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Exponential complexity

Find exponential time algorithms for NP-hard problems beating the brute-force
search.

Conjecture (ETH)

There is no algorithm solving 3Sat in time 2o(n).



Parameterized complexity

Find algorithms for NP-hard problems whose superpolynomial behavior is
confined in some parameter.

Conjecture (FPT 6= W[1])

There is no algorithm solving k-Clique in time f (k) · nO(1), i.e., k-Clique is

not fixed-parameter tractable.



The connection

Theorem (Downey and Fellows, 1999)

ETH implies FPT 6= W[1].

The converse has been a major open problem, and seems hard to prove:

Theorem (Chen et. al, 2004)

ETH implies that k-Clique is not decidable in time f (k) · no(k).



An equivalence

Theorem (C. and Grohe, 2007)

FPT = W[1] if and only if k-Clique is decidable in time

2o(k·log n) · nO(1).

Remark
The brute-force algorithm for k-Clique has running time

n
k+O(1) = 2k·log n

n
O(1).



Another equivalence

Theorem (Cai and Juedes, 2003)

ETH fails if and only if the miniaturization of 3Sat is fixed-parameter tractable.



Anything Similar in Space Complexity?



A central problem in classical space complexity

stConn

Input: A directed graph G and s, t ∈ V (G).
Problem: Is there a path from s to t in G?

Theorem

1. stConn is complete for NL.

2. stConn is decidable in space O(log2 n), i.e., Savitch’s Theorem.

Question
Can we decide stConn in space o(log2 n)?



Parameterized stConn

k-stConn

Input: A directed graph G , s, t ∈ V (G), and k ∈ N.
Parameter: k .
Problem: Is there a path from s to t in G of length ≤ k?

Question
Can we decide k-stConn in space

f (k) + O(log n)?

Equivalently, is k-stConn in parameterized logspace?



The brute-force algorithm decides k-stConn in space k · log n + O(log n).

Question
k-stConn ∈ DSPACE

(

o(k · log n) + O(log n)
)

?

If so, then k-stConn is in parameterized logspace.

Theorem (Savitch, 1969)

There is an algorithm deciding k-stConn in space

O(log k · log n).

Note O(log k · log n) 6= o(k · log n) by considering fixed k and n → ∞.

Question
k-stConn ∈ DSPACE

(

o(log k · log n) + O(log n)
)

?



The space analogy (1)

Theorem (C. and Müller, 2014)

k-stConn ∈ DSPACE
(

f (k) + O(log n)
)

=⇒ stConn ∈ DSPACE
(

o(log2 n)
)

.

Recall k-Clique ∈ DTIME(f (k)nO(1)) =⇒ 3Sat ∈ DTIME(2o(n)).

Theorem (C. , Flum, and Müller, 2015)

k-stConn ∈ DSPACE
(

f (k) + o(log k) · log n
)

=⇒ stConn ∈ DSPACE
(

o(log2 n)
)

.

Recall k-Clique ∈ DTIME(f (k)no(k)) =⇒ 3Sat ∈ DTIME(2o(n)).



The space analogy (2)

Theorem (C. , Flum, and Müller, 2015)

We have the equivalences:

k-stConn ∈ DSPACE
(

f (k) + O(log n)
)

⇐⇒ k-stConn ∈ DSPACE
(

o(k · log n) + O(log n)
)

⇐⇒ k-stConn ∈ DSPACE
(

o(log k · log n) + O(log n)
)

Recall

k-Clique ∈ DTIME(f (k)no(k)) ⇐⇒ k-Clique ∈ DTIME
(

2o(k·log n)nO(1)
)

.



Easy direct proof for the space case

k-stConn ∈ DSPACE
(

f (k) + O(log n)
)

⇐⇒ k-stConn ∈ DSPACE
(

o(k · log n) + O(log n)
)

:

(

⇐=
)

o(k · log n) ≤ f (k) + log n.
(

=⇒
)

An assumed algorithm for k-stConn can find a path of length at most

d := d(n) = f
−1(log n)

in logspace. Then we can modify Savitch’s algorithm in such a way that every
time we divide the path of length at most ki into d sub-paths of length at most

ki+1 :=
ki

d
.

Thus the total space is bounded

O (logd k · log n) = O

(

log k

log d
· log n

)

= o(log k · log n) = o(k · log n). �



Unifying Proofs for

1. FPT = W[1] if and only if k-Clique is decidable in time 2o(k·log n) · nO(1).

2. ETH fails if and only if the miniaturization of k-Clique is fixed-parameter
tractable.

3. k-stConn ∈ DSPACE
(

f (k) + O(log n)
)

if and only if
k-stConn ∈ DSPACE

(

o(k · log n) + O(log n)
)

.



The Miniaturization Isomorphism



Parameterization vs. Size Measure

Let Q ⊆ Σ∗ be a classical problem. A parameterization κ : Σ∗ → N and a size
measure ν : Σ∗ → N are both logspace computable functions.

- The parameter κ(x) is supposed to be much smaller than |x |.

- The size measure ν(x) is supposed to be the length of an NP-witness of x .

Example

1. k-Clique: κ(G , k) := k or ν(G , k) := k · log n.

2. k-stConn: κ(G , k) := k or ν(G , k) := k · log n.

3. 3Sat: ν(α) := #var(α) or ν(α) := #clause(α).



Tractability for time complexity

Parameterized Complexity Classical Complexity

Tractability (Q, κ) ∈ FPT (Q, ν) ∈ SUBEXP

i.e., DTIME
(

f (κ(x))|x|O(1)
)

i.e., DTIME
(

2o(ν(x))|x|O(1)
)

Intractability (Q, κ) ∈ XP (Q, ν) ∈ EXP

i.e., DTIME
(

|x|f (κ(x))
)

i.e., DTIME
(

2O(ν(x))|x|O(1)
)

1. EXP: enumerate all NP-witnesses for x .

2. SUBEXP: avoid the enumeration.



Reductions

Parameterized Complexity Classical Complexity

many-one fpt-reduction serf-reduction

many-to-many fpt Turing reduction serf Turing reduction

1. FPT and XP are closed under fpt- and fpt Turing reductions.

2. SUBEXP and EXP are closed under serf- and serf Turing reductions.

Lemma (Impagliazzo, Paturi, and Zane, 2001)
(

3Sat,#var(α)
)

is reducible to
(

3Sat,#clause(α)
)

by a serf Turing reduction.



Tractability for space complexity

Parameterized Complexity Classical Complexity

Tractability (Q, κ) ∈ para-L (Q, ν) ∈ SUBLIN

i.e., DSPACE
(

f (κ(x)) + O(log |x|)
)

i.e., DSPACE
(

o(ν(x)) + O(log |x|)
)

Intractability (Q, κ) ∈ XL (Q, ν) ∈ LIN

i.e., DSPACE
(

f (κ(x)) log |x|
)

i.e., DSPACE
(

O(ν(x)) + O(log |x|)
)

1. LIN: store NP-witnesses for x .

2. SUBLIN: avoid storing NP-witnesses for x .



Reductions

Parameterized Complexity Classical Complexity

many-one pl-reduction slrf-reduction

many-to-many pl Turing reduction slrf Turing reduction

1. para-L and XL are closed under pl- and pl Turing reductions.

2. SUBLIN and LIN are closed under slrf- and slrf Turing reductions.



The Miniaturization

Let Q ⊆ Σ∗ be a problem and ν its size measure.

Mini(Q, ν)
Input: x ∈ Σ∗ and m in unary with m ≥ |x |.

Parameter:
⌈

ν(x)
logm

⌉

.

Problem: Decide whether x ∈ Q.



The Isomorphism for Time Complexity (1)

XP

Mini(Q1, ν1)

Mini(Q0, ν0)

FPT

fpt-reduction

Mini(Q2, ν2)

EXP

(Q1, ν1)

(Q0, ν0)

SUBEXP

serf-reduction

(Q2, ν2)

Theorem

1. (Q, ν) ∈ SUBEXP ⇐⇒ Mini(Q, ν) ∈ FPT.

2. (Q, ν) ∈ EXP ⇐⇒ Mini(Q, ν) ∈ XP.

3. (Q1, ν1) ≤
serf (Q2, ν2) ⇐⇒ Mini(Q1, ν1) ≤

fpt Mini(Q2, ν2).



The Isomorphism for Time Complexity (2)

XP

(P, κ) =fptMini(Q, ν)

EXP

(Q, ν)

Theorem
For any (P, κ) ∈ XP there exists a (Q, ν) ∈ EXP such that

(P, κ) =fpt
Mini(Q, ν).



The Isomorphism for Time Complexity (3)

Theorem
For any (P, κ) ∈ XP there exists a (Q, ν) ∈ EXP such that

(P, κ) =fpt
Mini(Q, ν).

(Q, ν) ∈ EXP constructed in the proof is artificial.

Theorem

(k-Clique, k) =fpt
Mini

(

k-Clique, k · log n
)

.

Hence, k-Clique ∈ DTIME
(

f (k)nO(1)
)

if and only if

k-Clique ∈ DTIME
(

2o(k·log n)nO(1)
)

.



The Isomorphism for Space Complexity (1)

XL

Mini(Q1, ν1)

Mini(Q0, ν0)

para-L

pl-reduction

Mini(Q2, ν2)

LIN

(Q1, ν1)

(Q0, ν0)

SUBLIN

slrf-reduction

(Q2, ν2)

Theorem

1. (Q, ν) ∈ SUBLIN ⇐⇒ Mini(Q, ν) ∈ para-L.

2. (Q, ν) ∈ LIN ⇐⇒ Mini(Q, ν) ∈ XL.

3. (Q1, ν1) ≤
slrf (Q2, ν2) ⇐⇒ Mini(Q1, ν1) ≤

pl Mini(Q2, ν2).



The Isomorphism for Space Complexity (2)

XL

(P, κ) =plMini(Q, ν)

LIN

(Q, ν)

Theorem
For any (P, κ) ∈ XL there exists a (Q, ν) ∈ LIN such that

(P, κ) =pl
Mini(Q, ν).



The Isomorphism for Space Complexity (3)

Theorem
For any (P, κ) ∈ XL there exists a (Q, ν) ∈ LIN such that

(P, κ) =pl
Mini(Q, ν).

Theorem

(k-stConn, k) =pl
Mini

(

k-stConn, k · log n
)

.

Hence, k-stConn ∈ DSPACE
(

f (k) + O(log n)
)

if and only if

k-stConn ∈ DSPACE
(

o(k · log n) + O(log n)
)

.



An application

Many tight bounds under ETH, what about stConn /∈ DSPACE
(

o(log2 n)
)

?

Theorem (C. , Elberfeld, Flum, and Müller, 2015)

For every d ≥ 2 there is an algorithm deciding

Input: A database A and a Boolean conjunctive query ϕ
with d variables.

Parameter: |ϕ|.
Problem: Decide whether A |= ϕ.

in space

O(log |ϕ| · log |A|).

Assume stConn /∈ DSPACE
(

o(log2 n)
)

. Then there is no algorithm using

space

f (|ϕ|) + o(log |ϕ|) · log |A|.
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