An Isomorphism between Parameterized
Complexity and Classical Complexity, for both
Time and Space

Yijia Chen

Fudan University

November 6™, 2015 @ Simons Institute

Exponential complexity

Find exponential time algorithms for NP-hard problems beating the brute-force
search.

Conjecture (ETH)

There is no algorithm solving 3SAT in time 2°),

Parameterized complexity

Find algorithms for NP-hard problems whose superpolynomial behavior is
confined in some parameter.

Conjecture (FPT # W[1])

There is no algorithm solving k-CLIQUE in time f(k) - n°®, ie., k-CLIQUE is
not fixed-parameter tractable.

The connection

Theorem (Downey and Fellows, 1999)
ETH implies FPT # WI].

The converse has been a major open problem, and seems hard to prove:

Theorem (Chen et. al, 2004)
ETH implies that k-CLIQUE is not decidable in time f(k) - n°").

An equivalence

Theorem (C. and Grohe, 2007)
FPT = WI[1] if and only if k-CLIQUE is decidable in time

20(k<|og n) .0(1)

n

Remark
The brute-force algorithm for k-CLIQUE has running time

nk+0(1) _ 2k~|og nnO(l))

Another equivalence

Theorem (Cai and Juedes, 2003)

ETH fails if and only if the miniaturization of 3SAT is fixed-parameter tractable.

Anything Similar in Space Complexity?

A central problem in classical space complexity

STCONN
Input: A directed graph G and s, t € V(G).
Problem: |s there a path from s to t in G?

Theorem

1. sTCONN is complete for NL.

2. STCONN s decidable in space O(log? n), i.e., Savitch’s Theorem.

Question
Can we decide STCONN in space o(log? n)?

Parameterized STCONN

k-STCONN
Input: A directed graph G, s,t € V(G), and k € N.
Parameter: k.
Problem: Is there a path from s to t in G of length < k?

Question
Can we decide k-sTCONN in space

f(k) + O(log n)?

Equivalently, is k-sTCONN in parameterized logspace?

The brute-force algorithm decides k-STCONN in space k - log n + O(log n).

Question k-sTCONN € DSPACE(o(k +log n) + O(log ”))?

If so, then k-STCONN s in parameterized logspace.

Theorem (Savitch, 1969)
There is an algorithm deciding k-STCONN in space

O(log k - log n).
Note O(log k - log n) # o(k - log n) by considering fixed k and n — oo.

Questlon k-sTCONN € DSPACE(OUOg k- |og n) + O(|Og n)>7

The space analogy (1)

Theorem (C. and Miiller, 2014)
k-sTCONN € DSPACE(f (k) 4+ O(log n)) = sTCONN € DSPACE(o(log® n)).

Recall k-CLIQUE € DTIME(f(k)n°Y) = 3Sar € DTIME(2°(").

Theorem (C. , Flum, and Miiller, 2015)
k-sTCONN € DSPACE(f(k) + o(log k) - log n) => sTCoNN € DSPACE (o(log? n)).

Recall k-CLIQUE € DTIME(f(k)n°®) = 3SaT € DTIME(2°(").

The space analogy (2)

Theorem (C. , Flum, and Miiller, 2015)

We have the equivalences:
k-sTCONN € DSPACE(f (k) + O(log n))
<= k-sTCONN € DSPACE (o(k - log n) + O(log n))
<= k-sTCONN € DSPACE (o(log k - log n) + O(log n))

Recall
k-CLIQUE € DTIME(f(k)n°®) <= k-CLIQUE € DTIME(2°(k'ee " nO1)),

Easy direct proof for the space case

k-sTCONN € DSPACE(f (k) 4+ O(log n))
<= k-sTCONN € DSPACE (o(k - log n) + O(log n)) :

(<=) o(k -logn) < f(k) + log n.
(=) An assumed algorithm for k-sSTCONN can find a path of length at most
d = d(n) = f *(log n)

in logspace. Then we can modify Savitch's algorithm in such a way that every
time we divide the path of length at most k; into d sub-paths of length at most

ki
k,'+1 = —.

d
Thus the total space is bounded

O (log, k -logn) = O (:Z:Z - log n) = o(logk -logn) = o(k -logn). O

Unifying Proofs for

1. FPT = WJ[1] if and only if k-CLIQUE is decidable in time 2°(°g™ . ,O(),

2. ETH fails if and only if the miniaturization of k-CLIQUE is fixed-parameter
tractable.

3. k-sTCONN € DSPACE(f(k) + O(log n)) if and only if
k-sTCONN € DSPACE (o(k - log n) + O(log n)).

The Miniaturization Isomorphism

Parameterization vs. Size Measure

Let @ C X be a classical problem. A parameterization x : X* — N and a size
measure v : X* — N are both logspace computable functions.

- The parameter x(x) is supposed to be much smaller than |x|.

- The size measure v(x) is supposed to be the length of an NP-witness of x.

Example
1. k-CLIQUE: k(G, k) := k or v(G, k) := k - logn.
2. k-sTCONN: (G, k) := k or v(G, k) := k - log n.
3. 3SAT: v(a) := #var(a) or v(a) := #clause(a).

Tractability for time complexity

Parameterized Complexity

Classical Complexity

Tractability | (Q,x) € FPT

i.e., DTIME (f(x(x))|x|°®)

(Q,v) € SUBEXP

ie. DTIME(Z"(”(X))\X\O(I))

Intractability | (Q,x) € XP

i.e., DTIME |x|7(=(D)

1. EXP: enumerate all NP-witnesses for x.

2. SUBEXP: avoid the enumeration.

(Q,v) EEXP

ie. DTIME(2O(“(X))\X‘O(1))

Reductions

Parameterized Complexity | Classical Complexity

many-one | fpt-reduction serf-reduction

many-to-many | fpt Turing reduction serf Turing reduction

1. FPT and XP are closed under fpt- and fpt Turing reductions.

2. SUBEXP and EXP are closed under serf- and serf Turing reductions.

Lemma (Impagliazzo, Paturi, and Zane, 2001)
(3SaT, #var(a)) is reducible to (3SAT, #clause(c)) by a serf Turing reduction.

Tractability for space complexity

Parameterized Complexity Classical Complexity

Tractability | (Q,x) € para-L (Q,v) € SUBLIN

ie., DSPACE(f(m(x))+O(Iog\x\)) ie., DSPACE(o(u(x))+O(Iog\x\))

Intractability | (Q,x) € XL (Q,v) € LIN

i.e., DSPACE(f(rc(x))Iog\x\) ie., DSPACE(O(u(x))+ 0(|og\x\))

1. LIN: store NP-witnesses for x.

2. SUBLIN: avoid storing NP-witnesses for x.

Reductions

Parameterized Complexity

Classical Complexity

many-one

pl-reduction

slrf-reduction

many-to-many

pl Turing reduction

slrf Turing reduction

1. para-L and XL are closed under pl- and pl Turing reductions.

2. SUBLIN and LIN are closed under slrf- and slrf Turing reductions.

The Miniaturization

Let @ C X be a problem and v its size measure.

MiN(Q, v)
Input: x € ¥* and m in unary with m > |x]|.
Parameter: [I’;;XH .
Problem: Decide whether x € Q.

The Isomorphism for Time Complexity (1)

EXP

MiNI(Qq, 1) (Q1,v1)

Tfptfreduction Iserf—reduction

\ / (@2, v2)
MiNI(Qp, o) (Qo, vo)
FPT \ \ { / SUBEXP

Theorem

1. (Q,v) € SUBEXP <= MINI(Q,v) € FPT.
2. (Q,v) € EXP <= MINI(Q,v) € XP.
3. (Ql, 1/1) Sserf (Qz, 1/2) < N[INI(Ql,I/l) Sfpt NIINI(Qz,I/z).

MiNI(Q2, v7)

The Isomorphism for Time Complexity (2)

(P, k) =P'MiNy(Q, v)

Theorem
For any (P, k) € XP there exists a (Q,v) € EXP such that

(P, k) =™ MINI(Q, V).

The Isomorphism for Time Complexity (3)

Theorem
For any (P, k) € XP there exists a (Q,v) € EXP such that

(P, k) =" MINI(Q, v).
(Q,v) € EXP constructed in the proof is artificial.
Theorem

(k-CLIQUE, k) =" MINI(k-CLIQUE, k - log n).

Hence, k-CLique € DTIME f(k)n°®) if and only if
k-CLIQUE € DTIME (20(“0% "),,0(1)),

The Isomorphism for Space Complexity (1)

LIN

MiNI(Qq, 1) (Q1,v1)

T pl-reduction Islrf—reduction

\ / (Q2,v2)
MiNI(Qp, o) (Qo, vo)
para-L \ \ { / SUBLIN

Theorem

1. (Q,v) € SUBLIN <= MINI(Q,v) € para-L.
2. (Q,v) € LIN < MIN(Q,v) € XL.
3. (Ql, 1/1) SSM (Qz, 1/2) = MINI(Ql, 1/1) Spl NIINI(Qz,I/z).

MiNI(Q2, v7)

The Isomorphism for Space Complexity (2)

(P, k) =P'MNI(Q,)

LIN

Theorem
For any (P, k) € XL there exists a (Q,v) € LIN such that

(P, k) =" MINI(Q, v).

The Isomorphism for Space Complexity (3)

Theorem
For any (P, k) € XL there exists a (Q,v) € LIN such that

(P, k) =" MINI(Q, v).

Theorem

(k-sTCONN, k) =" Min1(k-sTCONN, k - log n).

Hence, k-STCONN € DSPACE(f(k) + O(log n)) i and only if
k-sTCONN € DSPACE(o(k -log n) + O(log n)).

An application

Many tight bounds under ETH, what about sSTCONN ¢ DSPACE (o(log® n))?

Theorem (C. , Elberfeld, Flum, and Miiller, 2015)
For every d > 2 there is an algorithm deciding

Input: A database A and a Boolean conjunctive query ¢
with d variables.
Parameter: ||
Problem: Decide whether A = ¢.

in space
O(log |¢| - log |-A]).
Assume STCONN ¢ DSPACE (o(log® n)). Then there is no algorithm using

space
f(ll) + o(log |¢|) - log |-A.

THANK YOU

	Background
	Last page

