An Isomorphism between Parameterized Complexity and Classical Complexity, for both Time and Space

Yijia Chen

Fudan University

November 6th, 2015 @ Simons Institute

Find exponential time algorithms for NP-hard problems beating the brute-force search.

Conjecture (ETH)

There is no algorithm solving $3S_{AT}$ in time $2^{o(n)}$.

Find algorithms for NP-hard problems whose superpolynomial behavior is confined in some parameter.

$\mathsf{Conjecture}\; (\mathsf{FPT} \neq \mathsf{W[1]})$

There is no algorithm solving k-CLIQUE in time $f(k) \cdot n^{O(1)}$, i.e., k-CLIQUE is not fixed-parameter tractable.

The connection

Theorem (Downey and Fellows, 1999) ETH *implies* FPT \neq W[1].

The converse has been a major open problem, and seems hard to prove:

Theorem (Chen et. al, 2004)

ETH implies that k-CLIQUE is not decidable in time $f(k) \cdot n^{o(k)}$.

An equivalence

Theorem (C. and Grohe, 2007) FPT = W[1] if and only if k-CLIQUE is decidable in time

 $2^{o(k \cdot \log n)} \cdot n^{O(1)}.$

Remark

The brute-force algorithm for k-CLIQUE has running time

 $n^{k+O(1)} = 2^{k \cdot \log n} n^{O(1)}.$

Another equivalence

Theorem (Cai and Juedes, 2003)

ETH fails if and only if the miniaturization of 3SAT is fixed-parameter tractable.

Anything Similar in Space Complexity?

A central problem in classical space complexity

stConn

Input: A directed graph G and $s, t \in V(G)$. Problem: Is there a path from s to t in G?

Theorem

- 1. STCONN *is complete for* NL.
- 2. STCONN is decidable in space $O(\log^2 n)$, i.e., Savitch's Theorem.

Question

Can we decide STCONN in space $o(\log^2 n)$?

$\mathsf{Parameterized} \ \mathtt{STCONN}$

<i>k</i> -stConn	
Input:	A directed graph G, $s, t \in V(G)$, and $k \in \mathbb{N}$.
Parameter:	<i>k</i> .
Problem:	Is there a path from s to t in G of length $\leq k$?

Question

Can we decide k-STCONN in space

 $f(k) + O(\log n)?$

Equivalently, is k-STCONN in parameterized logspace?

The brute-force algorithm decides k-STCONN in space $k \cdot \log n + O(\log n)$. Question k-STCONN $\in \mathsf{DSPACE}(o(k \cdot \log n) + O(\log n))?$

If so, then k-STCONN is in parameterized logspace.

Theorem (Savitch, 1969)

There is an algorithm deciding k-STCONN in space

 $O(\log k \cdot \log n).$

Note $O(\log k \cdot \log n) \neq o(k \cdot \log n)$ by considering fixed k and $n \to \infty$.

Question k-STCONN \in DSPACE $(o(\log k \cdot \log n) + O(\log n))$?

Theorem (C. and Müller, 2014) k-STCONN \in DSPACE $(f(k) + O(\log n)) \Longrightarrow$ STCONN \in DSPACE $(o(\log^2 n))$. Recall k-CLIQUE \in DTIME $(f(k)n^{O(1)}) \Longrightarrow$ 3SAT \in DTIME $(2^{o(n)})$.

Theorem (C., Flum, and Müller, 2015) k-stConn \in DSPACE $(f(k) + o(\log k) \cdot \log n) \implies$ stConn \in DSPACE $(o(\log^2 n))$. Recall k-CLIQUE \in DTIME $(f(k)n^{o(k)}) \implies$ 3SAT \in DTIME $(2^{o(n)})$. Theorem (*C*. , Flum, and Müller, 2015) *We have the equivalences:*

 $k\text{-stConn} \in \mathsf{DSPACE}(f(k) + O(\log n))$ $\iff k\text{-stConn} \in \mathsf{DSPACE}(o(k \cdot \log n) + O(\log n))$ $\iff k\text{-stConn} \in \mathsf{DSPACE}(o(\log k \cdot \log n) + O(\log n))$

Recall k-CLIQUE \in DTIME $(f(k)n^{o(k)}) \iff k$ -CLIQUE \in DTIME $(2^{o(k \cdot \log n)}n^{O(1)})$.

Easy direct proof for the space case

 $k\text{-stConn} \in \mathsf{DSPACE}(f(k) + O(\log n))$ $\iff k\text{-stConn} \in \mathsf{DSPACE}(o(k \cdot \log n) + O(\log n)):$

 $(\iff) o(k \cdot \log n) \le f(k) + \log n.$ (\Longrightarrow) An assumed algorithm for k-STCONN can find a path of length at most $d := d(n) = f^{-1}(\log n)$

in logspace. Then we can modify Savitch's algorithm in such a way that every time we divide the path of length at most k_i into d sub-paths of length at most

$$k_{i+1} := \frac{k_i}{d}$$

Thus the total space is bounded

$$O\left(\log_d k \cdot \log n\right) = O\left(\frac{\log k}{\log d} \cdot \log n\right) = o(\log k \cdot \log n) = o(k \cdot \log n). \quad \Box$$

- 1. FPT = W[1] if and only if k-CLIQUE is decidable in time $2^{o(k \cdot \log n)} \cdot n^{O(1)}$.
- 2. ETH fails if and only if the miniaturization of k-CLIQUE is fixed-parameter tractable.
- 3. k-STCONN \in DSPACE $(f(k) + O(\log n))$ if and only if k-STCONN \in DSPACE $(o(k \cdot \log n) + O(\log n))$.

The Miniaturization Isomorphism

Parameterization vs. Size Measure

Let $Q \subseteq \Sigma^*$ be a classical problem. A parameterization $\kappa : \Sigma^* \to \mathbb{N}$ and a size measure $\nu : \Sigma^* \to \mathbb{N}$ are both logspace computable functions.

- The parameter $\kappa(x)$ is supposed to be much smaller than |x|.
- The size measure $\nu(x)$ is supposed to be the length of an NP-witness of x.

Example

- 1. k-CLIQUE: $\kappa(G, k) := k \text{ or } \nu(G, k) := k \cdot \log n$.
- 2. k-STCONN: $\kappa(G, k) := k$ or $\nu(G, k) := k \cdot \log n$.
- 3. 3SAT: $\nu(\alpha) := \# \operatorname{var}(\alpha)$ or $\nu(\alpha) := \# \operatorname{clause}(\alpha)$.

Tractability for time complexity

	Parameterized Complexity	Classical Complexity
Tractability	$(Q,\kappa)\inFPT$	$(Q, \nu) \in SUBEXP$
	i.e., $DTIME(f(\kappa(x)) x ^{O(1)})$	i.e., $DTIME(2^{o(\nu(x))} x ^{O(1)})$
Intractability	$(Q,\kappa)\in XP$	$(Q, \nu) \in EXP$
	i.e., $DTIME(x ^{f(\kappa(x))})$	i.e., $DTIME(2^{O(\nu(x))} x ^{O(1)})$

- 1. EXP: enumerate all NP-witnesses for x.
- 2. SUBEXP: avoid the enumeration.

Reductions

	Parameterized Complexity	Classical Complexity
many-one	fpt-reduction	serf-reduction
many-to-many	fpt Turing reduction	serf Turing reduction

- 1. FPT and XP are closed under fpt- and fpt Turing reductions.
- 2. SUBEXP and EXP are closed under serf- and serf Turing reductions.

Lemma (Impagliazzo, Paturi, and Zane, 2001)

 $(3SAT, #var(\alpha))$ is reducible to $(3SAT, #clause(\alpha))$ by a serf Turing reduction.

Tractability for space complexity

	Parameterized Complexity	Classical Complexity
Tractability	$(Q,\kappa) \in para-L$	$(Q, \nu) \in SUBLIN$
	i.e., $DSPACE(f(\kappa(x)) + O(\log x))$	i.e., $DSPACE(o(\nu(x)) + O(\log x))$
Intractability	$(Q,\kappa)\inXL$	$(Q, \nu) \in LIN$
	i.e., $DSPACE(f(\kappa(x)) \log x)$	i.e., $DSPACE(O(\nu(x)) + O(\log x))$

- 1. LIN: store NP-witnesses for x.
- 2. SUBLIN: avoid storing NP-witnesses for x.

Reductions

	Parameterized Complexity	Classical Complexity
many-one	pl-reduction	slrf-reduction
many-to-many	pl Turing reduction	slrf Turing reduction

- 1. para-L and XL are closed under pl- and pl Turing reductions.
- 2. SUBLIN and LIN are closed under slrf- and slrf Turing reductions.

Let $Q \subseteq \Sigma^*$ be a problem and ν its size measure.

The Isomorphism for Time Complexity (1)

Theorem

- 1. $(Q, \nu) \in \text{SUBEXP} \iff \text{MINI}(Q, \nu) \in \text{FPT}.$
- 2. $(Q, \nu) \in \mathsf{EXP} \iff \operatorname{Mini}(Q, \nu) \in \mathsf{XP}.$
- 3. $(Q_1, \nu_1) \leq^{\text{serf}} (Q_2, \nu_2) \iff \text{MINI}(Q_1, \nu_1) \leq^{\text{fpt}} \text{MINI}(Q_2, \nu_2).$

The Isomorphism for Time Complexity (2)

Theorem For any $(P,\kappa) \in XP$ there exists a $(Q,\nu) \in \mathsf{EXP}$ such that

$$(P,\kappa) =^{\text{fpt}} \text{MINI}(Q,\nu).$$

The Isomorphism for Time Complexity (3)

Theorem For any $(P, \kappa) \in XP$ there exists a $(Q, \nu) \in EXP$ such that $(P, \kappa) = {}^{\text{fpt}} \operatorname{Mini}(Q, \nu).$

 $(Q, \nu) \in \mathsf{EXP}$ constructed in the proof is artificial.

Theorem

$$(k$$
-CLIQUE, k) =^{fpt} MINI $(k$ -CLIQUE, $k \cdot \log n$).

Hence, k-CLIQUE \in DTIME $(f(k)n^{O(1)})$ if and only if k-CLIQUE \in DTIME $(2^{o(k \cdot \log n)}n^{O(1)})$.

The Isomorphism for Space Complexity (1)

Theorem

- 1. $(Q, \nu) \in \text{SUBLIN} \iff \text{MINI}(Q, \nu) \in \text{para-L}.$
- 2. $(Q, \nu) \in \mathsf{LIN} \iff \mathsf{MINI}(Q, \nu) \in \mathsf{XL}.$
- 3. $(Q_1, \nu_1) \leq^{\mathsf{slrf}} (Q_2, \nu_2) \iff \operatorname{MINI}(Q_1, \nu_1) \leq^{\mathsf{pl}} \operatorname{MINI}(Q_2, \nu_2).$

The Isomorphism for Space Complexity (2)

Theorem For any $(P, \kappa) \in XL$ there exists a $(Q, \nu) \in LIN$ such that

$$(P,\kappa) =^{\mathsf{pl}} \operatorname{MINI}(Q,\nu).$$

The Isomorphism for Space Complexity (3)

Theorem For any $(P, \kappa) \in XL$ there exists a $(Q, \nu) \in LIN$ such that

$$(P,\kappa) =^{\mathsf{pl}} \operatorname{MINI}(Q,\nu).$$

Theorem

$$(k$$
-stConn, k) =^{pl} Mini $(k$ -stConn, $k \cdot \log n$).

Hence, k-stConn \in DSPACE $(f(k) + O(\log n))$ if and only if k-stConn \in DSPACE $(o(k \cdot \log n) + O(\log n))$.

An application

Many tight bounds under ETH, what about STCONN \notin DSPACE($o(\log^2 n)$)?

Theorem (C., Elberfeld, Flum, and Müller, 2015)

For every $d \ge 2$ there is an algorithm deciding

Input:	A database $\mathcal A$ and a Boolean conjunctive query φ with d variables.
Parameter: Problem:	$ert arphi ert .$ Decide whether $\mathcal{A} \models arphi .$

in space

 $O(\log |\varphi| \cdot \log |\mathcal{A}|).$

Assume $STCONN \notin DSPACE(o(\log^2 n))$. Then there is no algorithm using space

 $f(|\varphi|) + o(\log |\varphi|) \cdot \log |\mathcal{A}|.$

THANK YOU