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Graph modification problems

@ An input graph: a result of an experiment.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems



Graph modification problems

@ An input graph: a result of an experiment.
@ Theory: result should have some property.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems



Graph modification problems

@ An input graph: a result of an experiment.
@ Theory: result should have some property.

@ Modification: error in our measurments.

Marcin Pilipczuk Subexponential parameterized complexity of completion problems



Graph modification problems

@ An input graph: a result of an experiment.
@ Theory: result should have some property.
@ Modification: error in our measurments.

o A few errors = #modifications as a parameter.
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Completions

completion = only edge insertions are allowed
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Completions

completion = only edge insertions are allowed

G COMPLETION F-COMPLETION
obtain a graph € G kill all induced subgraphs € F

Side note: no known P vs NP dichotomy for completion problems.
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Interesting classes for completion

threshold vertex cover
trivially perfect proper treedepth bandwidth
interval
Z

n / v

interval pathwidth
IN v

chordal treewidth

measure(G) ~ min{w(H) : H € G and H is a completion of G}.
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Disclaimer

In this talk we mostly focus on f(k)
in the FPT running time f(k)n®®).

We denote O*(f(k)) = f(k)n®W).
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SpLIT COMPLETION {2K3, G4, G5 }-COMPLETION
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Finite set F

SpLIT COMPLETION {2K3, G4, G5 }-COMPLETION

Theorem (Cai, IPL'96)

A simple branching strategy = O*(c*) FPT algorithm
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Finite set F

SpLIT COMPLETION {2K3, G4, G5 }-COMPLETION

Theorem (Cai, IPL'96)

A simple branching strategy = O*(c*) FPT algorithm

Works also for:
CO-CLUSTER, COGRAPH, THRESHOLD, PSEUDOSPLIT, ...
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Chordal completion

CHORDAL COMPLETION {C, Gs, G, .. .}-COMPLETION
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Chordal completion

CHORDAL COMPLETION {C4, G, Gg, .. .}-COMPLETION

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Large hole
= many options but big cost (Catalan number Cy_, for £ — 3 edges)
= O0*(4k) branching.
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Chordal completion

CHORDAL COMPLETION {C4, G, Gg, .. .}-COMPLETION

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

Large hole
= many options but big cost (Catalan number Cy_, for £ — 3 edges)
= O0*(4k) branching.

Gives also O*(ck) FPT algorithm for PROPER INTERVAL COMPLETION,
as CHORDAL — PROPER INTERVAL means killing {S3, claw, net}.
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Interval completion

INTERVAL COMPLETION {holes, ATs}-COMPLETION
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Interval completion

INTERVAL COMPLETION {holes, ATs}-COMPLETION

Long-standing open problem for more than a decade.
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Interval completion

INTERVAL COMPLETION {holes, ATs}-COMPLETION

Long-standing open problem for more than a decade.

Theorem (Villanger, Heggernes, Paul, Telle, SICOMP’'09)

Branching still doable! An O*(k2<) FPT algorithm.

Theorem (Cao, SODA'16)
Can be solved in O(c(n+ m)) time.
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Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

CHORDAL COMPLETION admits a polynomial kernel.
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Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION
admit polynomial kernels.
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Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION
admit polynomial kernels.

Theorem (Kratsch, Wahlstrém, IWPEC'09)

There is a finite F such that F-COMPLETION does not admit a
polynomial kernel unless NP C coNP /poly.
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Polynomial kernels

Theorem (Kaplan, Shamir, Tarjan, SICOMP’99)

CHORDAL COMPLETION admits a polynomial kernel.

Theorem (Guo, ISAAC'07)

CHAIN, SPLIT, THRESHOLD and TRIVIALLY PERFECT COMPLETION
admit polynomial kernels.

Theorem (Kratsch, Wahlstrém, IWPEC'09)

There is a finite F such that F-COMPLETION does not admit a
polynomial kernel unless NP C coNP /poly.

Theorem (Guillemot, Havet, Paul, Perez, Algorithmica'13)

CoGrAPH COMPLETION admits a polynomial kernel.

Theorem (Bessy, Perez, Inf. Comp.'13)
PROPER INTERVAL COMPLETION admits a polynomial kernel.
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Look at the bright side!

G COMPLETION F-COMPLETION
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Look at the bright side!
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Fomin, Villanger, SODA'12:
think positively!
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Look at the bright side!

G COMPLETION F-COMPLETION

Fomin, Villanger, SODA'12:
think positively!

Theorem (Fomin, Villanger, SODA'12)

CHORDAL COMPLETION can be solved in time O*(kO(VK)).
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Look at the bright side!

Fomin, Villanger, SODA'12:
think positively!
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think positively!

Build the structure of (G + completion) by dynamic programming.
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Look at the bright side!

Fomin, Villanger, SODA'12:
think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are 2°(%) reasonable ‘partial structures’, and hence
2°(k) reasonable DP states.
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Fomin, Villanger, SODA'12:
think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are 2°(%) reasonable ‘partial structures’, and hence
2°(K) reasonable DP states.

Strategy:
@ Apply known polynomial kernel.
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Look at the bright side!

Fomin, Villanger, SODA'12:
think positively!

Build the structure of (G + completion) by dynamic programming.

Key observation: there are 2°(%) reasonable ‘partial structures’, and hence
2°(K) reasonable DP states.

Strategy:

@ Apply known polynomial kernel.

@ Identify and enumerate 2°(%) candidates for crucial structures in G.
e crucial structure ~ a maximal clique;
o often n"®VK candidate structures; with poly kernel = 2°() bound

© Candidate structure — DP state.
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Look at the bright side!

threshold

|r

trivially perfect proper interval

chordal
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Look at the bright side!

threshold
o* (kO(\/E))

|r

trivially perfect proper interval
O (ko(\/E)> O (ko(k2/3)>

>
\

chordal
oO* (ko(ﬁ))
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Chordal completion

E— N

crucial structure = maximal clique
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Chordal completion

E— N

crucial structure = maximal clique / minimal clique separator
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Chordal completion

E— N

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate k®V%) candidate maximal cligues and
candidate clique separators, or perform a KOk branching.
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Chordal completion

E— N

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate k®V%) candidate maximal cligues and
candidate clique separators, or perform a KOk branching.

DP state = clique separator Q +
of G\ Q,

value = minimum completion of G[C U Q] that cliquifies Q.
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Chordal completion

E— N

crucial structure = maximal clique / minimal clique separator

Theorem (Fomin, Villanger, SODA'12)

One can either enumerate k®V%) candidate maximal cligues and
candidate clique separators, or perform a KOk branching.

DP state = clique separator Q +
of G\ Q,

value = minimum completion of G[C U Q] that cliquifies Q.

Corollary: CHAIN COMPLETION in O*(k(VA)) time.
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Enumerating potential maximal cliques

Theorem (Fomin, Villanger, SODA’12)

One can either enumerate k°(V®) candidate maximal cliques and
candidate clique separators, or perform a KOWK) branching.
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Enumerating potential maximal cliques

Theorem (Fomin, Villanger, SODA’12)

One can either enumerate k°(V®) candidate maximal cliques and
candidate clique separators, or perform a KOWK) branching.

@ Multiple-step, involved combinatorial analysis.
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Theorem (Fomin, Villanger, SODA’12)

One can either enumerate k°(V®) candidate maximal cliques and
candidate clique separators, or perform a KOWK) branching.

@ Multiple-step, involved combinatorial analysis.
e Will give a flavour on the INTERVAL COMPLETION case.
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Enumerating potential maximal cliques

Theorem (Fomin, Villanger, SODA’12)

One can either enumerate k°(V®) candidate maximal cliques and
candidate clique separators, or perform a KOWK) branching.

@ Multiple-step, involved combinatorial analysis.
e Will give a flavour on the INTERVAL COMPLETION case.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are n®V¥) reasonable candidates for maximal cliques in the
INTERVAL COMPLETION case.
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Maximal cliques in Interval Completion
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Maximal cliques in Interval Completion

V2

Vi
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Maximal cliques in Interval Completion

V2

Vi
C1 (]

cheap v = at most vk incident solution edges.
c1 := last ending cheap before Q
¢ := first starting cheap after Q
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Maximal cliques in Interval Completion

V2
V1
C1 ()
at most 2v/k right ends at most 2v/k left ends
call them $; call them $5

cheap v = at most vk incident solution edges.
c1 := last ending cheap before Q
¢ := first starting cheap after Q
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Maximal cliques in Interval Completion

Q
V2
Vi
C1 (&)
X
— Y _
at most 2v/k right ends at most 2v/k left ends
call them $; call them $5

cheap v = at most vk incident solution edges.

c1 := last ending cheap before Q

¢ := first starting cheap after Q

Why x € Q7?

x has left end before Q because some y € Ng(x) has right end before Q.
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Maximal cliques in Interval Completion

Q
V2
Vi
C1 (&)
X
— Y _
at most 2v/k right ends at most 2v/k left ends
call them $; call them $5

cheap v = at most vk incident solution edges.

c1 := last ending cheap before Q

¢ := first starting cheap after Q

Why x € Q7?

x has left end before Q because some y € Ng(x) has right end before Q.
y € Ng(x) for some y with right end before Q =

X € NG(Vl) U N(;($1) U NG+F(C1).
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Maximal cliques in Interval Completion

Q
V2
Vi
C1 (]
X
— Y _
at most 2v/k right ends at most 2v/k left ends
call them $; call them $o

Q= (NG[V1] U NG($1) U NG+F(C1)) n (NG[V2] U NG($2) U NG+F(C2)).
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Maximal cliques in Interval Completion

Q
V2
Vi
C1 (]
X
— Y _
at most 2v/k right ends at most 2v/k left ends
call them $; call them $o

Q= (NG[V1] U NG($1) U NG+F(C1)) n (NG[V2] U NG($2) U NG+F(C2)).

There are n®(Y¥) choices for:
@ v, W, C1, O
e $; and $;, as there are of size O(ﬁ);
@ solution edges incident to ¢; and ¢, as both ¢; and ¢, are cheap.
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Interval Completion
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Interval Completion

Problem 1: no known polynomial kernel!
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Interval Completion

Problem 1: no known polynomial kernel!

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are n®V) reasonable candidates for maximal cliques.
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Interval Completion

Problem 1: no known polynomial kernel!

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are n®V) reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

For any vertex v, there are KO+VI) nOM) reasonable ways to choose
completion edges incident to v, as long as there are at most t of them™.
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Interval Completion

Problem 1: no known polynomial kernel!

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are n®V) reasonable candidates for maximal cliques.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

For any vertex v, there are KO+VI) nOM) reasonable ways to choose
completion edges incident to v, as long as there are at most t of them™.

Theorem (Bliznets, Fomin, P., Pilipczuk, 2014)

There are k°VK)n® reasonable candidates for maximal cliques*.

* or we can reduce something.
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Interval Completion

Problem 2: history is hard to deduce!
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Interval Completion
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Problem 2: history is hard to deduce!
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Interval Completion
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=
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Problem 2: history is hard to deduce!
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Interval Completion

=

EIE‘

=
=

Problem 2: history is hard to deduce!

Solution: make much more complicated DP states.
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More completions

Theorem (Ghosh, Kolay, Kumar, Misra, Panolan, Rai, Ramanujan,

SWAT'12)

An O*(k®VK)) algorithm for SPLIT COMPLETION via chromatic coding.
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More completions

Theorem (Ghosh, Kolay, Kumar, Misra, Panolan, Rai, Ramanujan,

SWAT'12)

An O*(k°K) algorithm for SPLIT COMPLETION via chromatic coding.

Theorem (Drange, Fomin, Pilipczuk, Villanger, STACS'14)

O* (kR algorithms for:
©@ TRIVIALLY PERFECT COMPLETION,

@ THRESHOLD COMPLETION
via chromatic coding + reduction to CHAIN COMPLETION,

© PSEUDOSPLIT COMPLETION
similarly as SPLIT COMPLETION.
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CHORDAL

CHAIN

SPLIT

TRIVIALLY PERFECT
THRESHOLD
PseEuDOSPLIT
INTERVAL

PROPER INTERVAL

O*(k°VR)) | [FV, SODA'12]
O*(kOWR)Y | [FV, SODA'12]
O*(k°VR) | [GKKMPRR, SWAT'12]
O*(k°VR)) | [DMPV, STACS'14]
O*(k°VR)) | [DMPV, STACS'14]
O*(k°VR)) | [DMPV, STACS'14]
O*(k°WR) | [BFPP, SODA'16]

O* (kO | [BFPP, ESA'14]
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CHORDAL O*(k°VR)) | [FV, SODA'12]
CHAIN O*(kOWR)Y | [FV, SODA'12]
SPLIT O*(k°VR) | [GKKMPRR, SWAT'12]
TRIVIALLY PERFECT O*(k°R) | [DMPV, STACS'14]
THRESHOLD O*(k°VR)) | [DMPV, STACS'14]
PSEUDOSPLIT O*(k°VR)) | [DMPV, STACS'14]
INTERVAL O*(k°WR) | [BFPP, SODA'16]
PROPER INTERVAL O* (kO | [BFPP, ESA'14]
CO-CLUSTER ETH-hard [KU, DAM'12]
COGRAPH ETH-hard | [DMPV, STACS'14]
Co-TriviALLY PERFECT | ETH-hard [DMPV, STACS'14]
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Open problems

e Can you get time O*(k®(V%)) for PROPER INTERVAL
COMPLETION?
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Open problems

o Can you get time O*(k®(V%)) for PROPER INTERVAL
COMPLETION?

@ Does INTERVAL COMPLETION admit a polynomial kernel?

Marcin Pilipczuk Subexponential parameterized complexity of completion problems



Open problems

o Can you get time O*(k®(V%)) for PROPER INTERVAL
COMPLETION?

@ Does INTERVAL COMPLETION admit a polynomial kernel?
e Can you provide 22VH) |ower bounds under ETH?

e An O*(2O(‘/E))—time algorithm for one of the problems?
e An O*(2°(‘/E))—time algorithm seems hard, as it gives 2°") bound.
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Open problems

o Can you get time O*(k®(V%)) for PROPER INTERVAL
COMPLETION?

@ Does INTERVAL COMPLETION admit a polynomial kernel?
@ Can you provide 22V Jower bounds under ETH?
e An O*(2O(‘/E))—time algorithm for one of the problems?
e An O*(2°(‘/E))—time algorithm seems hard, as it gives 2°") bound.

@ Is there any meta-explanation why there are subexponential
algorithms for this family of problems?
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Summary diagram

threshold
o* (kO(\/E))

v

trivizlly ;ﬁfject prop(er intze/l;vsl
o* (KoK o (KO
" /
interval
o (kM) Questions?
N
chordal

O* (ko(ﬁ))
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