
Constructive algorithm for
pathwidth of matroids

Eunjung KIM, CNRS / University Paris-Dauphine
jointwork with Sang-il Oum and Jisu Jeong (KAIST)

Workshop on Satisfiability Lower bounds and Tight Results for Parameterized and Exponential
Time algorithm

Background

Matroid: primer

• (E, I) - a ground set and a
family of subsets of E called
the independet sets -
satisfying

A. ∅ ∈ I

B. X ⊂ Y and Y ∈ I ➔ X ∈ I

C. ∀X,Y ∈ I with |X| < |Y|,  

∃y∈Y s.t. X∪{y} ∈ I

• A matroid (E, I) is
representable in F if

E Vectors
in a vector space over F

… such that X ∈ I iff
corresponding vectors are
independent.

Vectors Arrangement

Input: vectors v1, v2,…vn ∈ Fr, a positive integer k
 

Goal: find a permutation of v1, v2,…vn such that for every i, 
dim(<v1+…+vi>∩<v2,…,vn>)≤k.

v1 v2v5v4 v3 v6

dim(<v1,v4,v5,v2>∩<v3,v6>) ≤ k

𝔽 is a finite field

linear layout  
(or pathwidth) 

of width≤k,

Branchwidth of F-
represented matroids

v1

v3 v2

v4

v5

v6

dim(<v1,v3,v6,v2>∩<v4,v5>)≤k

Input: vectors v1, v2,…vn ∈ Fr, a positive integer k
 
Goal: find a subcubic tree T with a bijection  
L:{leaves} ➔ {vectors} such that for every e in T,

𝔽 is a finite field

branch decomposition
of width≤k

From graphs to matroids
pw (cycle matroid of G’) = pw (G)

When G is not a tree
bw (cycle matroid of G) = bw (G)

Kashap 2008

Hicks, McMurray, Nolan 2007

Mazoit, Thomassé 2007

G G’

XP algorithms
• When k is a fixed constant, polynomial-time algorithm

exists for matroids in general  
(given an independence oracle)

• Pathwidth: Nagamochi 2012

• Branchwidth: Oum, Seymour 2007

What about FPT algorithms?

pw(G)≤k via minor testing
Gk = { G: pw(G) ≤ k } is minor-closed

Under graph minor relation ≼m ,
any antichain is finite

F = { minimal graphs, ⋠m Gk }

Testing if F ≼m G in g(|F|)∙n2 time  
(Kawarabayashi, Kobayashi, Yusuke, Reed 2012)

G ∈ Gk
↕

F ⋠m G, ∀F ∈ F

F is finiteIn time f(k)∙n2

test if F ⋠m G

∀F ∈ F

pw(M)≤k via minor testing
Mk = { M: pw(M) ≤ k } is minor-closed

Under matroid minor relation ≼m ,
any antichain is finite

F = { minimal matroids, ⋠m Mk }

Testing if N ≼m M in g(|N|)∙poly(n) time

M ∈ Mk
↕

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n)
test if N ⋠m M

∀N ∈ F

✔

✔

✔ ✘

✘

pw(M)≤k via minor testing

Under matroid minor relation ≼m ,
any antichain is finite

Testing if N ≼m M in g(|N|)∙poly(n) time

✘

✘

• M is binary ↔ U2,4 ⋠m M
• Any algorithm (with independence

oracle) requires exponential time
(Seymour 1981)

• Infinite antichain is not difficult to
construct.• Conjecture (RS): for each finite

field F, F-representable matroids
are w.q.o under ≼m

• Geelen, Gerards, Whittle (2014)
announced the proof.

• Conjecture: for any finite field F
and any F-representable N, testing
N ≼m M in time g(|N|)∙poly(n)

• Probably GGW taking care of it?

pw(M)≤k when F-represented
Mk = { M: pw(M) ≤ k & F-represented} is minor-closed

Under matroid minor relation ≼m ,
any antichain of F-representable

matroids is finite.

F = { minimal F-represented matroids, ⋠m Mk }

Testing if N ≼m M in g(|N|)∙poly(n) time

M ∈ Mk
↕

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n)
test if N ⋠m M

∀N ∈ F

?

?
?

pw(M)≤k when F-represented
Mk = { M: pw(M) ≤ k & F-represented} is minor-closed

Under matroid minor relation ≼m ,
any antichain of F-representable
matroids bounded bw is finite.

F = { minimal F-represented matroids, ⋠m Mk }

Testing if N ≼m M in g(k)∙n3 time

when bw(M) ≤ k (Hliněný 2006)

M ∈ Mk
↕

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n)
test if N ⋠m M

∀N ∈ F

✔

✔

F is has branchwidth ≤ k+1

✔

Issues with the approach

• Too many obstructions - at least (k!)2  
(Koutsonas, Thilikos, Yamazaki 2014)

• No algorithm to generate all minor obstructions.

• Even if the complete obstruction list is known, minor
testing algorithm (Hliněný 2006) hides gigantic function on
k - relies on MSO checking.

• Only decision - no algorithm to actually produce a
layout.

Our result

• Dynamic programming for pathwidth  
(Bodlaender, Kloks 1996)

• Does not depend on a heavy machinery
• Constructive
• Uses 3-approximation for branch-decomposition  

and can be made self-contained with O(n) overhead

O(f(k)·n3)-time algorithm to decide a linear layout v1, v2, …, vn  
of the input n vectors in 𝔽m, for any finite field 𝔽, such that  
 dim (<v1,v2,…,vi> ∩ <vi+1,…,vn>) ≤ k for all i 
and output one if exists.

Algorithm for
Vector Arrangement

Dynamic programming on a
branch-decomposition

• Want to encode all feasible
linear layouts of M1 & M2

• …in a compact way

• …in a way s.t. enconding for
M1 + M2 can be constructed
from encodings for M1 and
M2.

M1 M2

enc(M1) enc(M2)

enc(M1+M2)

Encoding a linear layout

v1 v2v5v4 v3 v6 u2 u6u1u4 u3 u5

1 2 3 1 0 1 1 2 2 1

v1 v2v5v4 v3 v6u2 u6u1u4 u3 u5

1+0 1+1 2+1 3+1 3+1 3+2 3+2 1+2 0+2 0+1 0+1

When <M1>∩<M2>=∅

Issues
1. How to shorten the length of the dimension sequence
2. How to handle the boundary space; <M1>∩<M2>≠∅

Compressing a dimension
sequence

Typical sequence: idea from Bodlaender-Kloks (1996) 
#typical sequences consisting of {0,1,2,…,k})≤ (8/3)22k.

k

Handling a boundary space

1 2 3 1 0 1 1 2 2 1

When B:=<M1>∩<M2>≠∅
dim(L∩R) - dim(L∩R∩B)

L’ R’ RL

1+0 1+1 2+1 3+1 3+1 3+2 3+2 1+2 0+2 0+1 0+1

L+L’ R+R’

dim(L+L’)∩(R+R’) - dim(L+L’)∩(R+R’)∩B

Encoding of a linear layout

M
B

L: “Left subspace”  
shown on B

L3 = <v1,v4,v5> ∩ B

R: “Right subspace”  
shown on B

R3 = <v2+v3+v6> ∩ B

𝛌: Extra connectivity not shown in B
𝛌3 = dim<v1,v4,v5> ∩ <v2+v3+v6> - dim<v1,v4,v5> ∩ <v2+v3+v6> ∩ B

For each “gap”, there is a triple (L,R,𝛌)

v1 v2v5v4 v3 v6

Applications

An alternative definition of
pathwidth

• A path-decomposition of 𝔽r 
:= a sequence π = (S1,S2,…,Sm) of subspaces of 𝔽r  
with an injective function μ:{1,2,…,n}→{1,2,…,m} s.t.
Vi⊆Sμ(i).

• Width of π := max (S1+…+Si)∩(Si+1+…+Sm)

∃ linear layout of width ≤ k  
⇕ 

∃ path-dec. of width≤k.

Subspaces Arrangement

Input: subspaces V1, V2,…Vn of 𝔽r, a positive integer k
 

Goal: find a permutation of V1, V2,…, Vn such that for every i, 
dim(<V1+…+Vi>∩<V2,…,Vn>)≤k.

V1 V2V5V4 V3 V6

dim(<V1,V4,V5,V2>∩<V3,V6>)≤k

linear layout of
width≤k

𝔽 is a finite field

Application to  
Linear rank-width

v1 v2v5v4 v3 v6

rank(

• Find a linear ordering of vertices of G so that the rank  
of adjacency matrix between {v1,…vi} and {vi+1,…vn} is  
at most k.

v3 v6

v1 1 0
v4 0 1
v5 1 1
v2 1 1

) ≤ k

Path-width of {V1,V2,…,Vn}
= 2*(linear rank-width of G)

Set Vi := {ei , xi}

Application to  
Linear rank-width

For any fixed k, O(n3)-time algorithm to find a linear
rank decomposition of width ≤ k or confirms that

linear rank-width > k.

Application to
linear clique-width

• Linear clique-width, “linearized version of clique-width”

• Linear rank-width≤k ➡ linear clique-width ≤ 2k+1.

For any fixed k, O(n3)-time algorithm to find a linear
clique-width expression of width≤2k+1 or confirms
that linear clique-width>k.

Further questions

• FPT algorithms for pathwidth / branchwidth on general
matroids? (given independence oracle)

• Can O(n3) factor in the runtime improved? i.e. O(nw)

THANK YOU!

