Lower bounds on the running time for scheduling and packing problems

L. Chen, K. Jansen, F. Land, K. Land, and G. Zhang University of Kiel and Zhejiang University

Parameterized Complexity I

Assumption: $P \neq NP$.

Parameterized Complexity II

Express running time in term of a parameter k.

Parameterized Complexity III

Natural parameter k for 3-SAT: the number n of variables or m of clauses.

Conjecture

Exponential Time Hypothesis (ETH) (Impagliazzo, Paturi, Zane

2001) There is a positive real δ such that 3-SAT with n variables and m clauses cannot be solved in time $2^{\delta n} (n+m)^{O(1)}$.

Sparsification

The ETH assumption implies that there is no algorithm for 3-SAT (Impagliazzo, Paturi, Zane 2001) with n variables and m clauses that runs in time $2^{\delta m} (n+m)^{O(1)}$ for a real $\delta > 0$.

Known lower bounds

- $2^{o(n)}n^{O(1)}$ for independent set, vertex cover, dominating set and hamiltonian path,
- $2^{o(k)}n^{O(1)}$ for vertex cover (where k = OPT(I)),
- $f(m)||I||^{o(m)}$ for $P|prec|C_{max}$ (Chen et al. 2006)
- $f(\epsilon)||I||^{o(\sqrt{1/\epsilon})}$ for 2D vector knapsack (Kulik, Shachnai 2010)
- $f(m)||I||^{o(m/\log m)}$ for unary bin packing (Jansen et al. 2013)

Goal

Find bounds for scheduling and packing problems

- prove lower bounds based on the ETH
- find algorithms to obtain upper bounds

Best results: matching lower and upper bounds

Exact algorithms

Lower bounds

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and $Pm||C_{max}$ for $m \ge 2$ cannot be solved in time $2^{o(n)}||I||^{O(1)}$, unless the ETH fails.

Matching upper bounds

- naive enumeration for Subset Sum, Partition, Knapsack.
- algorithms based on subsets of job solve many scheduling problems.

Strong reduction for Subset Sum (Wegener 2003)

Variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .

For x_i create items t_i and f_i with

$$s(t_i) = \sum_{j:x_i \in C_j} 10^{n+j-1} + 10^{i-1}$$
$$s(f_i) = \sum_{j:\bar{x}_i \in C_j} 10^{n+j-1} + 10^{i-1}$$

Strong reduction for Subset Sum (Wegener 2003)

For C_j create items d_j and d_j^\prime with $s(d_j) = s(d_j^\prime) = 10^{n+j-1}$

and use a capacity \boldsymbol{B} with

$$B = \sum_{j=1}^{m} 3 \cdot 10^{n+j-1} + \sum_{i=1}^{n} 10^{i-1}.$$

Reduction for $(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2)$

$s(t_1)$	1	0	0	0	1
$s(t_2)$	0	1	0	1	0
$s(t_3)$	0	1	1	0	0
$s(f_1)$	0	1	0	0	1
$s(f_2)$	1	0	0	1	0
$s(f_3)$	0	0	1	0	0
$s(d_1)$	0	1	0	0	0
$s(d_2)$	1	0	0	0	0
$s(d_1')$	0	1	0	0	0
$s(d_2')$	1	0	0	0	0
В	3	3	1	1	1

Notice: there is no carry over.

Truth assignment

$s(t_1)$	1	0	0	0	1
$s(t_2)$	0	1	0	1	0
$s(t_3)$	0	1	1	0	0
$s(f_1)$	0	1	0	0	1
$s(f_2)$	1	0	0	1	0
$s(f_3)$	0	0	1	0	0
$s(d_1)$	0	1	0	0	0
$s(d_2)$	1	0	0	0	0
$s(d_1')$	0	1	0	0	0
$s(d_2')$	1	0	0	0	0
В	3	3	1	1	1

Assignment: $\phi(x_1) = \phi(x_3) = true$ and $\phi(x_2) = false$.

Truth assignment

$s(t_1)$	1	0	0	0	1
$s(t_2)$	0	0	0	1	0
$s(t_3)$	0	1	1	0	0
$s(f_1)$	0	1	0	0	1
$s(f_2)$	1	0	0	1	0
$s(f_3)$	0	0	1	0	0
$s(d_1)$	0	1	0	0	0
$s(d_2)$	1	0	0	0	0
$s(d_1')$	0	1	0	0	0
$s(d_2')$	1	0	0	0	0
В	3	3	1	1	1

Subset Sum solution: $A = \{t_1, t_3, f_2, d_1, d_2, d'_1\}.$

Properties of reduction

- (a) 3-SAT instance is satisfiable, iff the constructed subset sum instance has a solution.
- (b) constructed instance has $2n + 2m \le 8m$ items, using $n \le 3m$ (i.e. a strong linear reduction),
- (c) the existence of an algorithm for Subset Sum in time $2^{o(n)}||I||^{O(1)}$ implies that 3-SAT can be decided in time $2^{o(m)}(n+m)^{O(1)}$.

Size of constructed instance

$s(t_1)$	1	0	0	0	1
$s(t_2)$	0	1	0	1	0
$s(t_3)$	0	1	1	0	0
$s(f_1)$	0	1	0	0	1
$s(f_2)$	1	0	0	1	0
$s(f_3)$	0	0	1	0	0
$s(d_1)$	0	1	0	0	0
$s(d_2)$	1	0	0	0	0
$s(d_1')$	0	1	0	0	0
$s(d_2')$	1	0	0	0	0
B	3	3	1	1	1

Notice: $||I|| \le (2n + 2m + 1)(n + m) = O(m^2).$

Further results I

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and $Pm||C_{max}$ for $m \ge 2$ cannot be solved in time $2^{o(\sqrt{||I||})}$, unless the ETH fails.

Matching upper bounds

- Subset Sum, Partition (O'Neil, Kerlin 2010),
- Knapsack, Bin Packing (O'Neil 2011).

Further results II

Theorem: For any $\delta > 0$, there is no $2^{O(m^{1/2-\delta}\sqrt{||I||})}$ time algorithm for $Pm||C_{max}$, unless the ETH fails.

Upper bound: $2^{O(\sqrt{m \log^2(m) ||I||})}$ for $Pm||C_{max}$.

Approximation schemes

Lower bounds

Theorem: There is no EPTAS for multiple knapsack (MK) with running time $2^{o(1/\epsilon)}||I||^{O(1)}$, unless the ETH fails, even for 2 knapsacks of equal capacity and when either

(i) all items have the same profit or

(ii) the profit of each item equals its size.

Upper bound for MK: $2^{O(1/\epsilon \log^4(1/\epsilon))} + ||I||^{O(1)}$ (Jansen 2012).

Proof sketch I

Consider a restricted version $MK_{res}(\alpha, C)$, where

- (i) I has m = 2 knapsacks of capacity $\frac{1}{2}s(A)$ (where s(A) must be even).
- (ii) $||C|| \le ||A||^{O(1)}$,
- (iii) $profit(A) \leq \alpha Cn$ where $\alpha = O(1)$,

(iv) $profit(a) \ge C$ for all $a \in A$

Proof Sketch II

Idea: reduce an instance of Partition to this restricted version of MK where the sizes remain the same.

Notice: If there is a solution for Partition, then there is a packing into $2\,$ knapsacks.

Suppose that there is an approximation scheme A_{ϵ} for MK that finds an $(1 + \epsilon)$ solution in time $2^{o(1/\epsilon)} ||I||^{O(1)}$. Set $\epsilon = 1/(\alpha n)$.

Proof Sketch III

Claim: the approximation scheme packs all items (if Partition has a solution).

$$profit(A) \le \alpha Cn \iff \frac{1}{\alpha n} profit(A) \le C$$

If all items can be packed, then A_{ϵ} has profit at least

$$\frac{1}{1+\epsilon}OPT(I) = (1 - \frac{\epsilon}{1+\epsilon})profit(A) = profit(A) - \frac{1}{1+\alpha n}profit(A)$$

> $profit(A) - \frac{1}{\alpha n}profit(A) \ge profit(A) - C.$

Since $profit(a) \ge C$ for all $a \in A$, there is no unpacked item.

Proof Sketch IV

Consequence: We can decide whether a partition instance admits a solution by running a $(1 + \epsilon)$ approximation algorithm.

Since $profit(A) \leq \alpha Cn$ and $||C|| \leq ||A||^{O(1)}$, we have $||I|| = ||A||^{O(1)}$. Using $\epsilon = 1/(\alpha n)$, the approximation scheme A_{ϵ} runs in time $2^{o(1/\epsilon)}||I||^{O(1)} = 2^{o(n)}||A||^{O(1)}$. This gives a contradiction.

MK with
$$profit(a) = 1$$
 for all $a \in A$

By a reduction from Partition with even s(A) to MK with profit(a) = 1 for all $a \in A$.

Then, profit(A) = n and $profit(a) \ge 1$. This means $\alpha = 1$ and C = 1 works. Therefore, we obtain a **instance of** $MK_{res}(1, 1)$.

Notice: If s(A) is odd then we have a no-instance.

MK with profit(a) = s(a) for all $a \in A$

By a reduction from Partition- ψ , where there exists a $C \in \mathbb{N}$ such that $C \leq s(a) \leq 3C$ for all $a \in A$.

The property above implies $s(A) \leq 3Cn$. Using profit(a) = s(a), we get $profit(a) \geq C$ and $profit(A) \leq 3Cn$. This means $\alpha = 3$ and the value C works. We obtain a instance of $MK_{res}(3, C)$.

Notice: There is also no algorithm that decides Partition- ψ in time $2^{o(n)}||A||^{O(1)}$.

Theorem: There is no PTAS for 2D vector knapsack with running time $n^{o(1/\epsilon)}||I||^{O(1)}$, unless the ETH fails.

Matching upper bound: $n^{O(1/\epsilon)}||I||^{O(1)}$ (Caprara et al. 2010).

Theorem: For any $\delta > 0$, there is no $2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$ EPTAS for $P||C_{max}$, unless the ETH fails.

Upper bound: $2^{O(1/\epsilon^2 \log^3(1/\epsilon))} + ||I||^{O(1)}$ for $P||C_{max}$ and $Q||C_{max}$ (Jansen 2010).

Theorem: For any $\delta > 0$, there is no $2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$ EPTAS for $P||C_{max}$, unless the ETH fails.

Improved upper bound: $2^{O(1/\epsilon \log^4(1/\epsilon))} + ||I||^{O(1)}$ for $P||C_{max}$ and $Q||C_{max}$ (Jansen, Klein, Verschae 2015).

Theorem: For any $\delta > 0$, there is no $(1/\epsilon)^{O(m^{1-\delta})} + n^{O(1)}$ FPTAS for $Pm||C_{max}$, unless the ETH fails.

Upper bound: FPTAS for $Rm||C_{max}$ with running time $(m/\epsilon)^{O(m)} + O(n)$ and $(1/\epsilon)^{O(m)} + O(n)$ for $\epsilon < 1/m$ (Jansen, Mastrolilli 2010).

Summary and Open problems

For further results we refer to:

- K. Jansen, F. Land, K. Land: Bounding the running time for scheduling and packing problems, WADS 2013.
- L. Chen, K. Jansen, G. Zhang: On the optimality of approximation schemes for scheduling, SODA 2014.

Open problems:

- Show a lower bound for d dimensional vector knapsack.
- Close the gaps for MK and $P||C_{max}$.