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Parameterized Complexity I

P NP

. 3-SAT

Assumption: P 6= NP .
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Parameterized Complexity II

P

.

2O(
√
k)

2O(k)

NP

Express running time in term of a parameter k.
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Parameterized Complexity III

P

.

2O(
√
k)

2O(k)

NP

.3-SAT

Natural parameter k for 3-SAT: the number n of variables or m of

clauses.
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Conjecture

Exponential Time Hypothesis (ETH) (Impagliazzo, Paturi, Zane

2001) There is a positive real δ such that 3-SAT with n variables and

m clauses cannot be solved in time 2δn (n+m)O(1).
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Sparsification

The ETH assumption implies that there is no algorithm for 3-SAT

(Impagliazzo, Paturi, Zane 2001) with n variables and m clauses

that runs in time 2δm (n+m)O(1) for a real δ > 0.
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Known lower bounds

• 2o(n)nO(1) for independent set, vertex cover, dominating set and

hamiltonian path,

• 2o(k)nO(1) for vertex cover (where k = OPT (I)),

• f(m)||I||o(m) for P |prec|Cmax (Chen et al. 2006)

• f(ǫ)||I||o(
√

1/ǫ) for 2D vector knapsack (Kulik, Shachnai 2010)

• f(m)||I||o(m/ logm) for unary bin packing (Jansen et al. 2013)
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Goal

Find bounds for scheduling and packing problems

• prove lower bounds based on the ETH

• find algorithms to obtain upper bounds

Best results: matching lower and upper bounds
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Exact algorithms
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Lower bounds

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and

Pm||Cmax for m ≥ 2 cannot be solved in time 2o(n)||I||O(1),

unless the ETH fails.

Matching upper bounds

• naive enumeration for Subset Sum, Partition, Knapsack.

• algorithms based on subsets of job solve many scheduling

problems.
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Strong reduction for Subset Sum (Wegener 2003)

Variables x1, . . . , xn and clauses C1, . . . , Cm.

For xi create items ti and fi with

s(ti) =
∑

j:xi∈Cj
10n+j−1 + 10i−1

s(fi) =
∑

j:x̄i∈Cj
10n+j−1 + 10i−1
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Strong reduction for Subset Sum (Wegener 2003)

For Cj create items dj and d′j with

s(dj) = s(d′j) = 10n+j−1

and use a capacity B with

B =
m∑

j=1

3 · 10n+j−1 +
n∑

i=1

10i−1.
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Reduction for (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2)

s(t1) 1 0 0 0 1

s(t2) 0 1 0 1 0

s(t3) 0 1 1 0 0

s(f1) 0 1 0 0 1

s(f2) 1 0 0 1 0

s(f3) 0 0 1 0 0

s(d1) 0 1 0 0 0

s(d2) 1 0 0 0 0

s(d′1) 0 1 0 0 0

s(d′2) 1 0 0 0 0

B 3 3 1 1 1

Notice: there is no carry over.
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Truth assignment

s(t1) 1 0 0 0 1

s(t2) 0 1 0 1 0

s(t3) 0 1 1 0 0

s(f1) 0 1 0 0 1

s(f2) 1 0 0 1 0

s(f3) 0 0 1 0 0

s(d1) 0 1 0 0 0

s(d2) 1 0 0 0 0

s(d′1) 0 1 0 0 0

s(d′2) 1 0 0 0 0

B 3 3 1 1 1

Assignment: φ(x1) = φ(x3) = true and φ(x2) = false.
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Truth assignment

s(t1) 1 0 0 0 1

s(t2) 0 0 0 1 0

s(t3) 0 1 1 0 0

s(f1) 0 1 0 0 1

s(f2) 1 0 0 1 0

s(f3) 0 0 1 0 0

s(d1) 0 1 0 0 0

s(d2) 1 0 0 0 0

s(d′1) 0 1 0 0 0

s(d′2) 1 0 0 0 0

B 3 3 1 1 1

Subset Sum solution: A = {t1, t3, f2, d1, d2, d′1}.
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Properties of reduction

(a) 3-SAT instance is satisfiable, iff the constructed subset sum

instance has a solution.

(b) constructed instance has 2n+ 2m ≤ 8m items, using n ≤ 3m

(i.e. a strong linear reduction ),

(c) the existence of an algorithm for Subset Sum in time

2o(n)||I||O(1) implies that 3-SAT can be decided in time

2o(m)(n+m)O(1).
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Size of constructed instance

s(t1) 1 0 0 0 1

s(t2) 0 1 0 1 0

s(t3) 0 1 1 0 0

s(f1) 0 1 0 0 1

s(f2) 1 0 0 1 0

s(f3) 0 0 1 0 0

s(d1) 0 1 0 0 0

s(d2) 1 0 0 0 0

s(d′1) 0 1 0 0 0

s(d′2) 1 0 0 0 0

B 3 3 1 1 1

Notice: ||I|| ≤ (2n+ 2m+ 1)(n+m) = O(m2).
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Further results I

Theorem: Subset Sum, Partition, Knapsack, Bin Packing and

Pm||Cmax for m ≥ 2 cannot be solved in time 2o(
√

||I||), unless the

ETH fails.

Matching upper bounds

• Subset Sum, Partition (O’Neil, Kerlin 2010) ,

• Knapsack, Bin Packing (O’Neil 2011) .
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Further results II

Theorem: For any δ > 0, there is no 2O(m1/2−δ
√

||I||) time algorithm

for Pm||Cmax, unless the ETH fails.

Upper bound: 2O(
√

m log2(m)||I||) for Pm||Cmax.
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Approximation schemes
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Lower bounds

Theorem: There is no EPTAS for multiple knapsack (MK) with running

time 2o(1/ǫ)||I||O(1), unless the ETH fails, even for 2 knapsacks of

equal capacity and when either

(i) all items have the same profit or

(ii) the profit of each item equals its size.

Upper bound for MK: 2O(1/ǫ log4(1/ǫ)) + ||I||O(1) (Jansen 2012) .
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Proof sketch I

Consider a restricted version MKres(α,C), where

(i) I has m = 2 knapsacks of capacity 1
2
s(A) (where s(A) must be

even).

(ii) ||C|| ≤ ||A||O(1),

(iii) profit(A) ≤ αCn where α = O(1),

(iv) profit(a) ≥ C for all a ∈ A
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Proof Sketch II

Idea: reduce an instance of Partition to this restricted version of MK

where the sizes remain the same.

Notice: If there is a solution for Partition, then there is a packing into 2

knapsacks.

Suppose that there is an approximation scheme Aǫ for MK that finds

an (1 + ǫ) solution in time 2o(1/ǫ)||I||O(1). Set ǫ = 1/(αn).
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Proof Sketch III

Claim: the approximation scheme packs all items (if Partition has a

solution).

profit(A) ≤ αCn⇐⇒ 1

αn
profit(A) ≤ C

If all items can be packed, then Aǫ has profit at least

1

1+ǫ
OPT (I) = (1− ǫ

1+ǫ
)profit(A) = profit(A)− 1

1+αn
profit(A)

> profit(A)− 1

αn
profit(A) ≥ profit(A)− C.

Since profit(a) ≥ C for all a ∈ A, there is no unpacked item.
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Proof Sketch IV

Consequence: We can decide whether a partition instance admits a

solution by running a (1 + ǫ) approximation algorithm.

Since profit(A) ≤ αCn and ||C|| ≤ ||A||O(1), we have

||I|| = ||A||O(1). Using ǫ = 1/(αn), the approximation scheme Aǫ

runs in time 2o(1/ǫ)||I||O(1) = 2o(n)||A||O(1). This gives a

contradiction.
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MK with profit(a) = 1 for all a ∈ A

By a reduction from Partition with even s(A) to MK with

profit(a) = 1 for all a ∈ A.

Then, profit(A) = n and profit(a) ≥ 1. This means α = 1 and

C = 1 works. Therefore, we obtain a instance of MKres(1, 1).

Notice: If s(A) is odd then we have a no-instance.
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MK with profit(a) = s(a) for all a ∈ A

By a reduction from Partition-ψ, where there exists a C ∈ NI such

that C ≤ s(a) ≤ 3C for all a ∈ A.

The property above implies s(A) ≤ 3Cn. Using profit(a) = s(a),

we get profit(a) ≥ C and profit(A) ≤ 3Cn. This means α = 3

and the value C works. We obtain a instance of MKres(3, C).

Notice: There is also no algorithm that decides Partition-ψ in time

2o(n)||A||O(1).
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Other results

Theorem: There is no PTAS for 2D vector knapsack with running time

no(1/ǫ)||I||O(1), unless the ETH fails.

Matching upper bound: nO(1/ǫ)||I||O(1) (Caprara et al. 2010) .
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Other results

Theorem: For any δ > 0, there is no 2O((1/ǫ)1−δ) + nO(1) EPTAS for

P ||Cmax, unless the ETH fails.

Upper bound: 2O(1/ǫ2 log3(1/ǫ)) + ||I||O(1) for P ||Cmax and

Q||Cmax (Jansen 2010) .
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Other results

Theorem: For any δ > 0, there is no 2O((1/ǫ)1−δ) + nO(1) EPTAS for

P ||Cmax, unless the ETH fails.

Improved upper bound: 2O(1/ǫ log4(1/ǫ)) + ||I||O(1) for P ||Cmax and

Q||Cmax (Jansen, Klein, Verschae 2015) .
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Other results

Theorem: For any δ > 0, there is no (1/ǫ)O(m1−δ) + nO(1) FPTAS

for Pm||Cmax, unless the ETH fails.

Upper bound: FPTAS for Rm||Cmax with running time

(m/ǫ)O(m) +O(n) and (1/ǫ)O(m) +O(n) for ǫ < 1/m (Jansen,

Mastrolilli 2010) .
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Summary and Open problems

For further results we refer to:

• K. Jansen, F. Land, K. Land: Bounding the running time for

scheduling and packing problems, WADS 2013.

• L. Chen, K. Jansen, G. Zhang: On the optimality of approximation

schemes for scheduling, SODA 2014.

Open problems:

• Show a lower bound for d dimensional vector knapsack.

• Close the gaps for MK and P ||Cmax.
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