terms
- \bullet . . .

It seems that the "right" density to require is $n^{k-1+\delta}$?

General scheme – summary

- \bullet • Input: Max- k -CSP isntance with n^k $^{-1+\delta}$ constraints
- \bullet Algorithm:
	- •• Sample 2^n 1 $^{\delta\log n/\epsilon^3}$ variables, guess their value
	- Write CSP as ^a polynomial optimization problem \bullet
	- \bullet Estimate non-linear coefficients using sample
	- \bullet Solve fractional LP
	- Round solution

General scheme – summary

- \bullet • Input: Max- k -CSP isntance with n^k $^{-1+\delta}$ constraints
- \bullet Algorithm:
	- •• Sample 2^n 1 $^{\delta\log n/\epsilon^3}$ variables, guess their value
	- Write CSP as ^a polynomial optimization problem \bullet
	- \bullet Estimate non-linear coefficients using sample
	- Solve fractional LP
	- Round solution
- \bullet • Works for any CSP (for fixed k)
- Covers "all instances" for $k=2$ \bullet

General scheme – summary

- \bullet • Input: Max- k -CSP isntance with n^k $^{-1+\delta}$ constraints
- \bullet Algorithm:
	- •• Sample 2^n 1 $^{\delta\log n/\epsilon^3}$ variables, guess their value
	- Write CSP as ^a polynomial optimization problem \bullet
	- \bullet Estimate non-linear coefficients using sample
	- Solve fractional LP
	- Round solution
- \bullet • Works for any CSP (for fixed k)
- Covers "all instances" for $k=2$ \bullet

Can we do better?

- \bullet Smaller sample/faster running time?
- •• Handle $k\geq 3$ better?

Summary – with ^a picture

Summary – with ^a picture

In English: For density less than n^{k-1} we need exponential time to get $(1-\epsilon)$ -approximation.

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with $|V| = n$ and $m = O(|V|)$.

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with $|V| = n$ and $m = O(|V|)$.
Proof: $(k-2)$ Proof: $(k=3)$

- \bullet • Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \vee x_j)$, for each $k \in \{1, \ldots, n\}$ we construct the \bullet clauses $(x_i \vee x_j \vee y_k)$ and $(x_i \vee x_j \vee \neg y_k)$
- \bullet Gap remains!
- \bullet • Number of clauses $\approx n^2$

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with $|V| = n$ and $m = O(|V|)$.
Proof: $(k-2)$ Proof: $(k=3)$

- \bullet • Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \vee x_j)$, for each $k \in \{1, \ldots, n\}$ we construct the \bullet clauses $(x_i \vee x_j \vee y_k)$ and $(x_i \vee x_j \vee \neg y_k)$
- \bullet Gap remains!
- \bullet • Number of clauses $\approx n^2$

Reduction similar for $k > 3$

In English: Our sample size is optimal. For density n^{δ} we need time $2^{n^{1-\delta}}$

Starting Point: Max Cut is "APX-ETH"-hard on instances with $|V| = n$ and $|E| = O(|V|)$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

- \bullet A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
If we assume deleteration $\frac{\Delta |V'|}{\Delta}$ there \bullet
- If we cound do better than $2^{|V'|/\Delta}$ then \neg ETH \bullet

Theorem: Assuming ETH, for all $\delta \in (0,1)$, $\exists r < 1$ s.t. $\forall \epsilon > 0$ no algorithm can r-approximate Max Cut with $|E| = n^{1+\delta}$ in time $2^{n^{1-\delta-\epsilon}}$

Starting Point: Max Cut is "APX-ETH"-hard on ⁵-regular instances with $|V| = n$.

- \bullet A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
If we assume deleteration $\frac{\Delta |V'|}{\Delta}$ there \bullet
- If we cound do better than $2^{|V'|/\Delta}$ then \neg ETH \bullet
- \bullet **Bonus:** The two reductions compose! Optimal running times everywhere!

Extensions: ^k**-Densest**

- \bullet • Find k vertices that induce max edges
- \bullet • AKK scheme works for $k = \Theta(n)$
	- \bullet • Reason: Then OPT = $\Theta(n^2)$

Extensions: ^k**-Densest**

- \bullet • Find k vertices that induce max edges
- \bullet • AKK scheme works for $k = \Theta(n)$
	- Reason: Then OPT = $\Theta(n^2)$
- \bullet How to get something for any k ?
- \bullet Simple win/win algorithm
	- If k "large", we can run our algorithm
	- If k "small", brute force $\binom{n}{k}$
- \bullet • Balancing gives $2^{n^{1-\delta/3}\log n/\epsilon^3}$ time for $|E| = n^{1+\delta}$

Extensions: ^k**-Densest**

- \bullet • Find k vertices that induce max edges
- \bullet • AKK scheme works for $k = \Theta(n)$
	- Reason: Then OPT = $\Theta(n^2)$
- \bullet How to get something for any k ?
- \bullet Simple win/win algorithm
	- If k "large", we can run our algorithm
	- If k "small", brute force $\binom{n}{k}$
- \bullet • Balancing gives $2^{n^{1-\delta/3}\log n/\epsilon^3}$ time for $|E| = n^{1+\delta}$
- \bullet Can we do better?

Extensions: 3-Coloring

- \bullet 3-Coloring is in ^P for graphs with large minimum degree
	- •• Dense graphs contain a dominating set of size $O(\log n)$
	- \bullet Guess its coloring
	- Coloring remaining graph is 2-List Coloring (in P) \bullet

Extensions: 3-Coloring

- \bullet 3-Coloring is in ^P for graphs with large minimum degree
	- •• Dense graphs contain a dominating set of size $O(\log n)$
	- \bullet Guess its coloring
	- Coloring remaining graph is 2-List Coloring (in P) •
- \bullet • Can extend this to graphs with minimum degree Δ
	- •• Exists dominating set with size $\frac{n}{\Delta} \log n$
● Guess its coloring
	- •Guess its coloring
	- •. . .

Conclusions

- \bullet Density is ^a crucial parameter for approximating Max-k-CSP
	- •Especially useful in sub-exponential setting
	- Smooth trade-off between performance and generality \bullet
	- \bullet "Tight" bounds
- \bullet Questions:
	- •Other applications?
	- Other interesting sub-exponential approximations? \bullet

Thank you!

