Spotting Trees with Few Leaves

Andreas Björklund 1 , Vikram Kamat 2 , Łukasz Kowalik 2 , Meirav Zehavi 3

(speaker)

Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time Algorithms Simons Institute, Berkeley 4th Nov 2015

HAMILTONIAN CYCLE in undirected graphs

Problem

INPUT: undirected graph G.

GOAL: Find a Hamiltonian cycle.

HAMILTONIAN CYCLE in undirected graphs

Problem

INPUT: undirected graph G. GOAL: Find a Hamiltonian cycle.

HAMILTONIAN PATH in undirected graphs

Problem

INPUT: undirected graph G.

GOAL: Find a Hamiltonian path.

HAMILTONIAN PATH in undirected graphs

Problem

INPUT: undirected graph G.

GOAL: Find a Hamiltonian path.

k - $PATH$ in undirected graphs

Problem

INPUT: undirected graph G , integer k .

GOAL: Find a k-vertex path (shortly: k-path).

k - $PATH$ in undirected graphs

Problem

INPUT: undirected graph G , integer k .

GOAL: Find a k-vertex path (shortly: k-path).

(k, ℓ) -TREE in undirected graphs

Problem

INPUT: undirected graph G , integers k, ℓ . GOAL: Find a tree T with k vertices including exactly ℓ leaves, (shortly: (k, l) -tree).

(k, ℓ) -TREE in undirected graphs

Problem

INPUT: undirected graph G , integers k, ℓ . GOAL: Find a tree T with k vertices including exactly ℓ leaves, (shortly: (k, l) -tree).

Problem

INPUT: undirected graph G , integer k .

GOAL: Find a spanning tree T with at least k internal vertices

Problem

INPUT: undirected graph G , integer k .

GOAL: Find a spanning tree T with at least k internal vertices

Problem

INPUT: undirected graph G , integer k . $GOAL:$ Find tree T with at least k **internal** vertices

Problem

INPUT: **undirected** graph G , integer k .

GOAL: Find a tree T with at least k internal vertices s.t. edges from leaves to parents form a matching

Problem

INPUT: undirected graph G , integer k . GOAL: Find a $(k+l, l)$ -tree for some $l = 2, ..., k$

All these problems are NP-complete.

 \leftarrow

All these problems are NP-complete.

In this talk we are interested in

- Parameterized (FPT) algorithms: running time of $O^*(c^k)$
- Exponential-time algorithms: running time of $O^*(c^n)$

and we want c to be small.

Hamiltonian Cycle / Path

- Held, Karp 1962, $O^*(2^n)$ time, $O(2^n)$ space.
- Kohn et al 1969 $O[*](2ⁿ)$ time, poly space.
- Björklund 2010 $O^*(1.66^n)$ time, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

4 0 8

おす者おし

目

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

- Alon, Yuster, Zwick 1994: $O^*((2e)^k)$, poly space
- Kneis, Mölle, Richter, Rossmanith 2006: $O^*(4^k)$, poly space
- Chen, Lu, She, Zhang 2007: $O^*(4^k)$, poly space
- Koutis 2008: $O^*(2^{3/2k})$, poly space
- Williams 2009: $O^*(2^k)$, poly space
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

- Cohen et al. 2010: $O^*(6.14^k)$, poly space
- Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space (k, ℓ) -Tree

Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-Internal Spaning Tree: FPT algorithms

- Prieto, Sloper 2005: $O^*(2^{k\log k})$, poly space
- Cohen et al. 2010: $O^*(49.4^k)$, poly space
- Fomin et al. 2012: $O^*(16^k)$, poly space
- Fomin et al. 2013: $O^*(8^k)$, poly space
- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space (k, ℓ) -Tree

Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-Internal Spaning Tree: FPT algorithms

- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space (k, ℓ) -Tree

Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-Internal Spaning Tree: FPT algorithms

- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

 k -INTERNAL SPANING TREE: exponential time algorithms

- Raible et al. 2008: $O[*](2ⁿ)$, exp space
- Nederlof 2009: $O[*](2ⁿ)$, poly space

Hamiltonian Cycle / Path

Björklund 2010 $O^*(1.66^n)$ time, poly space

 $k-PATH$

Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space (k, ℓ) -Tree

Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-Internal Spaning Tree: FPT algorithms

- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

 k -INTERNAL SPANING TREE: exponential time algorithms

- Raible et al. 2008: $O[*](2ⁿ)$, exp space
- Nederlof 2009: $O[*](2ⁿ)$, poly space

Open question (Raible et al): Can the approach of Björklund (2010) be extended from finding paths to finding trees?

イロト イ押 トイヨ トイヨ トーヨ

 k -Path BHKK 2010 $O^*(1.66^k)$

4 0 8

メス 国家

4 0 8

- 45

ミメスミメ

Our results (1): from paths to trees

4 **D** F

Our results (1): from paths to trees

Our results (1): from paths to trees

Note: All our algorithms

- **o** use polynomial space,
- **•** are randomized Monte-Carlo with one sided error, i.e.,
	- \bullet No solution \rightarrow correct answer
	- Solution Exists \rightarrow correct answer with probability 99%.

HAMILTONIAN CYCLE / PATH in cubic graphs

- Eppstein WADS 2003 $O^*(1.26^n)$, poly space.
- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

HAMILTONIAN CYCLE / PATH in max degree 4 graphs

- Eppstein 2003 $O^*(1.89ⁿ)$, poly space.
- Gebauer 2008 $O[*](1.733ⁿ)$, exp space.
- X iao, N amagochi 2012 $O^*(1.716^n)$, poly space.
- Björklund 2010 $O[*](1.66ⁿ)$, poly space
- Cygan et al. 2011 $O[*](1.588ⁿ)$, exp space

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

HAMILTONIAN CYCLE / PATH in max degree 4 graphs

- Björklund 2010 $O^*(1.66^n)$, poly space
- Cygan et al. 2011 $O[*](1.588ⁿ)$, exp space

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- HAMILTONIAN CYCLE / PATH in max degree 4 graphs
	- Björklund 2010 $O^*(1.66^n)$, poly space
	- Cygan et al. 2011 $O[*](1.588ⁿ)$, exp space
- k -Path in bipartite graphs
	- Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- HAMILTONIAN CYCLE / PATH in max degree 4 graphs
	- Björklund 2010 $O^*(1.66^n)$, poly space
	- Cygan et al. 2011 $O[*](1.588ⁿ)$, exp space
- k -Path in bipartite graphs
	- Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

Question: Is there anything interesting going on between bipartite and general graphs?

HAMILTONIAN CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251ⁿ)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- HAMILTONIAN CYCLE / PATH in max degree 4 graphs
	- Björklund 2010 $O^*(1.66^n)$, poly space
	- Cygan et al. 2011 $O[*](1.588ⁿ)$, exp space
- k -Path in bipartite graphs
	- Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

Question: Is there anything interesting going on between bipartite and general graphs?

What about *d*-colorable graphs?

4 0 8

э

医尿囊的

4 0 8

- イ ヨ ト

4 **D** F

医阿雷氏阿雷氏

Our results (2): colored graphs

メロト メ母 トメミト メミト

Our results (2): colored graphs

Note: These results generalize to (k, l) -TREE (for $l = O(1)$ we get the same bounds) and to k -IST. ∢ロト ∢母 ト ∢ ヨ ト ∢ ヨ ト 2990

Björklund, Kamat, Kowalik, Zehavi [Spotting Trees with Few Leaves](#page-0-0) 12 / 23

Fractional coloring

$(a : b)$ -coloring

- Assign *b*-element subsets of $\{1, \ldots, a\}$
- Adjacent vertices get disjoint sets.

Fractional chromatic number $\chi_f(G) = \inf\{\frac{a}{b}\}$ $\frac{a}{b} \mid G$ is $(a:b)$ -colorable}. **Example:** C_5 is $(5:2)$ -colorable, and $\chi_f(G) = \frac{5}{2}$.

Fractional coloring

$(a : b)$ -coloring

- Assign *b*-element subsets of $\{1, \ldots, a\}$
- Adjacent vertices get disjoint sets.

Fractional chromatic number $\chi_f(G) = \inf\{\frac{a}{b}\}$ $\frac{a}{b} \mid G$ is $(a:b)$ -colorable}. **Example:** C_5 is $(5:2)$ -colorable, and $\chi_f(G) = \frac{5}{2}$.

Note: $\chi_f(G) \leq \chi(G)$.

Our results (3): fractionally-colored graphs

Theorem

Given a proper $(a : b)$ -coloring of the input graph, for any $t = 1, \ldots, b$ one can solve (k, ℓ) –TREE in time

$$
2^{\left(1-\frac{\binom{a-b}{t}-\binom{a-2b}{t}}{\binom{a}{t}}\right)k+\left(1-\frac{\binom{a-b}{t}}{\binom{a}{t}}\right)l}n^{O(1)}
$$

.

K ロ ▶ K (足 ▶ K)

Our results (3): fractionally-colored graphs

Theorem

Given a proper $(a : b)$ -coloring of the input graph, for any $t = 1, \ldots, b$ one can solve (k, ℓ) −TREE in time

$$
2^{\left(1-\frac{\binom{a-b}{t}-\binom{a-2b}{t}}{\binom{a}{t}}\right)k+\left(1-\frac{\binom{a-b}{t}}{\binom{a}{t}}\right)l}n^{O(1)}
$$

.

イロト イ押 トイヨ トイヨ トーヨ

Main consequences:

 $1.571^{k}1.274^{l}n^{O(1)}$ -time algorithm for (k, l) - TREE in triangle-free graphs of maximum degree 3,

⇓ ⇓ ⇓ ⇓

 $1.571^{k}n^{O(1)}$ -time algorithm for *k*-PATH in **general** graphs of maximum degree 3

Updated table:

 \leftarrow

Vector coloring

An r-vector coloring of a graph G is an assignment $c:V(G)\to\mathbb{R}^n$ s.t.

- \bullet $||c(v)|| = 1$ for every $v \in V(G)$ and
- for every edge uv, $c(u) \cdot c(v) \leq -1/(r-1)$.

The vector chromatic number $\chi_v(G)$ is the smallest such (real) r.

$$
c(u) \cdot c(v) = \cos \angle(u, v) = \cos(\frac{4\pi}{5}) = -\frac{1}{\sqrt{5}-1}
$$
, so $\chi_v(C_5) \le \sqrt{5}$.

Relaxation property and computational complexity

Let $\omega(G)$ be the size of a maximum clique in G.

Theorem (Folklore)

For any graph G

$\omega(G) \leq \chi_{\nu}(G) \leq \chi_f(G) \leq \chi(G)$

Relaxation property and computational complexity

Let $\omega(G)$ be the size of a maximum clique in G.

Theorem (Folklore)

For any graph G

$$
\omega(G) \leq \chi_v(G) \leq \chi_f(G) \leq \chi(G)
$$

Theorem (Karger, Motwani, Sudan)

The vector chromatic number can be $(1 + \epsilon)$ -approximated in polynomial time.

Our results (4): r-vector-colorable graphs

Theorem

For any $\epsilon > 0$, (k, ℓ) -TREE can be solved in time

$$
O^*(2^{\left(\frac{k+\ell}{2}+\left(1-\frac{\arccos(-1/(r-1))}{\pi}\right)\frac{k-1}{2}+\epsilon}\right))
$$

for r -vector colorable graphs (hence also for r -colorable or fractionally r -colorable).

Concrete running times for k - PATH :

A glimpse of eye at our approach for d-colored graphs

BHKK's k-Path algorithm as black box

- ④ ラ ス ヨ メ ス ヨ メ

d-colored graphs

• Idea: Pick $\left| d/2 \right|$ colors as V_1 .

4 **D** F

d-colored graphs

- **o** Idea: Pick $\left| d/2 \right|$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.

4 **D** F

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ \lfloor d/2 \rfloor \end{bmatrix}$ choices!

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ d/2 \end{bmatrix}$ choices!

$(a : b)$ -colored graphs

 V_1 is a subset of $\binom{a}{t}$ $\binom{a}{t}$ colors $(t = 1, \ldots, \lfloor a/2 \rfloor).$

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ d/2 \end{bmatrix}$ choices!

$(a : b)$ -colored graphs

•
$$
V_1
$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, ..., \lfloor a/2 \rfloor)$.

• Test all choices

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ d/2 \end{bmatrix}$ choices!

$(a : b)$ -colored graphs

•
$$
V_1
$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, ..., \lfloor a/2 \rfloor)$.

• Test all choices

vector r-colored graphs

pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ d/2 \end{bmatrix}$ choices!

$(a : b)$ -colored graphs

•
$$
V_1
$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, ..., \lfloor a/2 \rfloor)$.

• Test all choices

vector r-colored graphs

- **•** pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.
- \bullet V_1 are the vertices mapped to the green half-space.

d-colored graphs

- Idea: Pick $\vert d/2 \vert$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\begin{pmatrix} d \\ d \end{pmatrix}$ $\begin{bmatrix} d \\ d/2 \end{bmatrix}$ choices!

$(a : b)$ -colored graphs

•
$$
V_1
$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, ..., \lfloor a/2 \rfloor)$.

• Test all choices

vector r-colored graphs

- **•** pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.
- \bullet V_1 are the vertices mapped to the green half-space.
- The expected value of $|E(P) \cap V_1 \times V_2|$ is large.
- Some more interesting partitions (in other graph classes)?
- A better algorithm when many leaves?
- Lower bounds under SETH, Set Cover Conjecture, etc.?
- \bullet MAX LEAF problem (is there a spanning tree with at least k leaves?). State of the art: Zehavi'15: $O^*(3.188^k)$ -time branching algorithm Can we use the algebraic approach to get a faster algorithm? Ideally, $O^*(2^k)$ -time algorithm?

Thank you!

目

결 시 지경 시

 \leftarrow \Box

4 ଲ