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Background



Matroid: primer

• (E, I) - a ground set and a 
family of subsets of E called 
the independet sets -  
satisfying  

A. ∅ ∈ I 

B. X ⊂ Y and Y ∈ I ➔ X ∈ I 

C. ∀X,Y ∈ I with |X| < |Y|,  

∃y∈Y s.t. X∪{y} ∈ I  

• A matroid (E, I) is 
representable in F if 

E Vectors  
in a vector space over F

… such that X ∈ I iff 
corresponding vectors are 
independent.



Vectors Arrangement

Input: vectors v1, v2,…vn ∈ Fr, a positive integer k  
 

Goal: find a permutation of v1, v2,…vn such that for every i, 
dim(<v1+…+vi>∩<v2,…,vn>)≤k.

v1 v2v5v4 v3 v6

dim(<v1,v4,v5,v2>∩<v3,v6>) ≤ k

𝔽 is a finite field

linear layout  
(or pathwidth) 

of width≤k,



Branchwidth of F-
represented matroids

v1

v3 v2

v4

v5

v6

dim(<v1,v3,v6,v2>∩<v4,v5>)≤k

Input: vectors v1, v2,…vn ∈ Fr, a positive integer k 
 
Goal: find a subcubic tree T with a bijection  
L:{leaves} ➔ {vectors} such that for every e in T,

𝔽 is a finite field

branch decomposition 
of width≤k



From graphs to matroids
pw (cycle matroid of G’) = pw (G)

When G is not a tree 
bw (cycle matroid of G) = bw (G)

Kashap 2008

Hicks, McMurray, Nolan 2007

Mazoit, Thomassé 2007

G G’



XP algorithms
• When k is a fixed constant, polynomial-time algorithm 

exists for matroids in general  
(given an independence oracle) 

• Pathwidth: Nagamochi 2012 

• Branchwidth: Oum, Seymour 2007

What about FPT algorithms?



pw(G)≤k via minor testing
Gk = { G: pw(G) ≤ k } is minor-closed

Under graph minor relation ≼m , 
any antichain is finite

F = { minimal graphs, ⋠m Gk } 

Testing if F ≼m G in g(|F|)∙n2 time  
(Kawarabayashi, Kobayashi, Yusuke, Reed 2012)

G ∈ Gk 
↕ 

F ⋠m G, ∀F ∈ F

F is finiteIn time f(k)∙n2 

test if F ⋠m G 

∀F ∈ F



pw(M)≤k via minor testing
Mk = { M: pw(M) ≤ k } is minor-closed

Under matroid minor relation ≼m , 
any antichain is finite

F = { minimal matroids, ⋠m Mk } 

Testing if N ≼m M in g(|N|)∙poly(n) time

M ∈ Mk 
↕ 

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n) 
test if N ⋠m M 

∀N ∈ F

✔

✔

✔ ✘

✘



pw(M)≤k via minor testing

Under matroid minor relation ≼m , 
any antichain is finite

Testing if N ≼m M in g(|N|)∙poly(n) time

✘

✘

• M is binary ↔ U2,4 ⋠m M 
• Any algorithm (with independence 

oracle) requires exponential time 
(Seymour 1981)

• Infinite antichain is not difficult to 
construct.• Conjecture (RS): for each finite 

field F, F-representable matroids 
are w.q.o under ≼m  

• Geelen, Gerards, Whittle (2014) 
announced the proof.

• Conjecture: for any finite field F 
and any F-representable N, testing 
N ≼m M in time g(|N|)∙poly(n) 

• Probably GGW taking care of it?



pw(M)≤k when F-represented
Mk = { M: pw(M) ≤ k & F-represented} is minor-closed

Under matroid minor relation ≼m , 
any antichain of F-representable 

matroids is finite.

F = { minimal F-represented matroids, ⋠m Mk } 

Testing if N ≼m M in g(|N|)∙poly(n) time

M ∈ Mk 
↕ 

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n) 
test if N ⋠m M 

∀N ∈ F

?

?
?



pw(M)≤k when F-represented
Mk = { M: pw(M) ≤ k & F-represented} is minor-closed

Under matroid minor relation ≼m , 
any antichain of F-representable 
matroids bounded bw is finite.

F = { minimal F-represented matroids, ⋠m Mk } 

Testing if N ≼m M in g(k)∙n3 time 

when bw(M) ≤ k (Hliněný 2006)

M ∈ Mk 
↕ 

N ⋠m M, ∀N ∈ F

F is finiteIn time f(k)∙poly(n) 
test if N ⋠m M 

∀N ∈ F

✔

✔

F is has branchwidth ≤ k+1

✔



Issues with the approach

• Too many obstructions - at least (k!)2  
(Koutsonas, Thilikos, Yamazaki 2014) 

• No algorithm to generate all minor obstructions. 

• Even if the complete obstruction list is known, minor 
testing algorithm (Hliněný 2006) hides gigantic function on 
k - relies on MSO checking. 

• Only decision - no algorithm to actually produce a 
layout.



Our result

• Dynamic programming for pathwidth  
(Bodlaender, Kloks 1996) 

• Does not depend on a heavy machinery 
• Constructive 
• Uses 3-approximation for branch-decomposition  

and can be made self-contained with O(n) overhead

O( f(k)·n3)-time algorithm to decide a linear layout v1, v2, …, vn  
of the input n vectors in 𝔽m, for any finite field 𝔽, such that  
                dim (<v1,v2,…,vi> ∩ <vi+1,…,vn>) ≤ k for all i 
and output one if exists.



Algorithm for  
Vector Arrangement



Dynamic programming on a 
branch-decomposition

• Want to encode all feasible 
linear layouts of M1 & M2 

• …in a compact way 

• …in a way s.t. enconding for 
M1 + M2 can be constructed 
from encodings for M1 and 
M2.

M1 M2

enc(M1) enc(M2)

enc(M1+M2)



Encoding a linear layout

v1 v2v5v4 v3 v6 u2 u6u1u4 u3 u5

1 2 3 1 0 1 1 2 2 1

v1 v2v5v4 v3 v6u2 u6u1u4 u3 u5

1+0 1+1 2+1 3+1 3+1 3+2 3+2 1+2 0+2 0+1 0+1

When <M1>∩<M2>=∅

Issues 
1. How to shorten the length of the dimension sequence 
2. How to handle the boundary space; <M1>∩<M2>≠∅ 



Compressing a dimension 
sequence

Typical sequence: idea from Bodlaender-Kloks (1996) 
#typical sequences consisting of {0,1,2,…,k})≤ (8/3)22k.

k



Handling a boundary space

1 2 3 1 0 1 1 2 2 1

When B:=<M1>∩<M2>≠∅
dim(L∩R) - dim(L∩R∩B)

L’ R’ RL

1+0 1+1 2+1 3+1 3+1 3+2 3+2 1+2 0+2 0+1 0+1

L+L’ R+R’

dim(L+L’)∩(R+R’) - dim(L+L’)∩(R+R’)∩B



Encoding of a linear layout

M
B

L: “Left subspace”  
shown on B 

L3 = <v1,v4,v5> ∩ B

R: “Right subspace”  
shown on B 

R3 = <v2+v3+v6> ∩ B

𝛌: Extra connectivity  not shown in B
𝛌3 = dim<v1,v4,v5> ∩ <v2+v3+v6> - dim<v1,v4,v5> ∩ <v2+v3+v6> ∩ B 

For each “gap”, there is a triple (L,R,𝛌)

v1 v2v5v4 v3 v6



Applications



An alternative definition of 
pathwidth

• A path-decomposition of 𝔽r 
:= a sequence π = (S1,S2,…,Sm) of subspaces of 𝔽r  
with an injective function  μ:{1,2,…,n}→{1,2,…,m} s.t. 
Vi⊆Sμ(i). 

• Width of π := max (S1+…+Si)∩(Si+1+…+Sm)

∃ linear layout of width ≤ k  
⇕ 

∃ path-dec. of width≤k.



Subspaces Arrangement

Input: subspaces V1, V2,…Vn of 𝔽r, a positive integer k  
 

Goal: find a permutation of V1, V2,…, Vn such that for every i, 
dim(<V1+…+Vi>∩<V2,…,Vn>)≤k.

V1 V2V5V4 V3 V6

dim(<V1,V4,V5,V2>∩<V3,V6>)≤k

linear layout of 
width≤k

𝔽 is a finite field



Application to  
Linear rank-width

v1 v2v5v4 v3 v6

rank(

• Find a linear ordering of vertices of G so that the rank  
of adjacency matrix between {v1,…vi} and {vi+1,…vn} is  
at most k. 

v3 v6

v1 1 0
v4 0 1
v5 1 1
v2 1 1

) ≤ k 

Path-width of {V1,V2,…,Vn}  
= 2*(linear rank-width of G)

Set Vi := {ei , xi}



Application to  
Linear rank-width

For any fixed k, O(n3)-time algorithm to find a linear 
rank decomposition of width ≤ k or confirms that 

linear rank-width > k.



Application to  
linear clique-width

• Linear clique-width, “linearized version of clique-width” 

• Linear rank-width≤k ➡ linear clique-width ≤ 2k+1.

For any fixed k, O(n3)-time algorithm to find a linear 
clique-width expression of width≤2k+1 or confirms 
that linear clique-width>k.



Further questions

• FPT algorithms for pathwidth / branchwidth on general 
matroids? (given independence oracle) 

• Can O(n3) factor in the runtime improved? i.e. O(nw) 

THANK YOU!


