Subexponential parameterized complexity of completion problems Survey of the upper bounds

Marcin Pilipczuk

University of Warsaw

4th Nov 2015

• An input graph: a result of an experiment.

- An input graph: a result of an experiment.
- Theory: result should have some property.

- An input graph: a result of an experiment.
- Theory: result should have some property.
- Modification: error in our measurments.

- An input graph: a result of an experiment.
- Theory: result should have some property.
- Modification: error in our measurments.
- A few errors \Rightarrow #modifications as a parameter.

completion = only edge insertions are allowed

completion = only edge insertions are allowed

 $\mathcal{G} \ \ COMPLETION \\ \text{obtain a graph} \in \mathcal{G}$

 ${\rm completion} = {\rm only} \; {\rm edge} \; {\rm insertions} \; {\rm are} \; {\rm allowed} \;$

 ${\mathcal G}$ COMPLETION obtain a graph $\in {\mathcal G}$

 $\label{eq:F-COMPLETION} \mathcal{F}\text{-}\mathrm{COMPLETION}$ kill all induced subgraphs $\in \mathcal{F}$

completion = only edge insertions are allowed

 \mathcal{G} COMPLETION obtain a graph $\in \mathcal{G}$

 $\label{eq:F-COMPLETION} \begin{aligned} \mathcal{F}\text{-}\mathrm{COMPLETION} \\ \text{kill all induced subgraphs} \in \mathcal{F} \end{aligned}$

Side note: no known P vs NP dichotomy for completion problems.

Interesting classes for completion

measure(G) $\simeq \min\{\omega(H) : H \in \mathcal{G} \text{ and } H \text{ is a completion of } G\}.$

In this talk we mostly focus on f(k)in the FPT running time $f(k)n^{\mathcal{O}(1)}$.

We denote $\mathcal{O}^*(f(k)) = f(k)n^{\mathcal{O}(1)}$.

Split Completion

 $\{2K_2, C_4, C_5\}$ -Completion

Split Completion

 $\{2K_2, C_4, C_5\}$ -Completion

Theorem (Cai, IPL'96)

A simple branching strategy $\Rightarrow \mathcal{O}^*(c^k)$ FPT algorithm

Split Completion

 $\{2K_2, C_4, C_5\}$ -Completion

Theorem (Cai, IPL'96)

A simple branching strategy $\Rightarrow \mathcal{O}^*(c^k)$ FPT algorithm

Works also for: CO-CLUSTER, COGRAPH, THRESHOLD, PSEUDOSPLIT, ...

CHORDAL COMPLETION

CHORDAL COMPLETION

CHORDAL COMPLETION

CHORDAL COMPLETION

CHORDAL COMPLETION

 $\{C_4, C_5, C_6, \ldots\}$ -Completion

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

Large hole

 \Rightarrow many options but big cost (Catalan number $C_{\ell-2}$ for $\ell-3$ edges)

 $\Rightarrow \mathcal{O}^*(4^k)$ branching.

CHORDAL COMPLETION

 $\{C_4, C_5, C_6, \ldots\}$ -Completion

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

Large hole

 \Rightarrow many options but big cost (Catalan number $C_{\ell-2}$ for $\ell-3$ edges) $\Rightarrow \mathcal{O}^*(4^k)$ branching.

Gives also $\mathcal{O}^*(c^k)$ FPT algorithm for PROPER INTERVAL COMPLETION, as CHORDAL \longrightarrow PROPER INTERVAL means killing $\{S_3, \text{claw}, \text{net}\}$.

INTERVAL COMPLETION

 $\{ holes, ATs \}\text{-}COMPLETION$

INTERVAL COMPLETION

 ${\rm holes, ATs}$ -Completion

Long-standing open problem for more than a decade.

Long-standing open problem for more than a decade.

Theorem (Villanger, Heggernes, Paul, Telle, SICOMP'09)

Branching still doable! An $\mathcal{O}^*(k^{2k})$ FPT algorithm.

Theorem (Cao, SODA'16)

Can be solved in $\mathcal{O}(c^k(n+m))$ time.

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION admit polynomial kernels.

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC'09)

There is a finite \mathcal{F} such that \mathcal{F} -COMPLETION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$.

Theorem (Kaplan, Shamir, Tarjan, SICOMP'99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC'09)

There is a finite \mathcal{F} such that \mathcal{F} -COMPLETION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica'13)

COGRAPH COMPLETION admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.'13)

PROPER INTERVAL COMPLETION admits a polynomial kernel.

${\mathcal G}$ Completion

$\mathcal{F} ext{-}\mathrm{COMPLETION}$

 ${\cal G}$ Completion

 $\mathcal{F} ext{-}\mathrm{COMPLETION}$

Fomin, Villanger, SODA'12: think positively!

 \mathcal{G} Completion

 $\mathcal{F} ext{-}\mathrm{COMPLETION}$

Fomin, Villanger, SODA'12: think positively!

Theorem (Fomin, Villanger, SODA'12)

CHORDAL COMPLETION can be solved in time $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$.

Fomin, Villanger, SODA'12: think positively!

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

Strategy:

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

Strategy:

Apply known polynomial kernel.
Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

- Apply known polynomial kernel.
- **2** Identify and enumerate $2^{o(k)}$ candidates for crucial structures in G.

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

- Apply known polynomial kernel.
- **2** Identify and enumerate $2^{o(k)}$ candidates for crucial structures in G.
 - crucial structure \simeq a maximal clique;

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

- Apply known polynomial kernel.
- **2** Identify and enumerate $2^{o(k)}$ candidates for crucial structures in G.
 - crucial structure \simeq a maximal clique;
 - often $n^{\mathcal{O}(\sqrt{k})}$ candidate structures; with poly kernel $\Rightarrow 2^{o(k)}$ bound

Fomin, Villanger, SODA'12: think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are $2^{o(k)}$ reasonable 'partial structures', and hence $2^{o(k)}$ reasonable DP states.

- Apply known polynomial kernel.
- **2** Identify and enumerate $2^{o(k)}$ candidates for crucial structures in *G*.
 - crucial structure \simeq a maximal clique;
 - often $n^{\mathcal{O}(\sqrt{k})}$ candidate structures; with poly kernel $\Rightarrow 2^{o(k)}$ bound

Look at the bright side!

Look at the bright side!

crucial structure = maximal clique

crucial structure = maximal clique / minimal clique separator

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate $k^{\mathcal{O}(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{\mathcal{O}(\sqrt{k})}$ branching.

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate $k^{O(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{O(\sqrt{k})}$ branching.

DP state = clique separator Ω + one connected component C of $G \setminus \Omega$, value = minimum completion of $G[C \cup \Omega]$ that cliquifies Ω .

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate $k^{O(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{O(\sqrt{k})}$ branching.

DP state = clique separator Ω +

one connected component C of $G \setminus \Omega$,

value = minimum completion of $G[\mathcal{C} \cup \Omega]$ that cliquifies Ω .

Corollary: CHAIN COMPLETION in $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ time.

One can either enumerate $k^{\mathcal{O}(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{\mathcal{O}(\sqrt{k})}$ branching.

One can either enumerate $k^{\mathcal{O}(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{\mathcal{O}(\sqrt{k})}$ branching.

• Multiple-step, involved combinatorial analysis.

One can either enumerate $k^{\mathcal{O}(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{\mathcal{O}(\sqrt{k})}$ branching.

- Multiple-step, involved combinatorial analysis.
- Will give a flavour on the INTERVAL COMPLETION case.

One can either enumerate $k^{\mathcal{O}(\sqrt{k})}$ candidate maximal cliques and candidate clique separators, or perform a $k^{\mathcal{O}(\sqrt{k})}$ branching.

- Multiple-step, involved combinatorial analysis.
- Will give a flavour on the INTERVAL COMPLETION case.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are $n^{\mathcal{O}(\sqrt{k})}$ reasonable candidates for maximal cliques in the INTERVAL COMPLETION case.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems

cheap $v = \text{at most } \sqrt{k}$ incident solution edges. $c_1 := \text{last ending cheap before } \Omega$ $c_2 := \text{first starting cheap after } \Omega$

- **cheap** $v = \text{at most } \sqrt{k}$ incident solution edges.
- $c_1 := last ending cheap before <math>\Omega$
- $c_2 :=$ first starting cheap after Ω

cheap $v = \text{at most } \sqrt{k}$ incident solution edges.

- $c_1 :=$ last ending cheap before Ω
- $c_2 :=$ first starting cheap after Ω

Why $x \in \Omega$?

x has left end before Ω because some $y \in N_G(x)$ has right end before Ω .

cheap v = at most \sqrt{k} incident solution edges.

 $c_1 :=$ last ending cheap before Ω

 $c_2 :=$ first starting cheap after Ω

Why $x \in \Omega$?

x has left end before Ω because some $y \in N_G(x)$ has right end before Ω .

 $y \in N_G(x)$ for some y with right end before $\Omega \Rightarrow x \in N_G(v_1) \cup N_G(\$_1) \cup N_{G+F}(c_1)$.

Lemma

 $\Omega = (N_G[v_1] \cup N_G(\$_1) \cup N_{G+F}(c_1)) \cap (N_G[v_2] \cup N_G(\$_2) \cup N_{G+F}(c_2)).$

Lemma

 $\Omega = (N_G[v_1] \cup N_G(\$_1) \cup N_{G+F}(c_1)) \cap (N_G[v_2] \cup N_G(\$_2) \cup N_{G+F}(c_2)).$

There are $n^{\mathcal{O}(\sqrt{k})}$ choices for:

- *v*₁, *v*₂, *c*₁, *c*₂;
- 1_1 and 1_1 , as there are of size $\mathcal{O}(\sqrt{k})$;
- solution edges incident to c_1 and c_2 , as both c_1 and c_2 are cheap.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are $n^{\mathcal{O}(\sqrt{k})}$ reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are $n^{\mathcal{O}(\sqrt{k})}$ reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

For any vertex v, there are $k^{\mathcal{O}(t+\sqrt{k})}n^{\mathcal{O}(1)}$ reasonable ways to choose completion edges incident to v, as long as there are at most t of them^{*}.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are $n^{\mathcal{O}(\sqrt{k})}$ reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

For any vertex v, there are $k^{\mathcal{O}(t+\sqrt{k})}n^{\mathcal{O}(1)}$ reasonable ways to choose completion edges incident to v, as long as there are at most t of them^{*}.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are $k^{\mathcal{O}(\sqrt{k})}n^8$ reasonable candidates for maximal cliques^{*}.

* or we can reduce something.

Problem 2: history is hard to deduce!

Solution: make much more complicated DP states.
Theorem (Ghosh, Kolay, Kumar, Misra, Panolan, Rai, Ramanujan, SWAT'12)

An $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ algorithm for Split Completion via chromatic coding.

Theorem (Ghosh, Kolay, Kumar, Misra, Panolan, Rai, Ramanujan, SWAT'12)

An $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ algorithm for SPLIT COMPLETION via chromatic coding.

Theorem (Drange, Fomin, Pilipczuk, Villanger, STACS'14)

 $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ algorithms for:

- TRIVIALLY PERFECT COMPLETION,
- THRESHOLD COMPLETION
 via chromatic coding + reduction to CHAIN COMPLETION,
- PSEUDOSPLIT COMPLETION similarly as SPLIT COMPLETION.

CHORDAL CHAIN SPLIT TRIVIALLY PERFECT THRESHOLD PSEUDOSPLIT INTERVAL PROPER INTERVAL $\begin{array}{l} \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})\\ \mathcal{O}^*(k^{\mathcal{O}(k^{2/3})}) \end{array}$

[FV, SODA'12] [FV, SODA'12] [GKKMPRR, SWAT'12] [DMPV, STACS'14] [DMPV, STACS'14] [DMPV, STACS'14] [BFPP, SODA'16] [BFPP, ESA'14]

Chordal	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[FV, SODA'12]
Chain	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[FV, SODA'12]
Split	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[GKKMPRR, SWAT'12]
TRIVIALLY PERFECT	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[DMPV, STACS'14]
Threshold	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[DMPV, STACS'14]
Pseudosplit	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[DMPV, STACS'14]
INTERVAL	$\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$	[BFPP, SODA'16]
Proper Interval	$\mathcal{O}^*(k^{\mathcal{O}(k^{2/3})})$	[BFPP, ESA'14]
Co-cluster	ETH-hard	[KU, DAM'12]
Cograph	ETH-hard	[DMPV, STACS'14]
Co-Trivially Perfect	ETH-hard	[DMPV, STACS'14]

• Can you get time $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ for PROPER INTERVAL COMPLETION?

- Can you get time $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ for PROPER INTERVAL COMPLETION?
- Does INTERVAL COMPLETION admit a polynomial kernel?

- Can you get time $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ for PROPER INTERVAL COMPLETION?
- Does INTERVAL COMPLETION admit a polynomial kernel?
- Can you provide $2^{\Omega(\sqrt{k})}$ lower bounds under ETH?
 - An $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{k})})$ -time algorithm for one of the problems?
 - An $\mathcal{O}^*(2^{o(\sqrt{k})})$ -time algorithm seems hard, as it gives $2^{o(n)}$ bound.

- Can you get time $\mathcal{O}^*(k^{\mathcal{O}(\sqrt{k})})$ for PROPER INTERVAL COMPLETION?
- Does INTERVAL COMPLETION admit a polynomial kernel?
- Can you provide $2^{\Omega(\sqrt{k})}$ lower bounds under ETH?
 - An $\mathcal{O}^*(2^{\mathcal{O}(\sqrt{k})})$ -time algorithm for one of the problems?
 - An $\mathcal{O}^*(2^{o(\sqrt{k})})$ -time algorithm seems hard, as it gives $2^{o(n)}$ bound.
- Is there any meta-explanation why there are subexponential algorithms for this family of problems?

Summary diagram

