
Lower and Upper Bound Results for Hard Problems

Related to Finite Automata

Henning Fernau
Universität Trier, Germany

fernau@informatik.uni-trier.de

Andreas Krebs
Universität Tübingen, Germany

krebs@informatik.uni-tuebingen.de

Berkeley, November 2015

Overview

1. Three classical problems on finite automata

2. More problems on finite automata

3. Jumping finite automata

4. Boustrophedon finite automata

5. Conclusions

Finite Automata Problems, Berkeley 2015 2/35

ETH and SETH A simplified view

Exponential Time Hypothesis: 3-SAT instances (with n variables andm clauses)
cannot be solved in time O∗(2o(n)).
Sparsification Lemma: If ETH holds, then 3-SAT instances cannot be solved in
time O∗(2o(n+m)).

Strong Exponential Time Hypothesis: SAT instances on n variables cannot
be solved in time O∗((2− ε)n) for any ε > 0.

Known: SETH implies ETH
ETH implies: FPT 6= W[1]
There is a 1-1 correspondence between SUBEXP vs. EXP and FPT vs. XP

Finite Automata Problems, Berkeley 2015 3/35

Problems on Finite Automata

non-universality
Given an automaton A with input alphabet Σ, is L(A) 6= Σ∗?

inequivalence
Given two automata A1, A2, is L(A1) 6= L(A2)?

intersection non-emptiness
Given k automata A1, . . . , Ak, is

⋂k
i=1L(Ai) 6= ∅?

Finite Automata Problems, Berkeley 2015 4/35

Classical Status

DFA NFA
non-universality poly-time PSPACE-complete
inequivalence poly-time PSPACE-complete
intersection 6= ∅ PSPACE-complete PSPACE-complete

; Focus on NFAs.

Finite Automata Problems, Berkeley 2015 5/35

Classical Status for NFA-problems

NFA unary binary
non-universality NP-complete PSPACE-complete
inequivalence NP-complete PSPACE-complete
intersection 6= ∅ NP-complete PSPACE-complete

Even unary input alphabets are interesting.
intersection 6= ∅ is then NP-complete also for DFAs.

Previously unknown: Complexity status under ETH ; main topic of the talk

Finite Automata Problems, Berkeley 2015 6/35

Tally NFAs (unary input alphabets)
nothing else than directed graphs (edge labels not interesting)
UNIVERSALITY hence models the folllowing scenary:
Can somebody living in the blue circle visit the red one in any number of steps?

This question is trivial for undirected graphs. . .
Finite Automata Problems, Berkeley 2015 7/35

Non-universality for Tally NFAs: NP-hardness by Stockmeyer & Meyer 1973
Reduction from 3-SAT © (n variables, m clauses)
Idea: Codify assignments by Chinese remainder.
Take the first n primes p1, . . . , pn; Ex.: p1 = 2, p2 = 3, p3 = 5.
az encodes assignment α if z ≡ α(xi) mod pi;
Ex.: α(x1) = 0, α(x2) = 1, α(x3) = 1 ; z = 16.
Recall: pn ∼ n lnn.
∃ NFAA0 for L0 :=

⋃n
k=2

⋃pk−1
j=2 {a}

j{apk}∗ with≤ npn ∼ n2 lnnmany states.
L0 collects words that do not encode assignments. Ex.: aa ∈ L0.
Lj := {azkj} · {a

pij(1)···pij(|cj |)}∗ with 0 ≤ zkj < pij(1) · · · pij(|cj|) is uniquely
determined by zkj ≡ α(xr) mod pij(r) for r = 1, . . . , |c(j)| s.t. α falsifies cj.
ij(`) is the index of the `th variable in clause cj.
As pij(1) · · · pij(|cj|) ≤ p

3
n (3-SAT), Lj is accepted by a DFA with ≤ p3

n states.

Altogether, the NFA has at most mp3
n states: quite a many! §

Finite Automata Problems, Berkeley 2015 8/35

Non-universality for Tally NFAs: NP-hardness (Stockmeyer & Meyer 1973)

Cor.: Unless ETH fails, for any ε > 0, there is no O∗(2o(q
1/4−ε))-time algorithm

for deciding, given a tally NFA A on q states, whether L(A) = {a}∗.

The algorithmic side:
Textbook algorithm (conversion into DFAs) yields O∗(2q)-time algorithm.
Chrobak 1986 (conversion into DFAs): improvement to O∗(2Θ(

√
q log q)).

Can we bring these bounds together?

Let us improve on the lower bound.

Finite Automata Problems, Berkeley 2015 9/35

An auxiliary result yields an improved lower bound

Thm.: Unless ETH fails, there is no O∗(2o(m))-time algorithm for deciding if a
given m-edge graph has a (proper) 3-coloring.

See Fedor’s talk . . . / W.l.o.g., m = O(n).

Now, mimic proof of Stockmeyer / Meyer, reducing from 3-COLORING.
variables ≈ vertices / clauses ≈ edges
(a) Coloring condition has two vertices, not three variables ; improvement
(b) Moreover, more efficient encoding ; no ε-term

Thm.: Unless ETH fails, there is no O∗(2o(q
1/3))-time algorithm for deciding,

given a tally NFA A on q states, whether L(A) = {a}∗.

Open: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).

Finite Automata Problems, Berkeley 2015 10/35

Inequivalence for Tally NFAs

Cor.: Unless ETH fails, there is no O∗(2o(q
1/3))-time algorithm for deciding,

given two tally NFAs A1, A2, each on q states, whether L(A1) = L(A2).

The algorithmic side:
Convert both NFAs into DFAs (Chrobak 1986);
then use complementation and emptiness tests.
Complexity: O∗(2Θ(

√
q log q)).

Open: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).

Same results for TALLY NFA NON-INCLUSION.

Finite Automata Problems, Berkeley 2015 11/35

Intersection Non-emptiness for Tally FAs

Thm.: There is no algorithm that, given k tally DFAs (or NFAs) A1, . . . , Ak, each
with at most q states, decides if

⋂k
i=1L(Ai) 6= ∅ in time O∗(2o(min(k,q1/2)))

unless ETH fails.

Revisit previous constructions:
k ≈ n+m, q ≈ n2.

The algorithmic side: UB O∗(qk) is terribly far off. §

Finite Automata Problems, Berkeley 2015 12/35

Non-Tally FAs with bounded alphabets

Thm.: Assuming ETH, there is no algorithm for solving UNIVERSALITY for q-state
NFAs with binary input alphabets that runs in time O(2o(q)).

Idea: Reduction from 3-COLORING.

This matches the DFA construction. ©

(Basically) the same (matching) result for INEQUIVALENCE for binary NFAs.

For INTERSECTION NONEMPTINESS of DFAs, we get a weaker result:
Cor.: There is no algorithm that, given k DFAs A1, . . . , Ak with binary input
alphabet, each with at most q states, decides in time O∗(2o(min{k,2q})) if⋂k
i=1L(Ai) 6= ∅ unless ETH fails.

Finite Automata Problems, Berkeley 2015 13/35

Non-Tally FAs with unbounded alphabets

Thm.: There is no algorithm that, given k DFAs A1, . . . , Ak with unbounded in-
put alphabet, each with at most 3 states, decides in time O∗(2o(k)) if⋂k
i=1L(Ai) 6= ∅ unless ETH fails.

This matches the product automaton upper bound O∗(3k). ©

Reduction from 3-COLORING:
Choose alphabet Σ = V × C, C = {1,2,3}.

For all vertices v, Av:
sstart t r

{v} × C

{v} × C

{v} × C

{v} × C

Σ

For all edges uv, Auv,a:
sstart r t

{(u, a)}

(u, a)

{(v, a)}

(v, a)

Σ

Finite Automata Problems, Berkeley 2015 14/35

Summary of the Classical Problems for q-State NFAs in O∗(2f(·))-estimates

input alphabet UNIVERSALITY EQUIVALENCE k-NFA-INTERSECTION Done?Lower Upper Lower Upper Lower Upper
unary o(3

√
q) Θ(

√
q log q) o(3

√
q) Θ(

√
q log q) o(min(k,

√
q)) k log q No

binary o(q) q o(q) q o(min(k,2q)) k log q No
unbounded o(q) q o(q) q o(k) k log q Yes

Finite Automata Problems, Berkeley 2015 15/35

Overview

1. Three classical problems on finite automata

2. More problems on finite automata

3. Jumping finite automata

4. Boustrophedon finite automata

5. Conclusions

Finite Automata Problems, Berkeley 2015 16/35

Aperiodicity
A regular language is aperiodic if it can be expressed, starting from finite sets,
with the Boolean operations and with concatenation.

Known: A language accepted by some minimum-state DFA A is not aperiodic iff
there is an input word u (star witness) and some state p such that δ∗(p, u) 6= p,
but for some r > 1, δ∗(p, ur) = p.

A reduction due to J. Stern (1985) shows:
Cor.: Assuming ETH, there is no algorithm for solving APERIODICITY for q-state
DFAs on unbounded input alphabets that runs in time O(2o(q)).
Slightly weaker for binary input alphabets.
The mentioned characterization of aperiodicity shows:
Propos.: APERIODICITY can be tested in time O∗(qq) = O∗(2q log q) for q-state
DFAs on unbounded input alphabets.

Still a small gap!
Finite Automata Problems, Berkeley 2015 17/35

Synchronizing words
Given a deterministic finite semi-automaton, i.e., for each a ∈ Σ, a mappting
µa : Q→ Q, a set Qsync ⊆ Q, a Qsync-synchronizing word w ∈ Σ∗ enjoys

∀q, q′ ∈ Qsync : µw(q) = µw(q′) .

Qsync-SW: Is there a Qsync-synchronizing word? PSPACE-complete.
Qsync = Q: Related to Černý’s Conjecture.

Multi-parameter analysis in F., Heggernes, Villanger, JCSS 2015
Q-SW “only” NP-complete (with length bound on synchr. word).

Thm.: There is an algorithm for solving Qsync-SW on unbounded input alpha-
bets that runs in time O∗(2q) for q-state deterministic finite semi-automata.
Conversely, assuming ETH, there is no O∗(2o(q))-time algorithm for this task,
even on bounded input alphabets.

Finite Automata Problems, Berkeley 2015 18/35

Consequences from previous SETH hardness results on SW

Known: No O∗((|Σ| − ε)`)-time algorithm solving SW (for any ε > 0) unless
SETH fails.

Consequences:
There is a straightforward algorithm with running time O∗(|Σ|`) that, given k

DFAs over the input alphabet Σ and an integer `, decides whether or not there
is a word w ∈ Σ≤` accepted by all these DFAs.
Conversely, there is no algorithm that solves this problem in time O((|Σ| − ε)`)
for any ε > 0 unless SETH fails.

Similarly for UNIVERSALITY, EQUIVALENCE

Finite Automata Problems, Berkeley 2015 19/35

Overview

1. Three classical problems on finite automata

2. More problems on finite automata

3. Jumping finite automata

4. Boustrophedon finite automata

5. Conclusions

Finite Automata Problems, Berkeley 2015 20/35

Jumping Finite Automata (JFAs)
Meduna, Zemek IJFCS 2012; F., Paramasivan, Schmid CIAA 2015

sstart r

t

a

bc

b b c a c a b b c a c a

Finite Automata Problems, Berkeley 2015 21/35

Jumping Finite Automata

sstart r

t

a

bc

b b c a c a b b c a c a

Finite Automata Problems, Berkeley 2015 22/35

Jumping Finite Automata

sstart r

t

a

bc

b b c c a b b c a c

Finite Automata Problems, Berkeley 2015 23/35

Jumping Finite Automata

sstart r

t

a

bc

b c c a b c a c

Finite Automata Problems, Berkeley 2015 24/35

Jumping Finite Automata

sstart r

t

a

bc

b c a b a c

Finite Automata Problems, Berkeley 2015 25/35

Jumping Finite Automata

sstart r

t

a

bc

b c b c

Finite Automata Problems, Berkeley 2015 26/35

Jumping Finite Automata

sstart r

t

a

bc

c c

Finite Automata Problems, Berkeley 2015 27/35

Jumping Finite Automata

sstart r

t

a

bc

Finite Automata Problems, Berkeley 2015 28/35

Jumping Finite Automata

sstart r

t

a

bc

Accepted language: {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}

Finite Automata Problems, Berkeley 2015 29/35

Hard questions for JFAs
All hardness results for tally NFAs transfer.
New specific hard questions:
UNIVERSAL MEMBERSHIP: NP-hardness reduction by V. Vorel as a starting point.
Different reductions by Mayer, Stockmeyer Inf. & Comput. 1994; F., Paramasivan, Schmid 2015

Thm.: Under ETH, there is no algorithm solving 1-in-3-SAT in time O∗(2o(n)) or
O∗(2o(m)) on CNF formulae with n variables and m clauses.
Cor.: Under ETH, there is no algorithm solving UNIVERSAL MEMBERSHIP for
JFAs in time O∗(2o(n)) or O∗(2o(m)) on automata with at most n states and
input words of length at most n, with input alphabet bounded by m = |Σ|.
Upper bound: O∗(n!) (poly-space); alternatively DP yields O∗(2n).
Another interesting (hard) problem:
2-JFA-INTERSECTION-NONEMPTINESS (unbounded alphabets)

Finite Automata Problems, Berkeley 2015 30/35

Overview

1. Three classical problems on finite automata

2. More problems on finite automata

3. Jumping finite automata

4. Boustrophedon finite automata

5. Conclusions

Finite Automata Problems, Berkeley 2015 31/35

Example: BFAs (boustrophedon finite automata)
see F., Paramasivan, Schmid, Thomas IWCIA 2015

s x · · · #
x · · ·
x · · ·
x · · ·
x x x x

`M

s1 · · ·
x · · ·
x · · ·
x · · ·
x x x x

`M

s1 · ·
x · · ·
x · · ·
x · · ·
x x x x

`2
M

s1
x · · ·
x · · ·
x · · ·
x x x x

`M

#
x · · · s2
x · · ·
x · · ·
x x x x

`3
M

#
x s2
x · · ·
x · · ·
x x x x

`M

#
s3
x · · ·
x · · ·
x x x x

`M

#
#
s x · · · #
x · · ·
x x x x

`M

#
#
s1 · · ·
x · · ·
x x x x

`3
M

#
#
s1
x · · ·
x x x x

`M

#
#
#
x · · · s2
x x x x

`3
M

#
#
#
x s2
x x x x

`M

#
#
#
s3
x x x x

`M

#
#
#
#
s4 x x x x #

`4
M

#
#
#
#
s4

ACCEPT !

sstart s1 s2

s3

s4
x

#

· ·

x
#

#

x #

The non-emptiness problem for B(D)FAs is NP-complete.
The inequivalence problem for BDFAs is NP-complete.
State minimization for BDFAs is NP-hard.
Finite Automata Problems, Berkeley 2015 32/35

The ETH perspective
NON-EMPTINESS for BFAs ≈ INTERSECTION NON-EMPTINESS OF TALLY FAS.
Recall previous constructions: 3-COLORING≤INTERSECTION NON-EMPTINESS

k ≈ n+m, q ≈ n2

; the related BFA has ≈ (n+m)n2 many states
This can be improved to ≈ (n+m)n by building loops sequentially.

Thm.: There is no algorithm that, given some BFA A with at most q states,
decides if L(A) 6= ∅ in time O∗(2o(

√
q)) unless ETH fails.

Conversely, this problem can be solved in time O∗(qq).

Open: Close the gap!

Finite Automata Problems, Berkeley 2015 33/35

Conclusions

Finite automata do offer quite some interesting hard problems.

Hardly ever studied under ETH.

Many questions still open, trying to match upper and lower bounds.

Recall tally problems: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).

LB for INTERSECTION NONEMPTINESS of DFAs (O∗(2o(min{k,2q}))) looks bad,
compared to UB O∗(qk).
etc. . . .

What about measuring number of transitions, not states?

Finite Automata Problems, Berkeley 2015 34/35

Thanks for your attention!

Thanks for support through

Theoretische

Informatik Trier

Finite Automata Problems, Berkeley 2015 35/35

