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What is Computational Social Choice?

Computational Social Choice (COMSOC) aims at improving our
understanding of

social choice mechanisms and
algorithmic decision making,

including topics such as voting, rank aggregation, fair division,
matching (under preferences), and resource allocation.

Involved areas: Artificial Intelligence, Decision Theory, Discrete
Mathematics, Logic, Mathematical Economics, Operations
Research, Political Sciences, Social Choice, Theoretical Computer
Science.

Long-term goal: Improve decision support for decision makers.

“Closest friend”: Algorithmic Game Theory.
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Motivation

COMSOC problems frequently lead to NP-hardness.
Some typical voting-related examples:

Gerrymandering.
Winner determination.

Determination of possible and necessary winners.
Proportional representation (in committees).
Manipulation.
Control.
Bribery.

 FPT-related studies highly welcome in the COMSOC
world, also justified by many natural parameterizations (most
natural to go multivariate).
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Motivating Example: Sequential Voting I
1956 Education Act in the USA:
Alternatives (b)ill: Funding to primary and secondary schools.

(a)mended bill: Funding, but not to segregated schools.
(s)tatus quo: No bill.

Votes 100 voters: b � s � a
100 voters: s � b � a
1 voter: a � b � s

Agenda L : bB aB s

Two popular procedures

b beats {a, s} ?

b
b

a beats {s} ?

a
a

s
{s}

{a, s}

s

Euro-Latin procedure:
b beats a?

b beats s?

b
b

s
s

b
a beats s?

a
a

s
s

a

b

Anglo-American procedure:
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Motivating Example: Sequential Voting II

The agenda (order of alternatives) is essential:
Agenda Control
In: Election E = (C ,V ) and a specific alternative a ∈ C .
Task: Find an agenda for C such that a wins.

Example
1 voter: a � b � c � d
1 voter: b � c � d � a
1 voter: c � d � a � b

Find an agenda such that a wins?
Euro-Latin procedure?

Yes: cB dB aB b.

Anglo-American procedure?

Yes: dB cB bB a.
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Motivating Example: Sequential Voting III

Two further relevant computational problems for sequential voting:
Manipulation
In: Election E = (C ,V ), a ∈ C , k ∈ N, and agenda L for C .
Task: Add k voters such that a wins under L.

Possible (or Necessary) Winner
In: Election E = (C ,V ) with incomplete preferences, a ∈ C ,

and a partial agenda B for C .
?: Can a win in an (or in every) election completing E under

an (or under every) agenda completing B?

Rolf Niedermeier (TU Berlin) Lower Bound Issues in COMSOC 7
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Motivating Example: Sequential Voting IV
Summary of computational complexity results
([Bredereck/Chen/N./Walsh, IJCAI 2015]):

n: number of voters.

m: number of alternatives.

k : number of added voters.

Problem Anglo-American Euro-Latin

Agenda Control O(n ·m2 + m3) ♠ O(n ·m2)

Manipulation O((k + n) ·m2) ♦ O((k + n) ·m)

Possible Winner NP-hard NP-hard

Necessary Winner coNP-hard O(n ·m3)

W. Possible Winner NP-hard when m = 3 ♣ NP-hard when m = 3

W. Necessary Winner coNP-hard when m = 4 ♣ O(n ·m3)
O(n) when m ≤ 3

Rolf Niedermeier (TU Berlin) Lower Bound Issues in COMSOC 8
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Main Venues of COMSOC
Central biannual workshop (“COMSOC Workshop Series”):
Amsterdam (2006), Liverpool (2008), Düsseldorf (2010),
Kraków (2012), Pittsburgh (2014), Toulouse (2016).
 Very relaxed, welcoming atmosphere, open to everyone!

Dagstuhl seminars: Meanwhile three, last in June 2015.

Major Conferences with COMSOC sessions:
AAAI, AAMAS (Autonomous Agents & Multiagent Systems), ADT
(Algorithmic Decision Theory), EC (Economics and Computation),
ECAI, IJCAI, SAGT, WINE, ..., and scattered around in theory
conferences.

Journals with a significant fraction of COMSOC stuff:
ACM Transactions on Economics and Computation, Artificial
Intelligence, Autonomous Agents and Multi-Agent Systems, Journal
of Artificial Intelligence Research, Journal of Mathematical
Economics, Mathematical Social Sciences, Social Choice and
Welfare, and scattered around in theory journals (e.g., Information
and Computation).
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COMSOC History
Social choice theory studies mechanisms for collective decision
making: voting, preference aggregation, fair division, matching, . . .

Precursors: Condorcet, Borda (18th century) and others.
Serious scientific discipline since 1950s.

Computational social choice adds a computational perspective
to this, and also explores the use of concepts from social choice in
computing (e.g., multi-agent systems).

Seminal papers from complexity perspective:
Determining winners for many voting rules is NP-hard.

[Bartholdi III/Tovey/Trick, Social Choice and Welfare 1989]
STV is NP-hard to manipulate.

[Bartholdi III/Orlin, Social Choice and Welfare 1991]
Many voting rules are NP-hard to control.

[Bartholdi III/Tovey/Trick, Mathematical and Computer
Modelling 1992]

Active research area with regular contributions since 2002.
Name “COMSOC” and biannual workshop since 2006.
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Outline of the Rest of the Talk

Four COMSOC problems, six issues:
Lobbying: ETH-based lower bounds, ILP-FPT (Lenstra),

LOGSNP-completeness.

Shift Bribery: FPT approximation (schemes) and inapproximability.
Network-Based Vertex Dissolution: ParaNP-hardness dichotomies.
Majority-Wise Accepted Ballot: W[2] vs W[2](Maj).
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Multi-Issue Elections and Lobbying
Multi-issue election
Votes from an electorate who can
accept or reject each of several
issues.

Election: A ∈ {0, 1}n×m

Result: 0m

Lobbyist’s goal: 1m

Election with 3 issues and 5 voters
Issues: Emissions Nuclear Tax

trading power raise

Voter 1 × × X
Voter 2 X × X
Voter 3 × X ×
Voter 4 X × ×
Voter 5 × X ×
Result × × ×

Lobbying
In: A ∈ {0, 1}n×m and k ≤ n.
?: Can we change at most k rows of A such that each column

has more 1s than 0s?

[Christian/Fellows/Rosamond/Slinko, Review of Economic Design 2007]
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Election with 3 issues and 5 voters
Issues: Emissions Nuclear Tax

trading power raise

Voter 1 1 1 1
Voter 2 1 0 1
Voter 3 0 1 0
Voter 4 1 0 0
Voter 5 1 1 1
Result 1 1 1

Lobbying
In: A ∈ {0, 1}n×m and k ≤ n.
?: Can we change at most k rows of A such that each column

has more 1s than 0s?

[Christian/Fellows/Rosamond/Slinko, Review of Economic Design 2007]
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Lobbying: ETH-Based Lower Bounds I

Lobbying
In: A ∈ {0, 1}n×m and k ≤ n.
?: Can we change at most k rows of A such that each column

has more 1s than 0s?

Trivial: Trying all possible subsets of n rows, Lobbying is solvable in
O∗(2n) time.

Can we do better?

Assuming ETH, Lobbying cannot be solved in 2o(n)(n + m)O(1)

time.
Proof due to reduction from Vertex Cover (parameterized by the
number of vertices).
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Lobbying: ETH-Based Lower Bounds II
Lobbying not solvable in 2o(n)(n + m)O(1) time:
Vertex Cover
In: A graph G = (V ,E ) and a number h
?: Is there a size-h vertex cover?

Use incidence matrix of input graph G = (V ,E ) of VC and add
|V | − 2h + 1 dummy rows and columns.

v1

v2

v5

v4

v3

h = 2

Vertex Cover

1

3

4

6

2 5

1 2 3 4 5 6
v1:
v2:
v3:
v4:
v5:

1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

d1:
d2:

0 0 0 0 0 0
0 0 0 0 0 0

dummies
0 0
0 0
0 0
0 0
0 0
1 0
0 1

k = |V | − h = 3

Lobbying

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0

n = 2|V |− 2h+ 1 ≤ 2|V | and Vertex Cover is not solvable in 2o(|V |) time.
 Lobbying is not solvable in 2o(n) · (n + m)O(1) time.
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Lobbying: ILP-Based FPT (Lenstra) I
Lobbying
In: A ∈ {0, 1}n×m and k ≤ n.
?: Can we change at most k rows of A such that each column

has more 1s than 0s?

Columns vs. rows: FPT for the n := #rows was easy to see, what
about FPT for m := #columns?

Result

ILP-FPT for parameter number m of columns (next slide),
but no poly kernel wrt. (m, number of modified rows k).

[Bredereck/Chen/Hartung/Kratsch/N./Suchý/Woeginger, JAIR 2014]

Challenges:
Combinatorial algorithm?
Non-trivial running time lower bounds?
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Lobbying: ILP-Based FPT (Lenstra) II

Exact solution via ILP-formulation with 2m variables

2m∑
i=1

xi ≤ k

constraints: ∀1 ≤ i ≤ 2m : 0 ≤ xi ≤ ri

∀1 ≤ j ≤ m :
2m∑
i=1

xi · Ā[i , j ] ≥ gj

variable xi : #rows of type i in the solution
integer coefficient gj : #additional ones needed for column j

integer coefficient ri : #rows of type i in the matrix
binary coefficient Ā[i , j ]: 1 iff row i has a zero in column j
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Lobbying: ILP-Based FPT (Lenstra) III
Exact solution via ILP-formulation with 2m variables

2m∑
i=1

xi ≤ k

constraints: ∀1 ≤ i ≤ 2m : 0 ≤ xi ≤ ri

∀1 ≤ j ≤ m :
2m∑
i=1

xi · Ā[i , j ] ≥ gj

Linear-time algorithm for m ≤ 4, factor-logm approximation.
FPT follows by Lenstra’s famous results
[Lenstra, Mathematics of Operations Research, 1983]

and implies running time O∗((2m)2.5·2
m+o(2m))

[Frank and Tardos, Combinatorica, 1987]

[Kannan, Mathematics of Operations Research, 1987]
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Lobbying: ILP-Based FPT (Lenstra) IV
Note: Dozens of other voting problems have ILP-FPT classification
wrt. number of alternatives (columns), all lacking lower bounds /
combinatorial algorithms.

General idea behind these ILP-FPT results:
1 Type of objects in solution can be bounded by parameter.
2 Only the number of objects from each type is important.
3 Plus additional linear constraints.

Remark:
“Linear costs” induced by xi objects of type i are easy to
model.
“Non-linear, but non-negative, convex costs” can be handled
with at most u(xi ) additional non-integer variables and
constraints per integer variable (with u(xi ) upper-bounding xi ).

 Used to solve Weighted Set Multicover parameterized by
“universe size” in FPT time

[Bredereck/Faliszewski/N./Skowron/Talmon, ADT 2015]
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Lobbying: LOGSNP-Completeness I
Lobbying
In: A ∈ {0, 1}n×m and k ≤ n.
?: Can we change at most k rows of A such that each column

has more 1s than 0s?

Special situation: Each column needs ≤ g many additional ones.

A simple heuristic: Always take a row filled at least half with 0s.

If k ≥ g · (dlogme+ 1) then yes-instance:

there is always a row containing 0s in at least half of the
columns;
at most (blogmc+ 1) greedy steps decrease g by one;
altogether g · (blogmc+ 1) steps.

Each row can be identified by O(log n) bits.

Consequently, there is a certificate for yes-instances using only
O(g · log2(n + m)) many bits.

 Solvable in O((n)g log(m)+1 ·m) time—is this tight?
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Lobbying: LOGSNP-Completeness II
[Papadimitriou and Yannakakis, Journal of Computer and System Sciences 1996]

The class LogSNP
P ≈ log non-deterministic bits

LogSNP ≈ log2 non-deterministic bits
NP ≈ poly non-deterministic bits

LogSNP-completeness:
Polynomial-time reduction from/to the LogSNP-complete Rich
Hypergraph Cover to/from Lobbying with constant g .

Rich Hypergraph Cover
In: A ground set X = {x1, . . . , xn} with an even number n of

elements, m subsets S1, . . . ,Sm of X with |Si | ≥ n/2 for all i ,
and an integer k .

?: Does there exist a Y ⊆ X with Y ∩ Si 6= ∅ for all i and
|Y | ≤ k?

Challenge: Further examples for LOGSNP-hardness.
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In: A ground set X = {x1, . . . , xn} with an even number n of

elements, m subsets S1, . . . ,Sm of X with |Si | ≥ n/2 for all i ,
and an integer k .

?: Does there exist a Y ⊆ X with Y ∩ Si 6= ∅ for all i and
|Y | ≤ k?

Challenge: Further examples for LOGSNP-hardness.
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Shift Bribery FPT Approximability I
Four symphonies:

a b c d
“Arensky II” “Brahms I” “Copland III” “Dvǒrák IX”

Three national symphony charts

Austria: a � b � c � d

Belgium: a � b � c � d

Chile: b � d � c � a

Borda score
a :

b :

c :

d :

3 + 3 + 0 = 6

2 + 2 + 3 = 7

1 + 1 + 1 = 3

0 + 0 + 1 = 2

Winner: Compute the “Borda top-ranked” symphony.
Goal: Make c win by shifting it higher, for as little money as
possible.

Rolf Niedermeier (TU Berlin) Lower Bound Issues in COMSOC 23



Shift Bribery FPT Approximability I
Four symphonies:

a b c d
“Arensky II” “Brahms I” “Copland III” “Dvǒrák IX”
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Shift Bribery: FPT Approximation II

Symphony charts example again

Austria: a � b � c � d

Belgium: a � b � c � d

Chile: b � d � c � a

30

20

10

R Shift Bribery
In: Election E = (C ,V = (v1, . . . , vn)),

?:
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Shift Bribery: FPT Approximation II

Symphony charts example again

Austria: a � b � c � d

Belgium: a � b � c � d

Chile: b � d � c � a

30

20

10

R Shift Bribery
In: Election E = (C ,V = (v1, . . . , vn)), specific candidate c ∈

C , price function list Π = (π1, . . . , πn), budget B ∈ N.
?: ∃ shift action #»s = (s1, . . . , sn) with Π( #»s ) ≤ B such that p

is a winner according to rule R?
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Shift Bribery: FPT Approximation III
FPT-Approximation Scheme
A factor-(1 + ε) algorithm solving in FPT time wrt. ε and the
parameter.

Theorem
For any voting rule R where Winner Determination is in FPT wrt.
to the number n of voters, R Shift Bribery admits a factor-(1 + ε)
approximation scheme; the running time is O∗(dn/εen).

Basic idea of the algorithm
Guess the maximum budget πmax to spend on a single voter.
Rescale and round the price functions to not exceed a given
bound (dependent on ε and n).
Find a cheapest successful shift action #»s for the rescaled
instance in f (ε, n) time.

One can show that this action #»s costs at most (1 + ε)OPT.

[Bredereck/Chen/Falizewski/Nichterlein/N., AAAI 2014]
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Combinatorial Shift Bribery: Inapproximability
Combinatorial flavor clearly makes the problem more complex...

Can we at least find approximate solutions?

No: we obtain strong inapproximability results like this:

Theorem
Combinatorial Shift Bribery is inapproximable even in FPT-time
with respect to the parameter budget B , even if there are only two
candidates.

Idea:
Reduction from the W[2]-complete Set Cover problem.
No solution for the constructed Combinatorial Shift Bribery
instance can cost more than B (negative effects are essential
for this).

[Bredereck/Faliszewski/N./Talmon, AAMAS 2015]
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Network-Based Vertex Dissolution: ParaNP-Hardness I

Political (Re-)Districting: Example:
Given: Districts with s = 2 voters per district.

Goal: Increase the number of voters per district by ∆s = 3.
Method: Dissolve some districts and redistribute their voters.
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Network-Based Vertex Dissolution: ParaNP-Hardness I

Political (Re-)Districting: Example:
Given: Districts with s = 2 voters per district.

Problem: Cannot move voters arbitrarily!
Move voters of a dissolved district only to an adjacent
non-dissolved district.
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Network-Based Vertex Dissolution: ParaNP-Hardness I

Political (Re-)Districting: Example:
Given: Districts with s = 2 voters per district.

Solution: Dissolve the middle districts.
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Network-Based Vertex Dissolution: ParaNP-Hardness I

Political (Re-)Districting: Example:
Result: Districts with 5 voters per district.
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Network-Based Vertex Dissolution: ParaNP-Hardness II
What do we know from structural results?

s\∆ 1 2 3 4 5 6
1 ? ? ? ? ? ?
2 ? ? ? ? ? ?
3 ? ? ? ? ? ?
4 ? ? ? ? ? ?
5 ? ? ? ? ? ?
6 ? ? ? ? ? ?
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Network-Based Vertex Dissolution: ParaNP-Hardness II

What do we know from structural results?

s\∆ 1 2 3 4 5 6
1 P ? ? ? ? ?
2 ? P ? ? ? ?
3 ? ? P ? ? ?
4 ? ? ? P ? ?
5 ? ? ? ? P ?
6 ? ? ? ? ? P

Lemma 1: There exists an (s,s)-dissolution for an undirected
graph G if and only if G has a perfect matching.
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Network-Based Vertex Dissolution: ParaNP-Hardness II

What do we know from structural results?

s\∆ 1 2 3 4 5 6
1 P NP-h NP-h NP-h NP-h NP-h
2 ? P ? NP-h ? NP-h
3 ? ? P ? ? NP-h
4 ? ? ? P ? ?
5 ? ? ? ? P ?
6 ? ? ? ? ? P

Idea: There exists a (t ·∆s ,∆s)-dissolution for an undirected
graph G if and only if G has a t-star partition.
Partitioning a graph into t-stars is NP-hard.
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Network-Based Vertex Dissolution III: Para-NP Hardness
Symmetry with respect to s and ∆s :
Lemma 2: There exists an (s,∆s)-dissolution for an undirected
graph G if and only if there exists a (∆s , s)-dissolution for G .

s = 2
∆s = 3
s = 3

∆s = 2
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Network-Based Vertex Dissolution III: Para-NP Hardness
Symmetry with respect to s and ∆s :
Lemma 2: There exists an (s,∆s)-dissolution for an undirected
graph G if and only if there exists a (∆s , s)-dissolution for G .

s = 2
∆s = 3

s = 3
∆s = 2

Interpret the voter movement backwards.
We put the voters to receive into the districts.
Move to each dissolved districts two voters.
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Network-Based Vertex Dissolution II: ParaNP-Hardness III
P vs NP dichotomy:

s\∆s 1 2 3 4 5 6
1 P NP-h NP-h NP-h NP-h NP-h
2 ? P ? NP-h ? NP-h
3 ? ? P ? ? NP-h
4 ? ? ? P ? ?
5 ? ? ? ? P ?
6 ? ? ? ? ? P
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Network-Based Vertex Dissolution II: ParaNP-Hardness III

P vs NP dichotomy:

s\∆s 1 2 3 4 5 6
1 P NP-h NP-h NP-h NP-h NP-h
2 NP-h P NP-h NP-h NP-h NP-h
3 NP-h NP-h P NP-h NP-h NP-h
4 NP-h NP-h NP-h P NP-h NP-h
5 NP-h NP-h NP-h NP-h P NP-h
6 NP-h NP-h NP-h NP-h NP-h P

Finally: The rest of the cells are covered by an NP-hardness
reduction from Exact Cover by t-Sets
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Network-Based Vertex Dissolution II: ParaNP-Hardness III

P vs NP dichotomy:

s\∆s 1 2 3 4 5 6
1 P NP-h NP-h NP-h NP-h NP-h
2 NP-h P NP-h NP-h NP-h NP-h
3 NP-h NP-h P NP-h NP-h NP-h
4 NP-h NP-h NP-h P NP-h NP-h
5 NP-h NP-h NP-h NP-h P NP-h
6 NP-h NP-h NP-h NP-h NP-h P

Theorem
If s = ∆s , then Dissolution solvable in O(nω) time (where ω is
the matrix multiplication exponent); otherwise NP-complete.

[Bevern/Bredereck/Chen/Froese/N./Woeginger, SIAM J. Discrete Math. 2015]
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Network-Based Vertex Dissolution: ParaNP-Hardness IV

P vs. NP dichotomy for planar case:
s\∆s 1 2 3 4 5 6
1 P NP-h NP-h NP-h NP-h NP-h
2 NP-h P ? NP-h ? NP-h
3 NP-h ? P ? ? NP-h
4 NP-h NP-h ? P ? ?
5 NP-h ? ? ? P ?
6 NP-h NP-h NP-h ? ? P

Planar: a lot of open cases!

Interesting subproblem: What is the complexity of Planar Exact
Cover by t-Sets for t ≥ 3?
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http://www.stephaniemcmillan.org/codegreen/comics/2011-03-21-push-their-

agenda.jpg
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Majority-wise Accepted Ballot: W[2] vs W[2](Maj) I

Unanimously Accepted Ballot

In: A set P of m proposals; a set V of n voters with favorite
ballots B1, . . . ,Bn ⊆ P; an agenda Q+ ⊆ P.

?: Is there a ballot Q with Q+ ⊆ Q ⊆ P which every single
voter i accepts (that is, |Bi ∩ Q| > |Q|/2)?

Majoritywise Accepted Ballot

In: A set P of m proposals; a set V of n voters with favorite
ballots B1, . . . ,Bn ⊆ P; an agenda Q+ ⊆ P.

?: Is there a ballot Q with Q+ ⊆ Q ⊆ P which a strict majority
of the voters accepts (that is, |Bi ∩ Q| > |Q|/2)?
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Majority-wise Accepted Ballot: Example

Example with five proposals and four voters.
P = {p1, p2, p3, p4, p5}
B1 = {p2, p3, p4}, B2 = {p1, p3, p5}, B3 = {p1, p2, p4},
B4 = {p1, p2, p3}

Ballot matrix:
p1 p2 p3 p4 p5
0 1 1 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 0 0
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Majority-wise Accepted Ballot: Example

Example with five proposals and four voters.
P = {p1, p2, p3, p4, p5}
B1 = {p2, p3, p4}, B2 = {p1, p3, p5}, B3 = {p1, p2, p4},
B4 = {p1, p2, p3}

Ballot matrix:
p1 p2 p3 p4 p5
0 1 1 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 0 0

Note: The ballot {p1, p2, p3} would be accepted by all voters.
However, although less than half of the voters like p5, the
commission can push through p5 by proposing {p1, p2, p3, p4, p5}.
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Majority-wise Accepted Ballot: Example

Example with five proposals and four voters.
P = {p1, p2, p3, p4, p5}
B1 = {p2, p3, p4}, B2 = {p1, p3, p5}, B3 = {p1, p2, p4},
B4 = {p1, p2, p3}

Ballot matrix:
p1 p2 p3 p4 p5
0 1 1 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 0 0

Interesting: No monotonicity w.r.t. solution sizes.
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Majority-wise Accepted Ballot: W[2] vs W[2](Maj) II

[Alon, Bredereck, Chen, Kratsch, N., Woeginger, ACM TEAC 2015]

With respect to the parameter size |Q| of the solution, both
variants are easily shown to be W[2]-hard (via Hitting Set).

Unanimously Accepted Ballot
W[2]-membership can be show by a quite technical reduction to the
W[2]-complete Independent Dominating Set problem.

Majoritywise Accepted Ballot
Showing W[2]-membership seems quite challenging.

Interestingly: Considering the class W[2](Maj) instead of W[2],
that is, allowing only majority gates instead of AND/OR gates in
the boolean circuits, one can show membership relatively easy.
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Concluding Remarks
COMSOC offers a rich variety of combinatorial problems (touching
permutations, partial orders, sets, matrices, graphs, etc.), many of
these are NP-hard.

Lower bounds in COMSOC so far mostly of the form
W-hardness (W-completeness) or
ParaNP-hardness or
no polynomial-size problem kernel unless...

 ETH-based lower bounds largely unexplored...

General challenges:
Lower bounds for “Lenstra-ILP-FPT results”?
Exploration of LOGSNP-completeness for lower bounds?
W[2] = W[2](Maj)?

[Fellows, Flum, Hermelin, Müller, Rosamond, TOCS 2010]

Running time lower bounds for FPT approximation schemes?
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Exploration of LOGSNP-completeness for lower bounds?
W[2] = W[2](Maj)?

[Fellows, Flum, Hermelin, Müller, Rosamond, TOCS 2010]
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