Constructive algorithm for
pathwidth of matroids

Eunjung KIM, CNRS / University Paris-Dauphine
jointwork with Sang-il Oum and Jisu Jeong (KAIST)

Workshop on Satisfiability Lower bounds and Tight Results for Parameterized and Exponential
Time algorithm

Matroid: primer

* (E,) - aground set and a * Amatroid (E,) is
family of subsets of E called representable in F if

the independet sets - = Vectors
satisfying In a vector space over F
A. oe’l

B. XcYandYe‘l>Xe']

... such that X e | iff

C. vX,Y € 1 with [X] < |Y], corresponding vectors are

iIndependent.
ayeY s.t. XU{y} € ‘]

Vectors Arrangement

F is a finite field

Input: vectors vi, vo,...vn € F', a positive integer k

Goal: find a permutation of v4, v2,...vh such that for every i,
dim(<vi+...+Vi>n<Va,...,Vn>)<k.

Vi V4 V5 V2 V3 Ve

3

dim(<V1,V4,V5,V2>ﬂ<V3,V6>) <k

linear layout
or pathwidth

£ width<l
I 3 | B N A - 4
of width=K,

- =

Branchwidth of F-
represented matroids

F is a finite field

Input: vectors vi, vo,...Vn € F', a positive integer Kk

Goal: find a subcubic tree T with a bijection
L:{leaves} = {vectors} such that for every e in T,

\%!

@

branch decomposition

V3 &

dim(<v1,v3, Ve, Vo>N<vy, vs>)<k

From graphs to matroids

pw (cycle matroid of G’) = pw (G) Kashap 2008
G e G

When G is not a tree
bw (cycle matroid of G) = bw (G)

Hicks, McMurray, Nolan 2007
Mazoit, Thomasse 2007

XP algorithms

 When k is a fixed constant, polynomial-time algorithm
exists for matroids in general
(given an independence oracle)

e Pathwidth: Nagamochi 2012

 Branchwidth: Oum, Seymour 2007

What about FPT algorithms?

pw(G)<k via minor testing

Gk = { G: pw(G) = k } is minor-closed

T = { minimal graphs, £m Gk}

G € Gk Under graph minor relation <m,
i any antichain is finite

F#mG,VFET

In time f(k)-n? F is finite
testif F £m G

WiF s ¥ Testing if F <m G in g(|F|)-n? time

(Kawarabayashi, Kobayashi, Yusuke, Reed 2012)

pw()<k via minor testing

Mk = { M: pw(M) < k } is minor-closed

F = { minimal matroids, ¥m Mk}

Under matroid minor relation <m,
M e Mk s
0 any antichain is finite

Nzxm M, VN e F

In time f(k)-poly(n) F is finite
testif N £ M

VN e F Testing if N <m M in g(|N|)-poly(n) time

pw()<k via minor testing

B

 Infinite antichain is not difficult to
construct.

Conjecture (RS): for each
F, F-representable matroids

| are w.q.o under <m

H- Geelen, Gerards, Whittle (2014)

announced the proof.

e I I e —

o Under matroid minor relation <m,

. MLiS b;\:ary — Uzs £mM | any antichain is finite

* Any algorithm (with independence
oracle) requires exponential time

(Seymour 1981)

R
4‘,
U
3
4

e Conjecture: for any F ! :
and any F-representable N, testing T e |
N < M in time g(N])-poly(n) | Test‘l‘ng if N <m M in g(|N|):poly(n) .. me

* Probably GGW taking care of it? |~

R R N

pw(M)<k when

Mk = { M: pw(M) < k & } 1s minor-closed

F = { minimal matroids, £m Mk}

Under matroid minor relation <m,
any antichain of

M e M matroids is finite.

!

Nzxm M, VN e F

In time f(k)-poly(n) F is finite
testif N #m M

VN e F Testing if N <m M in g(|N|)-poly(n) time

pw(M)<k when

Mk = { M: pw(M) < k & } 1s minor-closed

F = { minimal matroids, £m Mk}

Under matroid minor relation <m,

any antichain of
M e M

1 matroids Is finite.
N e Wi, W T is has branchwidth < k+1
In time f(k)-poly(n) F is finite
testif N £ M
vN e F Testing if N <m M in g(k):-n° time

when bw(M) < k (Hlinény 2006)

Issues with the approach

Too many obstructions - at least (k!)?
(Koutsonas, Thilikos, Yamazaki 2014)

No algorithm to generate all minor obstructions.
Even if the complete obstruction list is known, minor
testing algorithm (Hiinény 2006) hides gigantic function on

k - relies on MSO checking.

Only decision - no algorithm to actually produce a
layout.

Our result

O(f(k):n®)-time algorithm to decide a linear layout v1, va, ..., Vn
of the input n vectors Iin ", for any finite field F, such that

dim (<v1,V2,...,Vi> 0 <Vi+t,...,Vn>) < K for all i
and output one if exists.

 Dynamic programming for pathwidth
(Bodlaender, Kloks 1996)

* Does not depend on a heavy machinery

* Constructive

e Uses 3-approximation for branch-decomposition
and can be made self-contained with O(n) overhead

Algorithm for
Vector Arrangement

Dynamic programming on a
branch-decomposition

enc(l\)ll1+M2) Want to encode all feasible

linear layouts of M1 & Mo
enc(M1/\enc(M2) e ...in a compact way

e _..In a way s.t. enconding for
M1 + M2 can be constructed
M \Y from encodings for M1 and
Moa.

Encoding a linear layout

When <Mi>n<Mao>=g

V1 V4 V5 \%) V3 Vé6

V3 us Ve us

1+2 0+2 0+1 O0+1

Issues
1. How to shorten the length of the dimension sequence
2. How to handle the boundary space; <M1>n<Ma>#2

Compressing a dimension
sequence

Typical sequence: idea from Bodlaender-Kloks (1996)
#typical sequences consisting of {0,1,2,...,k})< (8/3)22k.

Handling a boundary space

When B:=<M1i>n<M2>#2

1 2 1 0 1 1 2 |

90 O
R

140 1+1 2+1 3+1 3+1 3+2 1+2 0+2 0+1 0+1

BeHLy R+R’

Encoding of a linear layout

[For each “gap”, there is a triple (L,R,A)]

\%! V4 V5 \/ \'%) V3 V6

L: “Left subspace” R: “Right subspace”
shown on B shown on B
Ls = <v1,v4,vs> N B Rs = <vo+V3+Vve> N B

A. Extra connectivity not shown in B
A3 = dim<vi,V4,Vs> N - dim<v1,V4,vs> N NnB

An alternative definition of
pathwidth

« A path-decomposition of [

= a sequence 11 = (S1,59,...,Sm) of subspaces of I

with an injective function p:{1,2,...,n}—{1,2,...,m} s.t.
ViCSyi).

o Width of it := max (S1+...+Si)n(Sis1+...+Sm)

3 linear layout of width < k
)

J path-dec. of width=k.

Subspaces Arrangement

F is a finite field

Input: subspaces V1, V5,...V, of [, a positive integer k

Goal: find a permutation of V4, Va,..., Va such that for every |,
dim(<Vi+...+Vi>n<Vy,...,Vnh>)<Kk.

dim(<V1 ,V4,Vs ,Vz>ﬂ<V3,V6>)£k

Application to

Linear rank-width

* Find a linear ordering of vertices of G so that the rank
of adjacency matrix between {vi,...vi} and {Vi+1,...vn} IS

at most k.

Set Vi :={ei, xi}

Path-width of {V1,V5,...,Vi}
= 2*(linear rank-width of G)

\%| V4 V5 V2 V3 V6
VA
e Ak,
rank(v, | 0 | 1)<k
V5 1 1
e el

Application to
Linear rank-width

For any fixed k, O(n3)-time algorithm to find a linear
rank decomposition of width < k or confirms that
linear rank-width > k.

Application to
linear clique-width

* Linear cligue-width, “linearized version of clique-width”

* Linear rank-width<k = linear clique-width < 2%+1.

For any fixed k, O(n3)-time algorithm to find a linear
clique-width expression of width<2+1 or confirms
that linear clique-width>k.

Further questions

 FPT algorithms for pathwidth / branchwidth on general
matroids? (given independence oracle)

e Can O(n3) factor in the runtime improved? i.e. O(n%)

THANK YOU!

