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Graph modification problems

An input graph: a result of an experiment.

Theory: result should have some property.

Modification: error in our measurments.

A few errors ⇒ #modifications as a parameter.
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Completions

completion = only edge insertions are allowed

G Completion F-Completion
obtain a graph ∈ G kill all induced subgraphs ∈ F

Side note: no known P vs NP dichotomy for completion problems.
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Interesting classes for completion

threshold

trivially perfect
proper
interval

interval

chordal

⊆
⊆

⊆

⊇

vertex cover

treedepth bandwidth

pathwidth

treewidth

≥
≥

≥

≤

measure(G ) ' min{ω(H) : H ∈ G and H is a completion of G}.
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Disclaimer

In this talk we mostly focus on f (k)

in the FPT running time f (k)nO(1).

We denote O∗(f (k)) = f (k)nO(1).
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Finite set F

Split Completion {2K2,C4,C5}-Completion

Theorem (Cai, IPL’96)

A simple branching strategy ⇒ O∗(ck) FPT algorithm

Works also for:
Co-cluster, Cograph, Threshold, Pseudosplit, . . .
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Chordal completion

Chordal Completion {C4,C5,C6, . . .}-Completion

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Large hole
⇒ many options but big cost (Catalan number C`−2 for `− 3 edges)
⇒ O∗(4k) branching.

Gives also O∗(ck) FPT algorithm for Proper Interval Completion,
as Chordal −→ Proper Interval means killing {S3, claw,net}.
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Interval completion

Interval Completion {holes,ATs}-Completion

Long-standing open problem for more than a decade.

Theorem (Villanger, Heggernes, Paul, Telle, SICOMP’09)

Branching still doable! An O∗(k2k) FPT algorithm.

Theorem (Cao, SODA’16)

Can be solved in O(ck(n + m)) time.
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Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Chordal Completion admits a polynomial kernel.

Theorem (Guo, ISAAC’07)

Chain, Split, Threshold and Trivially Perfect Completion
admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC’09)

There is a finite F such that F-Completion does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica’13)

Cograph Completion admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.’13)

Proper Interval Completion admits a polynomial kernel.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems 9/22



Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Chordal Completion admits a polynomial kernel.

Theorem (Guo, ISAAC’07)

Chain, Split, Threshold and Trivially Perfect Completion
admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC’09)

There is a finite F such that F-Completion does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica’13)

Cograph Completion admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.’13)

Proper Interval Completion admits a polynomial kernel.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems 9/22



Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Chordal Completion admits a polynomial kernel.

Theorem (Guo, ISAAC’07)

Chain, Split, Threshold and Trivially Perfect Completion
admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC’09)

There is a finite F such that F-Completion does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica’13)

Cograph Completion admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.’13)

Proper Interval Completion admits a polynomial kernel.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems 9/22



Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Chordal Completion admits a polynomial kernel.

Theorem (Guo, ISAAC’07)

Chain, Split, Threshold and Trivially Perfect Completion
admit polynomial kernels.

Theorem (Kratsch, Wahlström, IWPEC’09)

There is a finite F such that F-Completion does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica’13)

Cograph Completion admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.’13)

Proper Interval Completion admits a polynomial kernel.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems 9/22



Look at the bright side!

G Completion F-Completion

Fomin, Villanger, SODA’12:
think positively!

Theorem (Fomin, Villanger, SODA’12)

Chordal Completion can be solved in time O∗(kO(
√
k)).
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Look at the bright side!

Fomin, Villanger, SODA’12:
think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are 2o(k) reasonable ‘partial structures’, and hence
2o(k) reasonable DP states.

Strategy:

1 Apply known polynomial kernel.
2 Identify and enumerate 2o(k) candidates for crucial structures in G .

crucial structure ' a maximal clique;

often nO(
√

k) candidate structures; with poly kernel ⇒ 2o(k) bound

3 Candidate structure −→ DP state.
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Look at the bright side!

threshold

O∗
(
kO(
√

k)
)

trivially perfect

O∗
(
kO(
√
k)
)

proper interval

O∗
(
kO(k2/3)

)

interval

O∗
(
kO(
√

k)
)

chordal

O∗
(
kO(
√

k)
)

⊆
⊆

⊆

⊇
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Chordal completion

crucial structure = maximal clique

/ minimal clique separator

Theorem (Fomin, Villanger, SODA’12)

One can either enumerate kO(
√
k) candidate maximal cliques and

candidate clique separators, or perform a kO(
√
k) branching.

DP state = clique separator Ω +

one connected component C of G \ Ω,

value = minimum completion of G [C ∪ Ω] that cliquifies Ω.

Corollary: Chain Completion in O∗(kO(
√
k)) time.
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Enumerating potential maximal cliques

Theorem (Fomin, Villanger, SODA’12)

One can either enumerate kO(
√
k) candidate maximal cliques and

candidate clique separators, or perform a kO(
√
k) branching.

Multiple-step, involved combinatorial analysis.

Will give a flavour on the Interval Completion case.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are nO(
√
k) reasonable candidates for maximal cliques in the

Interval Completion case.
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Maximal cliques in Interval Completion

v1

v2

Ω

c1 c2

at most 2
√

k right ends

call them $1

at most 2
√

k left ends
call them $2

x
y

cheap v = at most
√
k incident solution edges.

c1 := last ending cheap before Ω

c2 := first starting cheap after Ω

Why x ∈ Ω?

x has left end before Ω because some y ∈ NG (x) has right end before Ω.

y ∈ NG (x) for some y with right end before Ω ⇒
x ∈ NG (v1) ∪ NG ($1) ∪ NG+F (c1).
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y ∈ NG (x) for some y with right end before Ω ⇒
x ∈ NG (v1) ∪ NG ($1) ∪ NG+F (c1).
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√
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Interval Completion

Problem 1: no known polynomial kernel!

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are nO(
√
k) reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

For any vertex v, there are kO(t+
√
k)nO(1) reasonable ways to choose

completion edges incident to v, as long as there are at most t of them?.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are kO(
√
k)n8 reasonable candidates for maximal cliques?.

? or we can reduce something.
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Interval Completion

Problem 2: history is hard to deduce!

Solution: make much more complicated DP states.
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More completions

Theorem (Ghosh, Kolay, Kumar, Misra, Panolan, Rai, Ramanujan,
SWAT’12)

An O∗(kO(
√
k)) algorithm for Split Completion via chromatic coding.

Theorem (Drange, Fomin, Pilipczuk, Villanger, STACS’14)

O∗(kO(
√
k)) algorithms for:

1 Trivially Perfect Completion,

2 Threshold Completion
via chromatic coding + reduction to Chain Completion,

3 Pseudosplit Completion
similarly as Split Completion.
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Summary

Chordal O∗(kO(
√
k)) [FV, SODA’12]

Chain O∗(kO(
√
k)) [FV, SODA’12]

Split O∗(kO(
√
k)) [GKKMPRR, SWAT’12]

Trivially Perfect O∗(kO(
√
k)) [DMPV, STACS’14]

Threshold O∗(kO(
√
k)) [DMPV, STACS’14]

Pseudosplit O∗(kO(
√
k)) [DMPV, STACS’14]

Interval O∗(kO(
√
k)) [BFPP, SODA’16]

Proper Interval O∗(kO(k2/3)) [BFPP, ESA’14]

Co-cluster ETH-hard [KU, DAM’12]
Cograph ETH-hard [DMPV, STACS’14]
Co-Trivially Perfect ETH-hard [DMPV, STACS’14]
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Open problems

Can you get time O∗(kO(
√
k)) for Proper Interval

Completion?

Does Interval Completion admit a polynomial kernel?

Can you provide 2Ω(
√
k) lower bounds under ETH?

An O∗(2O(
√
k))-time algorithm for one of the problems?

An O∗(2o(
√

k))-time algorithm seems hard, as it gives 2o(n) bound.

Is there any meta-explanation why there are subexponential
algorithms for this family of problems?
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Summary diagram

threshold
O∗

(
kO(
√
k)
)

trivially perfect

O∗
(
kO(
√
k)
) proper interval

O∗
(
kO(k2/3)

)

interval

O∗
(
kO(
√
k)
)

chordal

O∗
(
kO(
√

k)
)

⊆
⊆

⊆

⊇

Questions?
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