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‘Parameterized Complexity | I

@ -

. 3-SAT

Assumption: P # NP.



‘Parameterized Complexity | I

Express running time in term of a parameter k.



‘Parameterized Complexity Il I

Natural parameter k for 3-SAT: the number n of variables or m of

clauses.



‘ Conjecture I

Exponential Time Hypothesis (ETH) (Impagliazzo, Paturi, Zane

2001) There is a positive real 0 such that 3-SAT with n variables and

m clauses cannot be solved in time 2°™ (n + m)?(Y).



‘ Sparsification I

The ETH assumption implies that there is no algorithm for 3-SAT
(Impagliazzo, Paturi, Zane 2001) with n variables and m clauses
that runs in time 2°™ (n + m)°W for areal § > 0.



\ Known lower bounds |

o 2001 O00) for Independent set, vertex cover, dominating set and

hamiltonian path,
o 2°F)nOW) for vertex cover (where k = OPT (1)),
o f(m)||I||°"™ for P|prec|Cas (Chen et al. 2006)
F(ONI]| (V1/9) for 2D vector knapsack (Kulik, Shachnai 2010)

o f(m)|[I]|°™/1°&™) for unary bin packing (Jansen et al. 2013)



\Goal |

Find bounds for scheduling and packing problems
e prove lower bounds based on the ETH
e find algorithms to obtain upper bounds

Best results: matching lower and upper bounds



‘ Exact algorithms I



\ Lower bounds |

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and
Pm||Cypae for m > 2 cannot be solved in time 2° || I]]9(),
unless the ETH fails.

Matching upper bounds

® naive enumeration for Subset Sum, Partition, Knapsack.

e algorithms based on subsets of job solve many scheduling

problems.
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‘Strong reduction for Subset Sum (Wegener 2003) I

Variables 1, . .., x, and clauses (', ..., C,,.

For x; create items ¢; and f; with

s(t;) = Zj::mECj 10™71 + 10
S(fz) — Zj::fieCj 10n+j—1 + 1072—1
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‘Strong reduction for Subset Sum (Wegener 2003) I

For C create items d; and d;- with

s(d;) = s(d;) = 107t -1

and use a capacity B with

B = Em: 3. 10"t ¢ Enj 101,
j=1 i=1
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Reduction for (Z1 V a9 V 23) A (21 V Z9)

s(t1)
s(t2)
s(t3)

s(d1)
s(d2)
s(d)
s(dj)

Notice: there is no carry over.
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‘Truth assignment I

s(ty) |1 o]0 0 1
s(ta) |O 1]0 1 O
s(ts) |o 1] 1 0 O
s(fi) |]o 1|0 o0 1
s(fe) |1 o]0 1 o0
s(fs) |]o o] 1 0 O
s(di) |]o 1]0 0 O
s(d2) |1 o]0 0 O
s(dy)|]o 1|0 0 o0
s(dy) |1 0|0 0 o0
B 3 3|1 1 1

Assignment: ¢(x1) = ¢(x3) = true and ¢(x2) = false.
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‘Truth assignment I

Subset Sum solution:

s(ty) |1 o]0 0 1
s(ta) |O 0] 0 1 O
s(ts) |o 1] 1 0 O
s(fi) |]o 1|0 o0 1
s(fe) |1 o]0 1 o0
s(fs) |]o o] 1 0 O
s(di) |]o 1]0 0 O
s(de) |1 o]0 0 O
s(dy)J]o 1]0 0 o0
s(dy) |1 0|0 0 o0
B 3 3|1 1 1

A= {tl,tg, f2, dl, dg, dll}
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‘ Properties of reduction I

(a) 3-SAT instance is satisfiable, iff the constructed subset sum

Instance has a solution.

(b) constructed instance has 2n + 2m < 8m items, using n < 3m

(i.e. a strong linear reduction ),

(c) the existence of an algorithm for Subset Sum in time
20| 11|90 implies that 3-SAT can be decided in time
200m) (4 m) O,
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\Size of constructed instance |

s(ty) |1 o]0 0 1
s(ta) |0 1|0 1 o0
s(ts) |0 1|1 o0 O
s(fi) |]o 1|0 o0 1
s(fe) |1 o]0 1 o0
s(fs) |]o o] 1 0 O
s(di) ]o 1]0 0 ©
s(d2) |1 o]0 0 O
s(d) |]o 1|0 0 O
s(dy) |1 0|0 0 o0
B 3 3|1 1 1

Notice: ||I|| < (2n +2m + 1)(n +m) = O(m?).
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\ Further results | |

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and

Pm||Cinae for m > 2 cannot be solved in time 20V ynless the
ETH falls.

Matching upper bounds
e Subset Sum, Partition (O’Neil, Kerlin 2010)

e Knapsack, Bin Packing (O’Neil 2011).
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\ Further results Il |

—5_/
Theorem: For any 0 > 0, there is no 20(””'“1/2 1) time algorithm
for Pm||Cinqz, unless the ETH fails.

Upper bound: 20(v/mlog?(m)||T]]) for Pml|Caz-
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‘Approximation schemes I
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\ Lower bounds |

Theorem: There is no EPTAS for multiple knapsack (MK) with running
time 2°(1/9)||I|°() | unless the ETH fails, even for 2 knapsacks of

equal capacity and when either
(i) all items have the same profit or

(i) the profit of each item equals its size.

Upper bound for MK: 20(1/¢log*(1/€)) 4 |17]|9() (3ansen 2012).

21



\ Proof sketch | |

Consider a restricted version M K ,..s(«, C'), where

(i) I has m = 2 knapsacks of capacity 55(A) (where s(A) must be

even).
@ ||C]) < [|A[J°V,
(i) profit(A) < aCn where a = O(1),

(iv) profit(a) > C'foralla € A
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\ Proof Sketch Il |

ldea: reduce an instance of Partition to this restricted version of MK

where the sizes remain the same.

Notice: If there is a solution for Partition, then there is a packing into 2

knapsacks.

Suppose that there is an approximation scheme A, for MK that finds
an (1 + ¢) solution in time 2°(1/9)||1]|9W) sete = 1/(an).
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\ Proof Sketch IlI |

Claim: the approximation scheme packs all items (if Partition has a

solution).

profit(A) < aCn < ip?“ofz't(A) <C
an

If all items can be packed, then A, has profit at least

T OPT(I) = (1 = 35 )profit(A) = profit(A) — e profit(A)

> profit(A) — =profit(A) > profit(A) — C.

Since profit(a) > C'foralla € A, there is no unpacked item.
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\ Proof Sketch IV |

Consequence: We can decide whether a partition instance admits a

solution by running a (1 + ¢) approximation algorithm.

since profit(A) < aCnand ||C]| < ||A]|°M), we have
|1]] = || A]|°™M). using € = 1/(an), the approximation scheme A,
runs in time 2°(1/9) || I||9() = 20| A||9() This gives a

contradiction.
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MK with profit(a) = 1forall a € A

By a reduction from Partition with even s(A) to M K with
profit(a) = 1foralla € A.

Then, profit(A) = nand profit(a) > 1. This means @ = 1 and

C' = 1 works. Therefore, we obtain a instance of M K,...(1,1).

Notice: If s(A) is odd then we have a no-instance.
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MK with profit(a) = s(a)forall a € A

By a reduction from Partition-1), where there exists a C' € NI such
that C' < s(a) < 3C'foralla € A.

The property above implies s(A) < 3Cn. Using profit(a) = s(a),
we get profit(a) > C and profit(A) < 3Cn. This means o = 3
and the value C' works. We obtain a instance of M K,..4(3, C').

Notice: There is also no algorithm that decides Partition-) in time
20(n)|‘AHO(1)_
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\ Other results |

Theorem: There is no PTAS for 2D vector knapsack with running time
n°/9NI]|°W) | unless the ETH fails.

Matching upper bound: n®1/9)||I||9W) (Caprara et al. 2010) .
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\ Other results |

Theorem: For any & > 0, there is no 20((1/9"' ") 4 nO() EPTAS for
P||C'paz, unless the ETH fails.

Upper bound: 20(1/¢* leg”(1/)) 4. 11|19 for P||C)pae and
Q|| Crnaz (Jansen 2010).
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\ Other results |

Theorem: For any & > 0, there is no 20((1/9"' ") 4 nO() EPTAS for
P||C'paz, unless the ETH fails.

improved upper bound: 20(/€1g*(1/9) 4|1 7||9() for P||C!pas and
Q|| Crnaz (Jansen, Klein, Verschae 2015) .
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\ Other results |

Theorem: Forany § > 0, there is no (1/€)°™' ™) 4 nOM) FpTAS
for Pm||Clyaz, unless the ETH fails.

Upper bound: FPTAS for Rm||C),q. with running time
(m/€)°™ + O(n) and (1/€)°™) 4 O(n) for e < 1/m (Jansen,
Mastrolilli 2010) .
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‘Summary and Open problems I

For further results we refer to:

e K. Jansen, F. Land, K. Land: Bounding the running time for

scheduling and packing problems, WADS 2013.

e L. Chen, K. Jansen, G. Zhang: On the optimality of approximation
schemes for scheduling, SODA 2014.

Open problems:

e Show a lower bound for d dimensional vector knapsack.

e Close the gaps for M K and P||Ciqz.
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