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ETH and SETH | A simplified view

Exponential Time Hypothesis: 3-SAT instances (with n variables and m clauses)
cannot be solved in time O*(2°(").

Sparsification Lemma: If ETH holds, then 3-SAT instances cannot be solved in
time O*(20(ntm)),

Strong Exponential Time Hypothesis: SAT instances on n variables cannot
be solved in time O*((2 — &)™) forany € > 0.

Known: SETH implies ETH
ETH implies: FPT %= W][1]
There is a 1-1 correspondence between SUBEXP vs. EXP and FPT vs. XP
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Problems on Finite Automata

non-universality
Given an automaton A with input alphabet 3, is L(A) # >X*?

inequivalence
Given two automata A1, Ao, is L(A1) #= L(A5)?

intersection non-emptiness
Given k automata A, ..., Ay, is NF_; L(A;) # 07?
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Classical Status

intersection % ()

PSPACE-complete

DFA NFA
non-universality | poly-time PSPACE-complete
inequivalence poly-time PSPACE-complete

PSPACE-complete

~» Focus on NFAs.
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Classical Status for NFA-problems

NFA unary binary

non-universality | NP-complete | PSPACE-complete
inequivalence NP-complete | PSPACE-complete
intersection = @ | NP-complete | PSPACE-complete

Even unary input alphabets are interesting.
intersection % ( is then NP-complete also for DFAs.

Previously unknown: Complexity status under ETH ~» main topic of the talk
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Tally NFAs (unary input alphabets)

nothing else than directed graphs (edge labels not interesting)
UNIVERSALITY hence models the folllowing scenary:

Can somebody living in the blue circle visit the red one in any number of steps?

This question is trivial for undirected graphs. ..
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Non-universality for Tally NFAs: NP-hardness by Stockmeyer & Meyer 1973
Reduction from 3-SAT ' (n variables, m clauses)

|dea: Codify assignments by Chinese remainder.

Take the first n primes pq,...,pn; EX.: p1 = 2, po» = 3, p3 = 5.

a” encodes assignment « if z = a(x;) mod p;;

Ex.: a(x1) =0, a(xs) =1, a(xz) = 1~ z = 16.

Recall: pr, ~ nlnn.

dNFA Ag for Lo 1= U} —» U?kzal{a}j{apk}* with < npy, ~ n?2Inn many states.
Lg collects words that do not encode assignments. Ex.: aa € Lg.

Lj := {a™*} - {a"i® ileiDy with 0 < 2k; < Pij(1)" " Pis(|e;)) IS uniquely
determined by 2 = a(xy) mod Pi;(r) forr =1,...,[c(j)]s.t. o falsifies c;.
i;(£) is the index of the /th variable in clause c;.

AS D (1) Dij(le;]) < p; (3-SAT), L, is accepted by a DFA with < p3 states.
Altogether, the NFA has at most mp3 states: quite a many! ©
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Non-universality for Tally NFAs: NP-hardness (Stockmeyer & Meyer 1973)
Cor.: Unless ETH fails, for any ¢ > 0, there is no O*(20(q1/4_6))—time algorithm
for deciding, given a tally NFA A on q states, whether L(A) = {a}*.

The algorithmic side:

Textbook algorithm (conversion into DFAs) yields O*(29)-time algorithm.
Chrobak 1986 (conversion into DFAs): improvement to

Can we bring these bounds together?

Let us improve on the lower bound.
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An auxiliary result yields an improved lower bound

Thm.: Unless ETH fails, there is no O*(2°())-time algorithm for deciding if a
given m-edge graph has a (proper) 3-coloring.

See Fedor’stalk .../ W.l.o.g., m = O(n).

Now, mimic proof of Stockmeyer / Meyer, reducing from 3-COLORING.
variables = vertices / clauses ~ edges

(a) Coloring condition has two vertices, not three variables ~» improvement
(b) Moreover, more efficient encoding ~» no e-term

Thm.: Unless ETH fails, there is no O*(20(q1/3))-time algorithm for deciding,
given a tally NFA A on q states, whether L(A) = {a}*.

Open: Match LB O*(2°( @) with UB
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Inequivalence for Tally NFAs

Cor.: Unless ETH fails, there is no O*(20(q1/3))-time algorithm for deciding,
given two tally NFAs A4, A>, each on q states, whether L(A1) = L(A>»).

The algorithmic side:

Convert both NFAs into DFAs (Chrobak 1986);
then use complementation and emptiness tests.
Complexity:

Open: Match LB O*(2°(¥@)) with UB

Same results for TALLY NFA NON-INCLUSION.
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Intersection Non-emptiness for Tally FAs
Thm.: There is no algorithm that, given £ tally DFAs (or NFAs) A4, ..., Az, each
with at most ¢ states, decides if N%_; L(A4;) # 0 in time O* (20(min(k.q'/?))y

unless ETH fails.

Revisit previous constructions:

k%n—l—m,q%nz.

The algorithmic side: UB is terribly far off. ©
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Non-Tally FAs with bounded alphabets

Thm.: Assuming ETH, there is no algorithm for solving UNIVERSALITY for g-state
NFAs with binary input alphabets that runs in time O(2°(2)),

ldea: Reduction from 3-COLORING.
This . ©
(Basically) the same (matching) result for INEQUIVALENCE for binary NFAs.

For INTERSECTION NONEMPTINESS of DFAs, we get a weaker result:

Cor.: There is no algorithm that, given kK DFAs Aq,..., A with binary input
alphabet, each with at most ¢ states, decides in time O*(20(min{k.29})y jf
NF_; L(A;) # 0 unless ETH fails.
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Non-Tally FAs with unbounded alphabets

Thm.: There is no algorithm that, given £ DFAs A1, ..., A, with unbounded in-
put alphabet, each with at most 3 states, decides in time O*(QO(k)) if
NF_; L(A;) # 0 unless ETH fails.

This . ©

Reduction from 3-COLORING:
Choose alphabet > =V x C, C = {1, 2, 3}.

{v} xC {v} xC

— r
For all vertices v, Ay: S

{(u,a)} {(v,a)}

8 (u, a) 8 (v, a) &
For all edges uv, Ayv.a: sart
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Summary of the Classical Problems for ¢-State NFAs in O*(2/ ('))-estimates

input alphabet UNIVERSALITY EQUIVALENCE k-NFA-INTERSECTION Done?
Lower Upper Lower Upper Lower Upper '
unary o(¥q) | ©(WVqlogq) | o(¥q) | ©(Vqlogq) | o(min(k, /q)) | klogg | No
binary o(q) q o(q) q o(min(k,2%)) | kloggq No
unbounded o(q) q o(q) q o(k) klogq | Yes
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Aperiodicity

A regular language is aperiodic if it can be expressed, starting from finite sets,
with the Boolean operations and with concatenation.

Known: A language accepted by some minimum-state DFA A is not aperiodic iff
there is an input word u (star witness) and some state p such that 6*(p, v) # p,
but for some » > 1, §*(p,u") = p.

A reduction due to J. Stern (1985) shows:

Cor.: Assuming ETH, there is no algorithm for solving APERIODICITY for g-state
DFAs on unbounded input alphabets that runs in time O (2°(2).

Slightly weaker for binary input alphabets.

The mentioned characterization of aperiodicity shows:
Propos.: APERIODICITY can be tested in time for g-state
DFAs on unbounded input alphabets.

Still a small gap!
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Synchronizing words
Given a deterministic finite semi-automaton, i.e., for each a € 3, a mappting
ta @ Q — Q, aset Qsync C Q, a Qsync-Synchronizing word w € 3* enjoys

Vq,q € Qsync - pw(q) = Mw(q/) :

Qsync-SW: Is there a Qsync-synchronizing word? PSPACE-complete.

Qsync = Q: Related to Cerny’s Conjecture.
Multi-parameter analysis in F., Heggernes, Villanger, JCSS 2015
Q-SW “only” NP-complete (with length bound on synchr. word).

Thm.: There is an algorithm for solving Qsync-SW on unbounded input alpha-
bets that runs in time for g-state deterministic finite semi-automata.
Conversely, assuming ETH, there is no O*(2°(9))-time algorithm for this task,
even on bounded input alphabets.
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Consequences from previous SETH hardness results on SW

Known: No O*((|Z| — s)e)-time algorithm solving SW (for any € > 0) unless
SETH fails.

Consequences:

There is a straightforward algorithm with running time O*(|=[¢) that, given k
DFAs over the input alphabet 2~ and an integer ¢, decides whether or not there
is a word w € =¢ accepted by all these DFAs.

Conversely, there is no algorithm that solves this problem in time O((|=| — ¢)%)
for any € > O unless SETH fails.

Similarly for UNIVERSALITY, EQUIVALENCE
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Jumping Finite Automata (JFAs)
Meduna, Zemek IJFCS 2012; F., Paramasivan, Schmid CIAA 2015

a
start —>@ >

C b
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata
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Jumping Finite Automata

a
start —>© >

c b

Accepted language: {w € {a,b,c}* : |w|s = |w|p, = |w|c}
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Hard questions for JFAs

All hardness results for tally NFAs transfer.

New specific hard questions:

UNIVERSAL MEMBERSHIP: NP-hardness reduction by V. Vorel as a starting point.
Different reductions by Mayer, Stockmeyer Inf. & Comput. 1994; F., Paramasivan, Schmid 2015

Thm.: Under ETH, there is no algorithm solving 1-in-3-SAT in time O*(2°(")) or
O*(2°(m)) on CNF formulae with n variables and m clauses.

Cor.: Under ETH, there is no algorithm solving UNIVERSAL MEMBERSHIP for
JFAs in time O*(2°()) or O*(2°(™)) on automata with at most n states and
input words of length at most », with input alphabet bounded by m = |X|.
Upper bound: (poly-space); alternatively DP yields

Another interesting (hard) problem:

2-JFA-INTERSECTION-NONEMPTINESS (unbounded alphabets)

Finite Automata Problems, Berkeley 2015 30/



Overview

1. Three classical problems on finite automata
More problems on finite automata
Jumping finite automata

Boustrophedon finite automata

a k~ W Db

Conclusions

Finite Automata Problems, Berkeley 2015 31/



BFAs (boustrophedon finite automata)

see F., Paramasivan, Schmid, Thomas IWCIA 2015

Example

ACCEPT!
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The non-emptiness problem for B(D)FAs is NP-complete.
The inequivalence problem for BDFAs is NP-complete.

State minimization for BDFAs is NP-hard.
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The ETH perspective

NON-EMPTINESS for BFAs ~ INTERSECTION NON-EMPTINESS OF TALLY FAS.

Recall previous constructions: 3-COLORING<INTERSECTION NON-EMPTINESS
~n—+m,q~n?

~» the related BFA has ~ (n 4+ m)n? many states

This can be improved to =~ (n + m)n by building loops sequentially.

Thm.: There is no algorithm that, given some BFA A with at most ¢ states,
decides if L(A) # 0 in time O*(2°(v/®) unless ETH fails.

Conversely, this problem can be solved in time

Open: Close the gap!
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Conclusions
Finite automata do offer quite some interesting hard problems.
Hardly ever studied under ETH.

Many questions still open, trying to match upper and lower bounds.

Recall tally problems: Match LB O*(2°( V@) with UB O*(2©(v41094)).

LB for INTERSECTION NONEMPTINESS of DFAs (O*(20(min{k,27})Y) |ooks bad,
compared to UB O*(¢¥).

etc. ...

What about measuring number of transitions, not states?
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Thanks for your attention!

Thanks for support through
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