Sub-exponential Approximation Schemes: From Dense to Almost-Sparse

Dimitris Fotakis

Michael Lampis Vangelis Paschos

NTU Athens

Université Paris Dauphine

Nov 5, 2015

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- Satisfiability
- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- Satisfiability

- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time.
 Solution: sub-exponential time.
- Satisfiability

- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time.
 Solution: sub-exponential time.

• Satisfiability

- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time. Solution: **sub**-exponential time.
- Running time 2^{n^c}.
 Question: Is c optimal?
 Use ETH to prove it.

• Satisfiability

- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time. Solution: **sub**-exponential time.
- Running time 2^{n^c}.
 Question: Is c optimal?
 Use ETH to prove it.

• Satisfiability

- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time. Solution: **sub**-exponential time.
- Running time 2^{n^c}.
 Question: Is c optimal?
 Use ETH to prove it.

- Satisfiability
- Lower Bounds
- Tight Results
- Exponential-time Algorithms

Things you will hear in this talk:

- CSPs, Max-Cut, Max-3-SAT,...
 Topic: Approximating Max-k-CSP (k fixed)
- This is hard in polynomial time.
 Solution: sub-exponential time.
- Running time 2^{n^c} . Question: Is c optimal? Use ETH to prove it.

- Satisfiability
- Lower Bounds
- Tight Results
- Exponential-time Algorithms

2/18

• Efficient = Poly-time ('60s)

Jack Edmonds

Juris Hartmanis Richard Stearns

Motivation – Sub-Exponential Approximation

(50 years in a slide)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)

Stephen Cook

Richard Karp Garey& Johnson

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)

Christos Papadimitriou

Sanjeev Arora Johan Håstad

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)
- More than poly-time? Everything ETH-hard ('00s)

Mike Fellows

Russell Impagliazzo Fomin&Kratsch

- Efficient = Poly-time ('60s)
- Everything is NP-hard!(*) ('70s)
- So, we should approximate ('80s)
- Everything is APX-hard!(*) ('90s)
- More than poly-time? Everything ETH-hard ('00s)

Bottom line:

- Most problems hard to solve exactly in $2^{o(n)}$ time
- Most problems hard to approximate in $n^{O(1)}$ time
- \rightarrow Perhaps we can approximate in $2^{o(n)}$ time?

Dead on Arrival?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

Probably won't work

(at least for Max-3-SAT)

Dead on Arrival?

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

Almost-linear PCPs (Moshkovitz& Raz) and P-time hardness (Håstad) give tight inapproximability for Max-3-SAT even for $2^{n^{1-\epsilon}}$ time. (Credit: Dana Moshkovitz)

 Better than 3/2 for TSP, 4/3 for Max-3-DM, 7/8 for Max-3-SAT,..., in sub-exponential time?

If this is the "normal" behavior of APX problems, what's the point of sub-exponential approximation?

- Is this the "normal" behavior?
- What about problems outside APX?
 - E.g., r-approximation in time $2^{n/r}$ for Ind. Set ([Chalermsook, Laekhanukit, Nanongkai '13])
 - *r*-approximation in time $2^{n/r^2}$ for Max Minimal VC $\log(n/r)$ -approximation in time $2^{n/r}$ for ATSP ([Bonnet,L.,Paschos arxiv '15]).
- What else?

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:
- An island of tractability:
- Max-k-CSP admits a PTAS (a (1 ε)-approximation for all ε > 0) for dense instances
- (Arora, Karger, Karpinski '99), (de la Vega '96)

Strategy

- We **cannot** get better than 7/8 for Max-3-SAT in sub-exp time (under ETH).
- We will therefore try to get something else:
- An island of tractability:
- Max-k-CSP admits a PTAS (a (1 ε)-approximation for all ε > 0) for dense instances
- (Arora, Karger, Karpinski '99), (de la Vega '96)

Extending the island:

- We give a version of the AKK scheme which **can handle sparser instances**, at the expense of needing **sub-exponential time**.
- Our scheme provides a smooth trade-off
 - For dense instances we get a PTAS
 - As instances gradually get more sparse, we need more time...
 - ... until our scheme does not work any more

Summary of results

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta} \ln n/\epsilon^3)}$

Summary of results

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta} \ln n/\epsilon^{3})}$
- Note: This includes the AKK PTAS as a special case ($\delta = 1$)
- Advantage: we provide a smooth trade-off from the "easy case" (dense instances) to more general cases

For any $\epsilon > 0$, $\delta \in [0, 1]$ and fixed $k \ge 2$ we have the following:

- Given a Max-*k*-CSP instance with $n^{k-1+\delta}$ constraints
- We can produce a (1ϵ) -approximate solution
- In time $2^{O(n^{1-\delta}\ln n/\epsilon^3)}$
- Note: This includes the AKK PTAS as a special case ($\delta = 1$)
- Advantage: we provide a smooth trade-off from the "easy case" (dense instances) to more general cases
- We will also give some "tight" bounds, ruling out natural possible improvements.

We are given a dense graph for which we want to find a large cut

Randomly select a "sample" of its vertices

Guess their correct partition

For every vertex outside the sample, examine its neighbors in the sample

Greedily set its value depending on this neighborhood

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

- The sample we select has size $O(\log n)$ (hidden constants depend on degree and ϵ)
- \rightarrow running time $n^{O(1)}$ (will try all partitions of sample)

Why this works (intuitively):

- Because graph is dense \rightarrow every vertex outside sample S has many neighbors in S
- \rightarrow examining $N(u) \cap S$ is (whp) a good representation of N(u) in the optimal solution
- If a vertex in $V \setminus S$ has >> 50% of its neighbors on one side in the optimal solution, it will (whp) have >> 50% of its neighbors on that side in S

(de la Vega '96)

General scheme (Max-k-CSP)

Max Cut:

$$\max \sum_{(i,j)\in E} x_i(1-x_j) + x_j(1-x_i)$$

General scheme (Max-k-CSP)

Max-2-SAT:

$$\max \sum_{(i,j)\in C} x_i(1-x_j) + x_j(1-x_i) + x_i x_j$$

General scheme (Max-k-CSP)

Max-3-SAT:

$$\max \sum_{(i,j,k)\in C} x_i(1-x_j)(1-x_k) + (1-x_i)x_j(1-x_k) + \ldots + x_ix_jx_k$$

Max-*k*-CSP:

 $\max p(\vec{x})$

where p() is a degree k polynomial.

The AKK scheme offers a PTAS that finds an assignment almost maximizing p when the polynomial has at least $\Omega(n^k)$ terms.

Max Cut:

$$\max \sum_{(i,j)\in E} x_i(1-x_j) + x_j(1-x_i)$$

Max Cut:

$$\max\sum_{(i,j)} c_{ij} x_i x_j + \sum_i c_i x_i + C$$

Max Cut:

$$\max\sum_i x_i r_i$$

where $r_i(\vec{x} - x_i)$ is the (linear) polynomial of the remaining variables I obtain if I factor out x_i .

Max Cut:

$$\max\sum_i x_i r_i$$

where $r_i(\vec{x} - x_i)$ is the (linear) polynomial of the remaining variables I obtain if I factor out x_i .

Main idea: Estimate the values of the r_i 's using brute force on a small sample.

Max Cut:

$$\max\sum_i x_i r_i$$

s.t.

$$\hat{r}_i - \epsilon n \leq \sum_{j \in N(i)} c_{ij} x_j \leq \hat{r}_i + \epsilon n$$

where \hat{r}_i is the estimate I have for r_i .

This is now a **linear** program.

Max Cut:

$$\max\sum_i x_i r_i$$

Summary of algorithm:

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: Use larger sample

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: Use larger sample

- Suppose graph has average degree $\Delta = n^{\delta}$
- We sample $\frac{n \log n}{\Delta} = n^{1-\delta} \log n$ vertices
- \rightarrow whp $\hat{r}_i \approx r_i$.

- Estimate the r_i values using a sample
 - Need large enough sample to guarantee $\hat{r}_i \approx r_i$
 - This turns $QIP \rightarrow ILP$
- Solve fractional relaxation of ILP
- Round solution

Main idea: **Use larger sample** We are almost done!

- Must prove sample size enough for \hat{r}_i
 - Pitfall: Additive error ϵn no longer negligible!
- Must prove rounding step still works

Don't worry, it all works!

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2^{\sqrt{n}}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2\sqrt{n}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

How about Max-3-SAT?

- In poly time can solve instances with n^3 clauses
- In $2\sqrt{n}$ time can solve instances with ... clauses?

Summary so far k = 2:

- AKK: Average degree $\Omega(n)$, sample of $O(\log n)$ vertices
- Extension: Average degree n^{δ} , sample of $n^{1-\delta} \log n$
- \rightarrow in time $2\sqrt{n}$ can "solve" Max-Cut for $|E| \ge n^{1.5}$

How about Max-3-SAT?

- In poly time can solve instances with n^3 clauses
- In $2^{\sqrt{n}}$ time can solve instances with $n^{2.5}$ clauses

General scheme $k \geq 3$

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP

Note: In order for this to work, all $r_{ij...}$ polynomials must be **dense**

• This is true if original polynomial was dense.

General scheme $k \geq 3$

AKK scheme for $k\geq 3$

- Write $p(\vec{x})$ as $\sum_i x_i r_i$
- Each r_i has degree k-1
- Write $r_i = \sum_j x_j r_{ij}$
- Each r_{ij} has degree k-2
- ...
- Until we get to linear \rightarrow write ILP
- In our scheme, if p has $n^{k-1+\delta}$ terms
- r_i has $n^{k-2+\delta}$ terms
- r_{ij} has $n^{k-3+\delta}$ terms
- ...

It seems that the "right" density to require is $n^{k-1+\delta}$?

General scheme – summary

- Input: Max-*k*-CSP isntance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution

General scheme – summary

- Input: Max-*k*-CSP isntance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution
- Works for any CSP (for fixed k)
- Covers "all instances" for k = 2

General scheme – summary

- Input: Max-*k*-CSP isntance with $n^{k-1+\delta}$ constraints
- Algorithm:
 - Sample $2^{n^{1-\delta}\log n/\epsilon^3}$ variables, guess their value
 - Write CSP as a polynomial optimization problem
 - Estimate non-linear coefficients using sample
 - Solve fractional LP
 - Round solution
- Works for any CSP (for fixed k)
- Covers "all instances" for k = 2

Can we do better?

- Smaller sample/faster running time?
- Handle $k \ge 3$ better?

Summary – with a picture

Summary – with a picture

In English: For density less than n^{k-1} we need exponential time to get $(1 - \epsilon)$ -approximation.

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = n and m = O(|V|).

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = n and m = O(|V|). Proof: (k = 3)

- Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \lor x_j)$, for each $k \in \{1, ..., n\}$ we construct the clauses $(x_i \lor x_j \lor y_k)$ and $(x_i \lor x_j \lor \neg y_k)$
- Gap remains!
- Number of clauses $pprox n^2$

Starting Point: Max-2-SAT is "APX-ETH"-hard on instances with |V| = n and m = O(|V|). Proof: (k = 3)

- Add *n* new variables y_1, \ldots, y_n
- For each clause $(x_i \lor x_j)$, for each $k \in \{1, ..., n\}$ we construct the clauses $(x_i \lor x_j \lor y_k)$ and $(x_i \lor x_j \lor \neg y_k)$
- Gap remains!
- Number of clauses $pprox n^2$

Reduction similar for k > 3

In English: Our sample size is optimal. For density n^{δ} we need time $2^{n^{1-\delta}}$.

Starting Point: Max Cut is "APX-ETH"-hard on instances with |V| = n and |E| = O(|V|).

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

- A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
- If we cound do better than $2^{|V'|/\Delta}$ then $\neg \text{ETH}$

Theorem: Assuming ETH, for all $\delta \in (0,1)$, $\exists r < 1$ s.t. $\forall \epsilon > 0$ no algorithm can *r*-approximate Max Cut with $|E| = n^{1+\delta}$ in time $2^{n^{1-\delta-\epsilon}}$

Starting Point: Max Cut is "APX-ETH"-hard on 5-regular instances with |V| = n.

- A constant gap remains for any Δ
- $|V'| = n\Delta$, $|E| = n\Delta^2$, Avg. degree $= \Delta$
- If we cound do better than $2^{|V'|/\Delta}$ then $\neg \text{ETH}$
- **Bonus:** The two reductions compose! Optimal running times everywhere!

Extensions: *k***-Densest**

- Find k vertices that induce max edges
- AKK scheme works for $k = \Theta(n)$
 - Reason: Then $OPT = \Theta(n^2)$

Sub-Exponential Approximation Schemes

Extensions: *k***-Densest**

- Find k vertices that induce max edges
- AKK scheme works for $k = \Theta(n)$
 - Reason: Then $OPT = \Theta(n^2)$
- How to get something for any k?
- Simple win/win algorithm
 - If k "large", we can run our algorithm
 - If k "small", brute force $\binom{n}{k}$
- Balancing gives $2^{n^{1-\delta/3}\log n/\epsilon^3}$ time for $|E| = n^{1+\delta}$

Extensions: *k***-Densest**

- Find k vertices that induce max edges
- AKK scheme works for $k = \Theta(n)$
 - Reason: Then $OPT = \Theta(n^2)$
- How to get something for any k?
- Simple win/win algorithm
 - If k "large", we can run our algorithm
 - If k "small", brute force $\binom{n}{k}$
- Balancing gives $2^{n^{1-\delta/3}\log n/\epsilon^3}$ time for $|E| = n^{1+\delta}$
- Can we do better?

Sub-Exponential Approximation Schemes

Extensions: 3-Coloring

- 3-Coloring is in P for graphs with large minimum degree
 - Dense graphs contain a dominating set of size $O(\log n)$
 - Guess its coloring
 - Coloring remaining graph is 2-List Coloring (in P)

Extensions: 3-Coloring

- 3-Coloring is in P for graphs with large minimum degree
 - Dense graphs contain a dominating set of size $O(\log n)$
 - Guess its coloring
 - Coloring remaining graph is 2-List Coloring (in P)
- Can extend this to graphs with minimum degree Δ
 - Exists dominating set with size $\frac{n}{\Delta} \log n$
 - Guess its coloring
 - • •

Conclusions

- Density is a crucial parameter for approximating Max-k-CSP
 - Especially useful in sub-exponential setting
 - Smooth trade-off between performance and generality
 - "Tight" bounds
- Questions:
 - Other applications?
 - Other interesting sub-exponential approximations?

Thank you!

Sub-Exponential Approximation Schemes