Constructive algorithm for pathwidth of matroids

Eunjung KIM, CNRS / University Paris-Dauphine jointwork with Sang-il Oum and Jisu Jeong (KAIST)

Workshop on Satisfiability Lower bounds and Tight Results for Parameterized and Exponential Time algorithm

Background

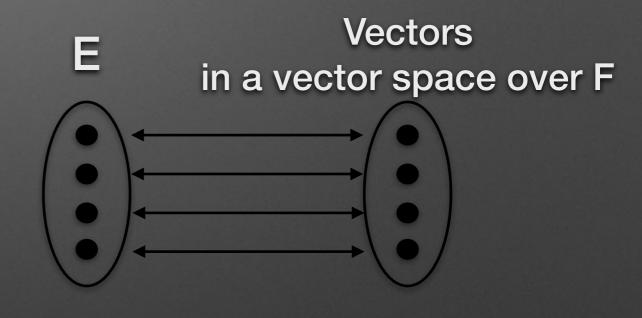
Matroid: primer

 (E, 1) - a ground set and a family of subsets of E called the independet sets satisfying

A. $\emptyset \in \mathcal{I}$

- **B.** $X \subset Y$ and $Y \in \mathcal{I} \rightarrow X \in \mathcal{I}$
- C. $\forall X, Y \in \mathcal{I} \text{ with } |X| < |Y|,$ $\exists y \in Y \text{ s.t. } X \cup \{y\} \in \mathcal{I}$

• A matroid (E, I) is representable in F if



... such that $X \in I$ iff corresponding vectors are independent.

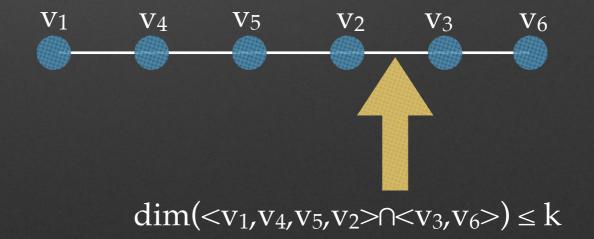
Vectors Arrangement

 \mathbb{F} is a finite field

Input: vectors v_1 , v_2 ,... $v_n \in F^r$, a positive integer k

Goal: find a permutation of $v_1, v_2, ..., v_n$ such that for every i, dim($\langle v_1+...+v_i \rangle \cap \langle v_2,...,v_n \rangle \leq k$.

linear layout (or pathwidth) of width≤k,



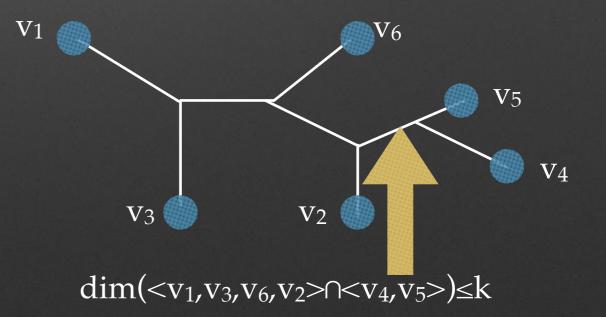
Branchwidth of Frepresented matroids

 \mathbb{F} is a finite field

Input: vectors v_1 , v_2 ,... $v_n \in F^r$, a positive integer k

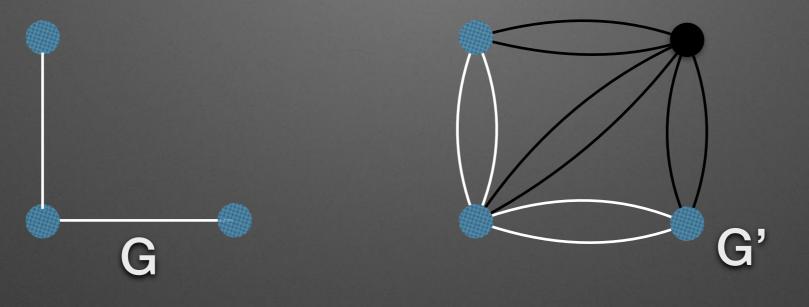
Goal: find a subcubic tree T with a bijection L:{leaves} → {vectors} such that for every e in T,

branch decomposition of width≤k



From graphs to matroids

pw (cycle matroid of G') = pw (G) Kashap 2008



When G is not a tree bw (cycle matroid of G) = bw (G)

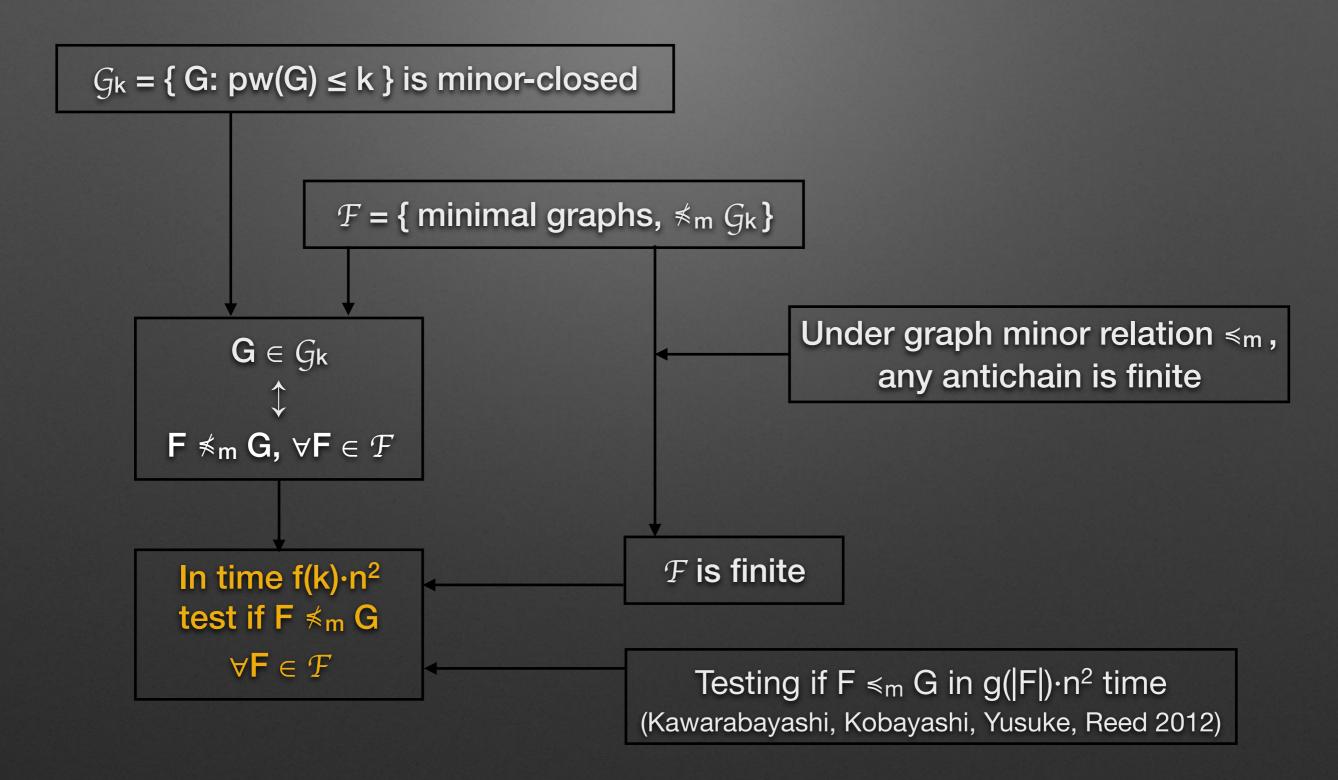
Hicks, McMurray, Nolan 2007 Mazoit, Thomassé 2007

XP algorithms

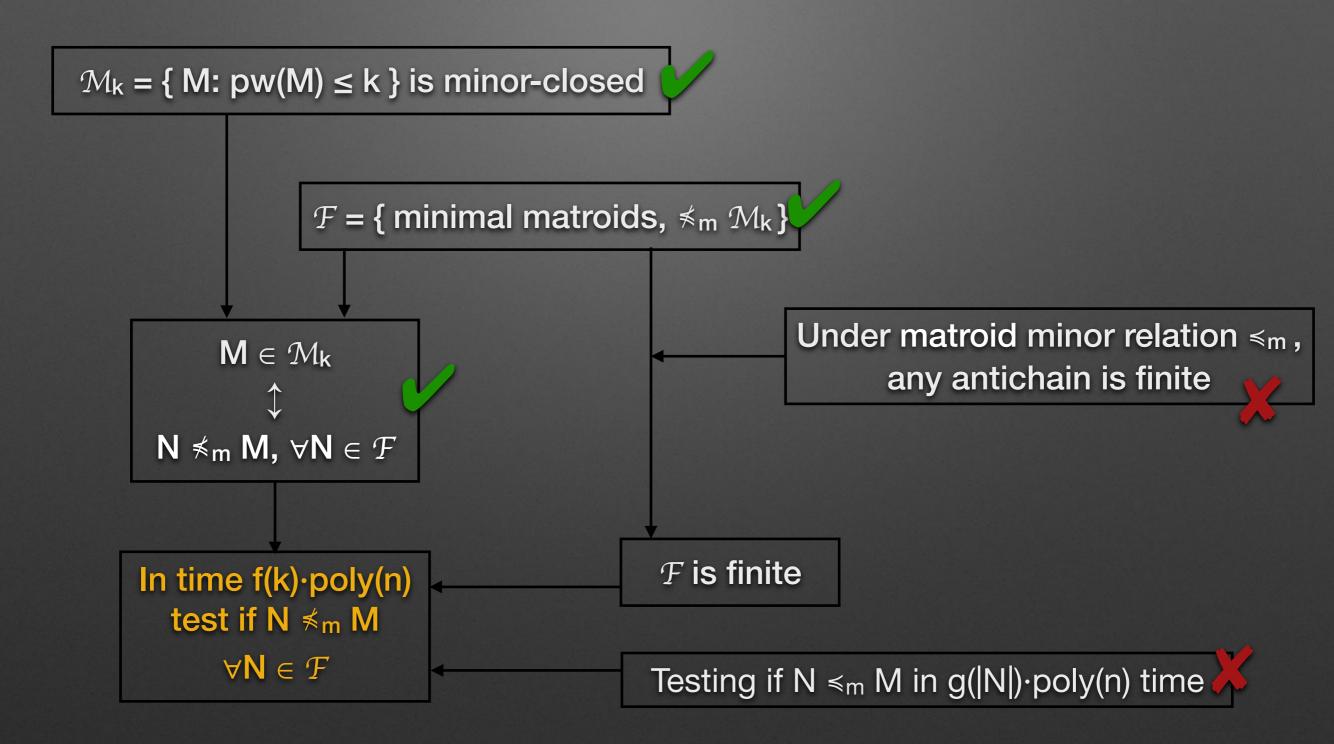
- When k is a fixed constant, polynomial-time algorithm exists for matroids in general (given an independence oracle)
- Pathwidth: Nagamochi 2012
- Branchwidth: Oum, Seymour 2007

What about FPT algorithms?

pw(G)≤k via minor testing



pw(M)≤k via minor testing



pw(M)≤k via minor testing

0

construct.

- Conjecture (RS): for each finite field F, F-representable matroids are w.q.o under ≤m
- Geelen, Gerards, Whittle (2014) announced the proof.
 - M is binary $\leftrightarrow U_{2,4} \not\leq_m M$
 - Any algorithm (with independence oracle) requires exponential time (Seymour 1981)

Infinite antichain is not difficult to

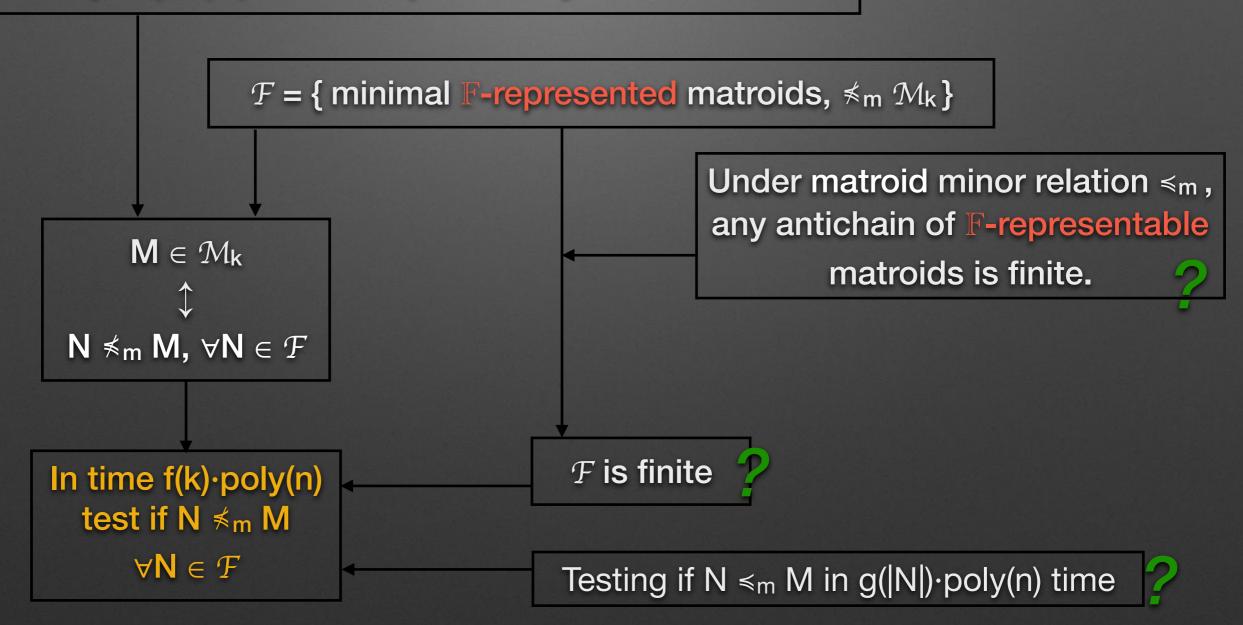
Under matroid minor relation \leq_m , any antichain is finite

- Conjecture: for any finite field F and any F-representable N, testing N ≤m M in time g(|N|)·poly(n)
- Probably GGW taking care of it?

Testing if N ≼_m M in g(|N|)·poly(n) the

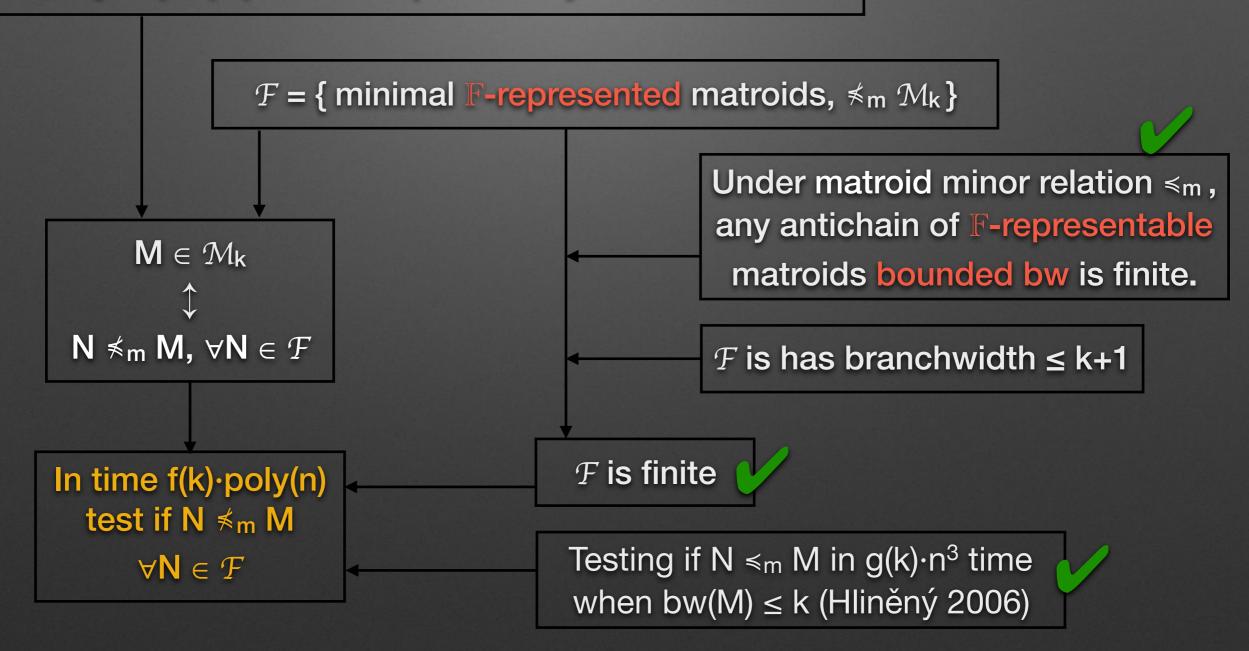
pw(M)≤k when **F-represented**

 $\mathcal{M}_k = \{ M: pw(M) \le k \& \mathbb{F}\text{-represented} \} \text{ is minor-closed} \}$



pw(M)≤k when **F-represented**

 $\mathcal{M}_k = \{ M: pw(M) \le k \& \mathbb{F}\text{-represented} \} \text{ is minor-closed} \}$



Issues with the approach

- Too many obstructions at least (k!)² (Koutsonas, Thilikos, Yamazaki 2014)
- No algorithm to generate all minor obstructions.
- Even if the complete obstruction list is known, minor testing algorithm (Hliněný 2006) hides gigantic function on k - relies on MSO checking.
- Only decision no algorithm to actually produce a layout.

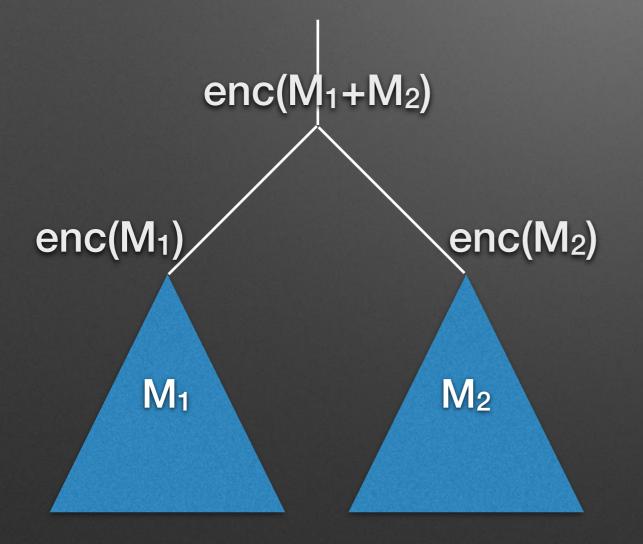
Our result

O(f(k)·n³)-time algorithm to decide a linear layout v₁, v₂, ..., v_n of the input n vectors in \mathbb{P}^{m} , for any finite field \mathbb{F} , such that dim (<v₁,v₂,...,v_i> \cap <v_{i+1},...,v_n>) ≤ k for all i and output one if exists.

- Dynamic programming for pathwidth (Bodlaender, Kloks 1996)
- Does not depend on a heavy machinery
- Constructive
- Uses 3-approximation for branch-decomposition and can be made self-contained with O(n) overhead

Algorithm for Vector Arrangement

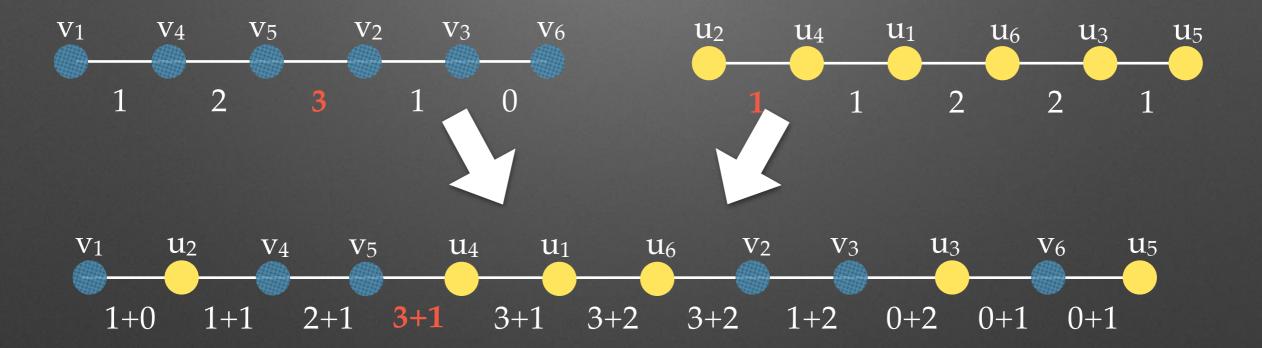
Dynamic programming on a branch-decomposition



- Want to encode all feasible linear layouts of M1 & M2
- ...in a compact way
- ...in a way s.t. enconding for $M_1 + M_2$ can be constructed from encodings for M_1 and M_2 .

Encoding a linear layout

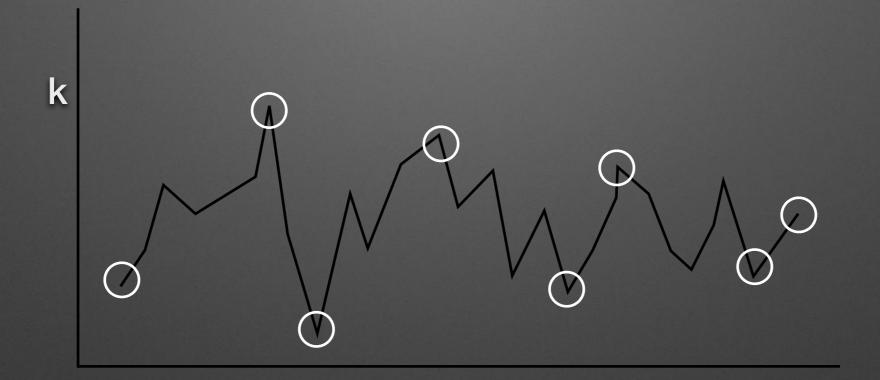
When $< M_1 > \cap < M_2 > = \emptyset$



Issues

- 1. How to shorten the length of the dimension sequence
- 2. How to handle the boundary space; $\langle M_1 \rangle \cap \langle M_2 \rangle \neq \emptyset$

Compressing a dimension sequence

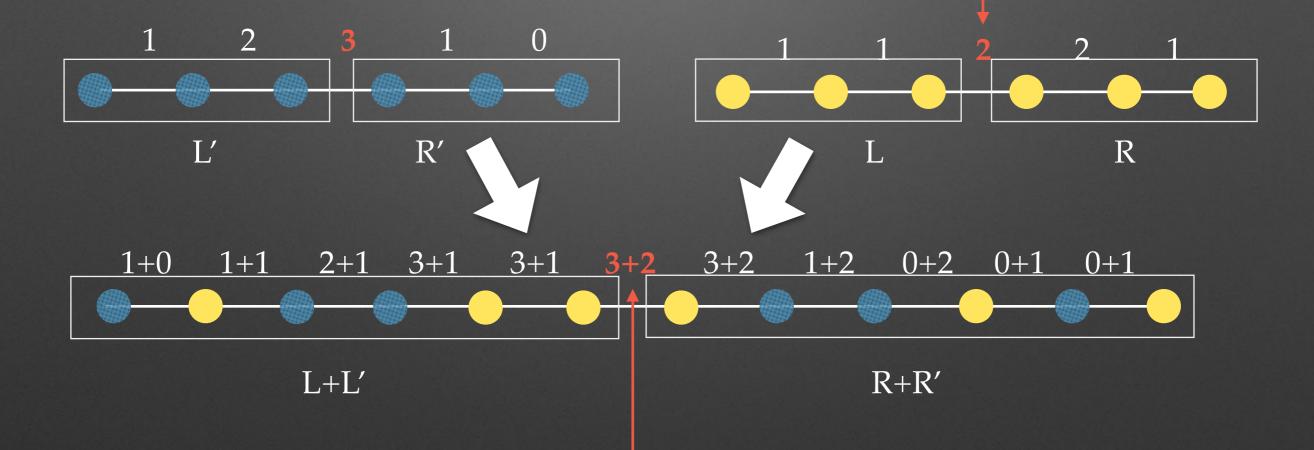


Typical sequence: idea from Bodlaender-Kloks (1996) #typical sequences consisting of $\{0, 1, 2, ..., k\} \ge (8/3) 2^{2k}$.

Handling a boundary space

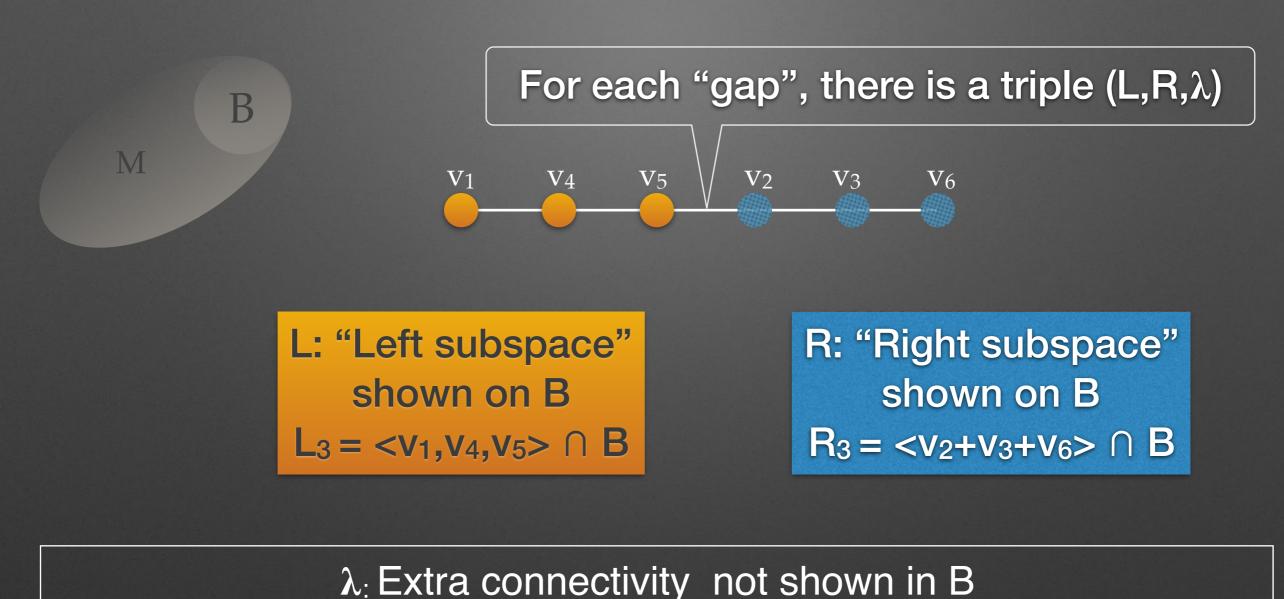
When B:=<M₁>∩<M₂>≠∅

 $\dim(L \cap R) - \dim(L \cap R \cap B)$



dim(L+L')∩(R+R') - dim(L+L')∩(R+R')∩B

Encoding of a linear layout



 $\lambda_3 = \dim_{v_1,v_4,v_5} \cap \langle v_2 + v_3 + v_6 \rangle - \dim_{v_1,v_4,v_5} \cap \langle v_2 + v_3 + v_6 \rangle \cap B$

Applications

An alternative definition of pathwidth

- A path-decomposition of F
 := a sequence π = (S₁,S₂,...,S_m) of subspaces of F
 with an injective function μ:{1,2,...,n}→{1,2,...,m} s.t.
 V_i⊆S_{µ(i)}.
- Width of $\pi := \max (S_1 + ... + S_i) \cap (S_{i+1} + ... + S_m)$

∃ linear layout of width ≤ k
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

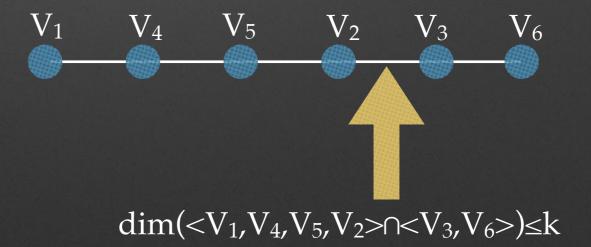
Subspaces Arrangement

 \mathbb{F} is a finite field

Input: subspaces $V_1, V_2, ..., V_n$ of \mathbb{P}^r , a positive integer k

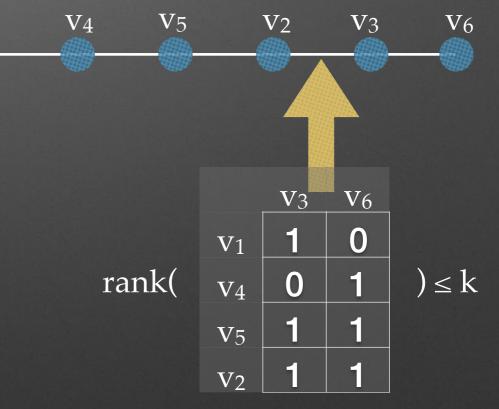
Goal: find a permutation of V₁, V₂,..., V_n such that for every i, $dim(\langle V_1+...+V_i\rangle \cap \langle V_2,...,V_n\rangle) \leq k.$

linear layout of width≤k



Application to Linear rank-width

 Find a linear ordering of vertices of G so that the rank of adjacency matrix between {v₁,...v_i} and {v_{i+1},...v_n} is at most k.



Set $V_i := \{e_i, x_i\}$

Path-width of {V₁,V₂,...,V_n} = 2*(linear rank-width of G)

Application to Linear rank-width

For any fixed k, $O(n^3)$ -time algorithm to find a linear rank decomposition of width \leq k or confirms that linear rank-width > k.

Application to linear clique-width

- Linear clique-width, "linearized version of clique-width"
- Linear rank-width $\leq k \Rightarrow$ linear clique-width $\leq 2^{k}+1$.

For any fixed k, $O(n^3)$ -time algorithm to find a linear clique-width expression of width $\leq 2^k+1$ or confirms that linear clique-width>k.

Further questions

- FPT algorithms for pathwidth / branchwidth on general matroids? (given independence oracle)
- Can O(n³) factor in the runtime improved? i.e. O(n^w)

THANK YOU!