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ETH and SETH A simplified view

Exponential Time Hypothesis: 3-SAT instances (with n variables andm clauses)
cannot be solved in time O∗(2o(n)).
Sparsification Lemma: If ETH holds, then 3-SAT instances cannot be solved in
time O∗(2o(n+m)).

Strong Exponential Time Hypothesis: SAT instances on n variables cannot
be solved in time O∗((2− ε)n) for any ε > 0.

Known: SETH implies ETH
ETH implies: FPT 6= W[1]
There is a 1-1 correspondence between SUBEXP vs. EXP and FPT vs. XP
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Problems on Finite Automata

non-universality
Given an automaton A with input alphabet Σ, is L(A) 6= Σ∗?

inequivalence
Given two automata A1, A2, is L(A1) 6= L(A2)?

intersection non-emptiness
Given k automata A1, . . . , Ak, is

⋂k
i=1L(Ai) 6= ∅?

Finite Automata Problems, Berkeley 2015 4/35



Classical Status

DFA NFA
non-universality poly-time PSPACE-complete
inequivalence poly-time PSPACE-complete
intersection 6= ∅ PSPACE-complete PSPACE-complete

; Focus on NFAs.
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Classical Status for NFA-problems

NFA unary binary
non-universality NP-complete PSPACE-complete
inequivalence NP-complete PSPACE-complete
intersection 6= ∅ NP-complete PSPACE-complete

Even unary input alphabets are interesting.
intersection 6= ∅ is then NP-complete also for DFAs.

Previously unknown: Complexity status under ETH ; main topic of the talk
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Tally NFAs (unary input alphabets)
nothing else than directed graphs (edge labels not interesting)
UNIVERSALITY hence models the folllowing scenary:
Can somebody living in the blue circle visit the red one in any number of steps?

This question is trivial for undirected graphs. . .
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Non-universality for Tally NFAs: NP-hardness by Stockmeyer & Meyer 1973
Reduction from 3-SAT © (n variables, m clauses)
Idea: Codify assignments by Chinese remainder.
Take the first n primes p1, . . . , pn; Ex.: p1 = 2, p2 = 3, p3 = 5.
az encodes assignment α if z ≡ α(xi) mod pi;
Ex.: α(x1) = 0, α(x2) = 1, α(x3) = 1 ; z = 16.
Recall: pn ∼ n lnn.
∃ NFAA0 for L0 :=

⋃n
k=2

⋃pk−1
j=2 {a}

j{apk}∗ with≤ npn ∼ n2 lnnmany states.
L0 collects words that do not encode assignments. Ex.: aa ∈ L0.
Lj := {azkj} · {a

pij(1)···pij(|cj |)}∗ with 0 ≤ zkj < pij(1) · · · pij(|cj|) is uniquely
determined by zkj ≡ α(xr) mod pij(r) for r = 1, . . . , |c(j)| s.t. α falsifies cj.
ij(`) is the index of the `th variable in clause cj.
As pij(1) · · · pij(|cj|) ≤ p

3
n (3-SAT), Lj is accepted by a DFA with ≤ p3

n states.

Altogether, the NFA has at most mp3
n states: quite a many! §
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Non-universality for Tally NFAs: NP-hardness (Stockmeyer & Meyer 1973)

Cor.: Unless ETH fails, for any ε > 0, there is no O∗(2o(q
1/4−ε))-time algorithm

for deciding, given a tally NFA A on q states, whether L(A) = {a}∗.

The algorithmic side:
Textbook algorithm (conversion into DFAs) yields O∗(2q)-time algorithm.
Chrobak 1986 (conversion into DFAs): improvement to O∗(2Θ(

√
q log q)).

Can we bring these bounds together?

Let us improve on the lower bound.
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An auxiliary result yields an improved lower bound

Thm.: Unless ETH fails, there is no O∗(2o(m))-time algorithm for deciding if a
given m-edge graph has a (proper) 3-coloring.

See Fedor’s talk . . . / W.l.o.g., m = O(n).

Now, mimic proof of Stockmeyer / Meyer, reducing from 3-COLORING.
variables ≈ vertices / clauses ≈ edges
(a) Coloring condition has two vertices, not three variables ; improvement
(b) Moreover, more efficient encoding ; no ε-term

Thm.: Unless ETH fails, there is no O∗(2o(q
1/3))-time algorithm for deciding,

given a tally NFA A on q states, whether L(A) = {a}∗.

Open: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).
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Inequivalence for Tally NFAs

Cor.: Unless ETH fails, there is no O∗(2o(q
1/3))-time algorithm for deciding,

given two tally NFAs A1, A2, each on q states, whether L(A1) = L(A2).

The algorithmic side:
Convert both NFAs into DFAs (Chrobak 1986);
then use complementation and emptiness tests.
Complexity: O∗(2Θ(

√
q log q)).

Open: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).

Same results for TALLY NFA NON-INCLUSION.
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Intersection Non-emptiness for Tally FAs

Thm.: There is no algorithm that, given k tally DFAs (or NFAs) A1, . . . , Ak, each
with at most q states, decides if

⋂k
i=1L(Ai) 6= ∅ in time O∗(2o(min(k,q1/2)))

unless ETH fails.

Revisit previous constructions:
k ≈ n+m, q ≈ n2.

The algorithmic side: UB O∗(qk) is terribly far off. §
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Non-Tally FAs with bounded alphabets

Thm.: Assuming ETH, there is no algorithm for solving UNIVERSALITY for q-state
NFAs with binary input alphabets that runs in time O(2o(q)).

Idea: Reduction from 3-COLORING.

This matches the DFA construction. ©

(Basically) the same (matching) result for INEQUIVALENCE for binary NFAs.

For INTERSECTION NONEMPTINESS of DFAs, we get a weaker result:
Cor.: There is no algorithm that, given k DFAs A1, . . . , Ak with binary input
alphabet, each with at most q states, decides in time O∗(2o(min{k,2q})) if⋂k
i=1L(Ai) 6= ∅ unless ETH fails.
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Non-Tally FAs with unbounded alphabets

Thm.: There is no algorithm that, given k DFAs A1, . . . , Ak with unbounded in-
put alphabet, each with at most 3 states, decides in time O∗(2o(k)) if⋂k
i=1L(Ai) 6= ∅ unless ETH fails.

This matches the product automaton upper bound O∗(3k). ©

Reduction from 3-COLORING:
Choose alphabet Σ = V × C, C = {1,2,3}.

For all vertices v, Av:
sstart t r

{v} × C

{v} × C

{v} × C

{v} × C

Σ

For all edges uv, Auv,a:
sstart r t

{(u, a)}

(u, a)

{(v, a)}

(v, a)

Σ
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Summary of the Classical Problems for q-State NFAs in O∗(2f(·))-estimates

input alphabet UNIVERSALITY EQUIVALENCE k-NFA-INTERSECTION Done?Lower Upper Lower Upper Lower Upper
unary o( 3

√
q) Θ(

√
q log q) o( 3

√
q) Θ(

√
q log q) o(min(k,

√
q)) k log q No

binary o(q) q o(q) q o(min(k,2q)) k log q No
unbounded o(q) q o(q) q o(k) k log q Yes
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Aperiodicity
A regular language is aperiodic if it can be expressed, starting from finite sets,
with the Boolean operations and with concatenation.

Known: A language accepted by some minimum-state DFA A is not aperiodic iff
there is an input word u (star witness) and some state p such that δ∗(p, u) 6= p,
but for some r > 1, δ∗(p, ur) = p.

A reduction due to J. Stern (1985) shows:
Cor.: Assuming ETH, there is no algorithm for solving APERIODICITY for q-state
DFAs on unbounded input alphabets that runs in time O(2o(q)).
Slightly weaker for binary input alphabets.
The mentioned characterization of aperiodicity shows:
Propos.: APERIODICITY can be tested in time O∗(qq) = O∗(2q log q) for q-state
DFAs on unbounded input alphabets.

Still a small gap!
Finite Automata Problems, Berkeley 2015 17/35



Synchronizing words
Given a deterministic finite semi-automaton, i.e., for each a ∈ Σ, a mappting
µa : Q→ Q, a set Qsync ⊆ Q, a Qsync-synchronizing word w ∈ Σ∗ enjoys

∀q, q′ ∈ Qsync : µw(q) = µw(q′) .

Qsync-SW: Is there a Qsync-synchronizing word? PSPACE-complete.
Qsync = Q: Related to Černý’s Conjecture.

Multi-parameter analysis in F., Heggernes, Villanger, JCSS 2015
Q-SW “only” NP-complete (with length bound on synchr. word).

Thm.: There is an algorithm for solving Qsync-SW on unbounded input alpha-
bets that runs in time O∗(2q) for q-state deterministic finite semi-automata.
Conversely, assuming ETH, there is no O∗(2o(q))-time algorithm for this task,
even on bounded input alphabets.
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Consequences from previous SETH hardness results on SW

Known: No O∗((|Σ| − ε)`)-time algorithm solving SW (for any ε > 0) unless
SETH fails.

Consequences:
There is a straightforward algorithm with running time O∗(|Σ|`) that, given k

DFAs over the input alphabet Σ and an integer `, decides whether or not there
is a word w ∈ Σ≤` accepted by all these DFAs.
Conversely, there is no algorithm that solves this problem in time O((|Σ| − ε)`)
for any ε > 0 unless SETH fails.

Similarly for UNIVERSALITY, EQUIVALENCE
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Jumping Finite Automata (JFAs)
Meduna, Zemek IJFCS 2012; F., Paramasivan, Schmid CIAA 2015

sstart r

t

a

bc

b b c a c a b b c a c a
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Jumping Finite Automata

sstart r

t

a

bc

b b c a c a b b c a c a
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Jumping Finite Automata

sstart r

t

a

bc

b b c c a b b c a c
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Jumping Finite Automata

sstart r

t

a

bc

b c c a b c a c

Finite Automata Problems, Berkeley 2015 24/35



Jumping Finite Automata

sstart r

t

a

bc

b c a b a c
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Jumping Finite Automata

sstart r

t

a

bc

b c b c
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Jumping Finite Automata

sstart r

t

a

bc

c c
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Jumping Finite Automata

sstart r

t

a

bc
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Jumping Finite Automata

sstart r

t

a

bc

Accepted language: {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}
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Hard questions for JFAs
All hardness results for tally NFAs transfer.
New specific hard questions:
UNIVERSAL MEMBERSHIP: NP-hardness reduction by V. Vorel as a starting point.
Different reductions by Mayer, Stockmeyer Inf. & Comput. 1994; F., Paramasivan, Schmid 2015

Thm.: Under ETH, there is no algorithm solving 1-in-3-SAT in time O∗(2o(n)) or
O∗(2o(m)) on CNF formulae with n variables and m clauses.
Cor.: Under ETH, there is no algorithm solving UNIVERSAL MEMBERSHIP for
JFAs in time O∗(2o(n)) or O∗(2o(m)) on automata with at most n states and
input words of length at most n, with input alphabet bounded by m = |Σ|.
Upper bound: O∗(n!) (poly-space); alternatively DP yields O∗(2n).
Another interesting (hard) problem:
2-JFA-INTERSECTION-NONEMPTINESS (unbounded alphabets)
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Example: BFAs (boustrophedon finite automata)
see F., Paramasivan, Schmid, Thomas IWCIA 2015

s x · · · #
# x · · · #
# x · · · #
# x · · · #
# x x x x #

`M

# s1 · · · #
# x · · · #
# x · · · #
# x · · · #
# x x x x #

`M

# s1 · · #
# x · · · #
# x · · · #
# x · · · #
# x x x x #

`2
M

# s1 #
# x · · · #
# x · · · #
# x · · · #
# x x x x #

`M

# #
# x · · · s2
# x · · · #
# x · · · #
# x x x x #

`3
M

# #
# x s2 #
# x · · · #
# x · · · #
# x x x x #

`M

# #
# s3 #
# x · · · #
# x · · · #
# x x x x #

`M

# #
# #
s x · · · #
# x · · · #
# x x x x #

`M

# #
# #
# s1 · · · #
# x · · · #
# x x x x #

`3
M

# #
# #
# s1 #
# x · · · #
# x x x x #

`M

# #
# #
# #
# x · · · s2
# x x x x #

`3
M

# #
# #
# #
# x s2 #
# x x x x #

`M

# #
# #
# #
# s3 #
# x x x x #

`M

# #
# #
# #
# #
s4 x x x x #

`4
M

# #
# #
# #
# #
# s4 #

ACCEPT !

sstart s1 s2

s3

s4
x

#

· ·

x
#

#

x #

The non-emptiness problem for B(D)FAs is NP-complete.
The inequivalence problem for BDFAs is NP-complete.
State minimization for BDFAs is NP-hard.
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The ETH perspective
NON-EMPTINESS for BFAs ≈ INTERSECTION NON-EMPTINESS OF TALLY FAS.
Recall previous constructions: 3-COLORING≤INTERSECTION NON-EMPTINESS

k ≈ n+m, q ≈ n2

; the related BFA has ≈ (n+m)n2 many states
This can be improved to ≈ (n+m)n by building loops sequentially.

Thm.: There is no algorithm that, given some BFA A with at most q states,
decides if L(A) 6= ∅ in time O∗(2o(

√
q)) unless ETH fails.

Conversely, this problem can be solved in time O∗(qq).

Open: Close the gap!
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Conclusions

Finite automata do offer quite some interesting hard problems.

Hardly ever studied under ETH.

Many questions still open, trying to match upper and lower bounds.

Recall tally problems: Match LB O∗(2o(
3√q)) with UB O∗(2Θ(

√
q log q)).

LB for INTERSECTION NONEMPTINESS of DFAs (O∗(2o(min{k,2q}))) looks bad,
compared to UB O∗(qk).
etc. . . .

What about measuring number of transitions, not states?
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Thanks for your attention!

Thanks for support through

Theoretische

Informatik Trier 
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