Spotting Trees with Few Leaves

Andreas Björklund¹, Vikram Kamat², Łukasz Kowalik², Meirav Zehavi³

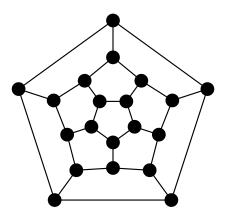
(speaker)

Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time Algorithms Simons Institute, Berkeley 4th Nov 2015

HAMILTONIAN CYCLE in undirected graphs

Problem

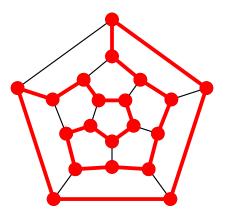
INPUT: **undirected** graph *G*. GOAL: Find a Hamiltonian cycle.



HAMILTONIAN CYCLE in undirected graphs

Problem

INPUT: **undirected** graph *G*. GOAL: Find a Hamiltonian cycle.

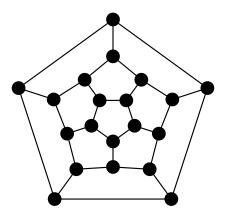


HAMILTONIAN PATH in undirected graphs

Problem

INPUT: **undirected** graph *G*.

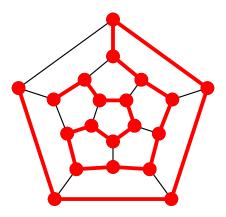
 $\operatorname{GOAL:}$ Find a Hamiltonian path.



HAMILTONIAN PATH in undirected graphs

Problem

INPUT: **undirected** graph G. GOAL: Find a Hamiltonian path.

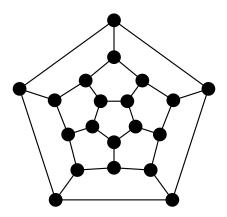


k-PATH in undirected graphs

Problem

INPUT: **undirected** graph G, integer k.

GOAL: Find a *k*-vertex path (shortly: *k*-path).

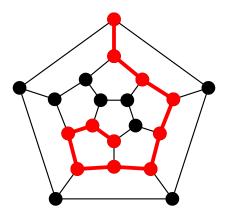


k-PATH in undirected graphs

Problem

INPUT: **undirected** graph G, integer k.

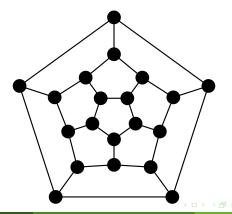
GOAL: Find a *k*-vertex path (shortly: *k*-path).



(k, ℓ) -TREE in undirected graphs

Problem

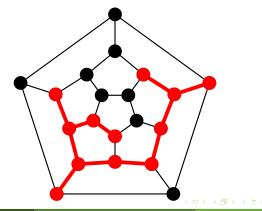
INPUT: **undirected** graph G, integers k, ℓ . GOAL: Find a tree T with k vertices including exactly ℓ leaves, (shortly: (k, ℓ) -tree).



(k, ℓ) -TREE in undirected graphs

Problem

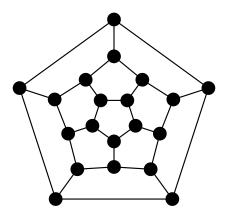
INPUT: **undirected** graph G, integers k, ℓ . GOAL: Find a tree T with k vertices including exactly ℓ leaves, (shortly: (k, ℓ) -tree).



Problem

INPUT: **undirected** graph *G*, integer *k*.

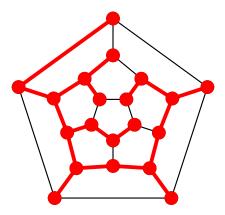
GOAL: Find a spanning tree T with at least k internal vertices



Problem

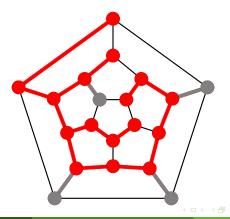
INPUT: **undirected** graph *G*, integer *k*.

GOAL: Find a spanning tree T with at least k internal vertices



Problem

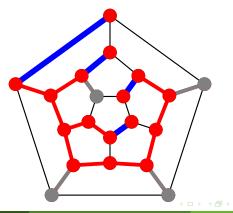
INPUT: **undirected** graph G, integer k. GOAL: Find tree T with at least k **internal** vertices



Problem

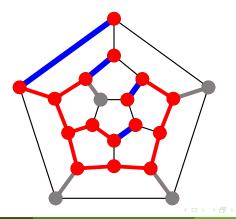
INPUT: **undirected** graph *G*, integer *k*.

GOAL: Find a tree T with at least k internal vertices s.t. edges from leaves to parents form a matching



Problem

INPUT: **undirected** graph G, integer k. GOAL: Find a (k + l, l)-tree for some l = 2, ..., k



All these problems are NP-complete.

All these problems are NP-complete.

In this talk we are interested in

- **Parameterized** (FPT) algorithms: running time of $O^*(c^k)$
- **Exponential-time** algorithms: running time of $O^*(c^n)$

and we want c to be small.

HAMILTONIAN CYCLE / PATH

- Held, Karp 1962, $O^*(2^n)$ time, $O(2^n)$ space.
- Kohn et al 1969 $O^*(2^n)$ time, poly space.
- Björklund 2010 $O^*(1.66^n)$ time, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

- Alon, Yuster, Zwick 1994: $O^*((2e)^k)$, poly space
- Kneis, Mölle, Richter, Rossmanith 2006: $O^*(4^k)$, poly space
- Chen, Lu, She, Zhang 2007: $O^*(4^k)$, poly space
- Koutis 2008: $O^*(2^{3/2k})$, poly space
- Williams 2009: $O^*(2^k)$, poly space
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Path

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

- Cohen et al. 2010: $O^*(6.14^k)$, poly space
- Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

• Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

• Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-INTERNAL SPANING TREE: FPT algorithms

- Prieto, Sloper 2005: $O^*(2^{k \log k})$, poly space
- Cohen et al. 2010: $O^*(49.4^k)$, poly space
- Fomin et al. 2012: $O^*(16^k)$, poly space
- Fomin et al. 2013: $O^*(8^k)$, poly space
- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

• Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-INTERNAL SPANING TREE: FPT algorithms

- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

• Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-INTERNAL SPANING TREE: FPT algorithms

- Daligault 2011; Zehavi 2013; Li et al. 2014: *O**(4^{*k*}), poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

k-INTERNAL SPANING TREE: exponential time algorithms

- Raible et al. 2008: $O^*(2^n)$, exp space
- Nederlof 2009: $O^*(2^n)$, poly space

HAMILTONIAN CYCLE / PATH

• Björklund 2010 $O^*(1.66^n)$ time, poly space

k-Ратн

• Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.66^k)$, poly space

 (k, ℓ) -Tree

• Dauligault 2011, Zehavi 2013: $O^*(2^k)$, poly space

k-INTERNAL SPANING TREE: FPT algorithms

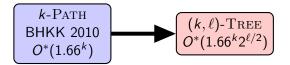
- Daligault 2011; Zehavi 2013; Li et al. 2014: $O^*(4^k)$, poly space
- Zehavi 2015: $O^*(3.62^k)$, exp space

k-INTERNAL SPANING TREE: exponential time algorithms

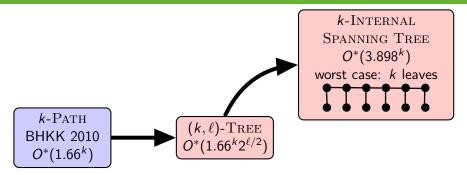
- Raible et al. 2008: $O^*(2^n)$, exp space
- Nederlof 2009: $O^*(2^n)$, poly space

Open question (Raible et al): Can the approach of Björklund (2010) be extended from finding paths to finding trees?

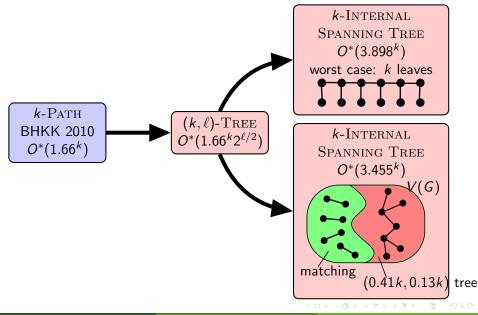
k-Ратн ВНКК 2010 *O**(1.66^{*k*})



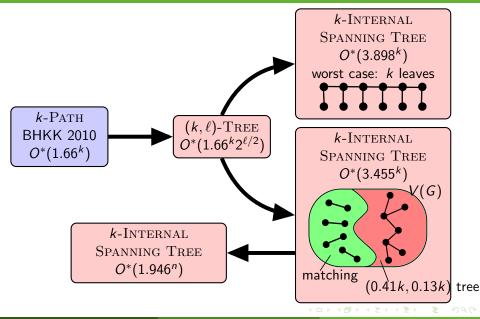
Our results (1): from paths to trees



Our results (1): from paths to trees



Our results (1): from paths to trees



Note: All our algorithms

- use polynomial space,
- are randomized Monte-Carlo with one sided error, i.e.,
 - $\bullet \ \ \, \text{No solution} \rightarrow \text{correct answer}$
 - Solution Exists \rightarrow correct answer with probability 99%.

 $\operatorname{Hamiltonian}\,\operatorname{Cycle}\,/\,\operatorname{Path}$ in cubic graphs

- Eppstein WADS 2003 $O^*(1.26^n)$, poly space.
- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

 $\operatorname{Hamiltonian}$ Cycle / Path in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in max degree 4 graphs

- Eppstein 2003 $O^*(1.89^n)$, poly space.
- Gebauer 2008 $O^*(1.733^n)$, exp space.
- Xiao, Namagochi 2012 O^{*}(1.716ⁿ), poly space.
- Björklund 2010 $O^*(1.66^n)$, poly space
- Cygan et al. 2011 $O^*(1.588^n)$, exp space

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in max degree 4 graphs

- Björklund 2010 $O^*(1.66^n)$, poly space
- Cygan et al. 2011 $O^*(1.588^n)$, exp space

Previous results: restricted graph classes

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- $\operatorname{HAMILTONIAN}$ CYCLE / PATH in max degree 4 graphs
 - Björklund 2010 $O^*(1.66^n)$, poly space
 - Cygan et al. 2011 $O^*(1.588^n)$, exp space
- k-PATH in bipartite graphs
 - Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

Previous results: restricted graph classes

 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- $\operatorname{HAMILTONIAN}$ CYCLE / PATH in max degree 4 graphs
 - Björklund 2010 $O^*(1.66^n)$, poly space
 - Cygan et al. 2011 $O^*(1.588^n)$, exp space
- k-PATH in bipartite graphs
 - Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

Question: Is there anything interesting going on between bipartite and general graphs?

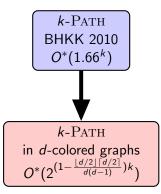
Previous results: restricted graph classes

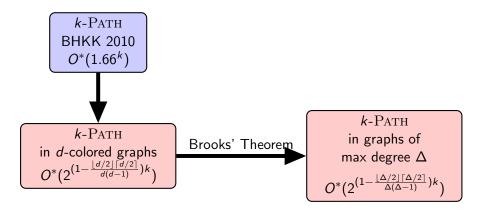
 $\operatorname{HAMILTONIAN}$ CYCLE / PATH in cubic graphs

- Iwama and Nakashima 2007 $O^*(1.251^n)$, poly space.
- Cygan et al. 2011 $O^*(1.201^n)$, exp space
- HAMILTONIAN CYCLE / PATH in max degree 4 graphs
 - Björklund 2010 $O^*(1.66^n)$, poly space
 - Cygan et al. 2011 $O^*(1.588^n)$, exp space
- k-PATH in bipartite graphs
 - Björklund, Husfeldt, Kaski, Koivisto 2010: $O^*(1.41^k)$, poly space

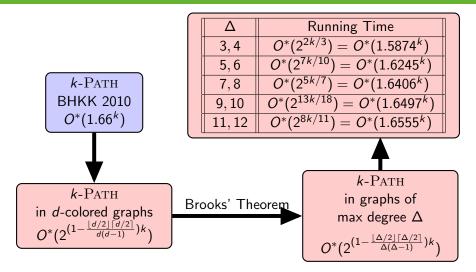
Question: Is there anything interesting going on between bipartite and general graphs?

What about *d*-colorable graphs?

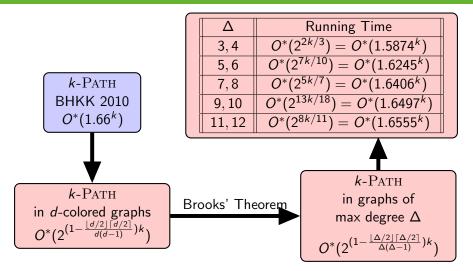




Our results (2): colored graphs



Our results (2): colored graphs



Note: These results generalize to (k, l)-TREE (for l = O(1) we get the same bounds) and to k-IST.

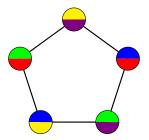
Björklund, Kamat, Kowalik, Zehavi

Fractional coloring

(a:b)-coloring

- Assign *b*-element subsets of $\{1, \ldots, a\}$
- Adjacent vertices get disjoint sets.

Fractional chromatic number $\chi_f(G) = \inf\{\frac{a}{b} \mid G \text{ is } (a:b)\text{-colorable}\}.$ **Example:** C_5 is (5:2)-colorable, and $\chi_f(G) = \frac{5}{2}$.

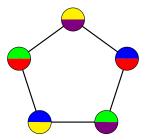


Fractional coloring

(a:b)-coloring

- Assign *b*-element subsets of $\{1, \ldots, a\}$
- Adjacent vertices get disjoint sets.

Fractional chromatic number $\chi_f(G) = \inf\{\frac{a}{b} \mid G \text{ is } (a:b)\text{-colorable}\}.$ **Example:** C_5 is (5:2)-colorable, and $\chi_f(G) = \frac{5}{2}$.



Note: $\chi_f(G) \leq \chi(G)$.

Our results (3): fractionally-colored graphs

Theorem

Given a proper (a : b)-coloring of the input graph, for any t = 1, ..., b one can solve (k, ℓ) -TREE in time

$$\frac{1}{2}\left(1-\frac{\binom{a-b}{t}-\binom{a-2b}{t}}{\binom{a}{t}}\right)k+\left(1-\frac{\binom{a-b}{t}}{\binom{a}{t}}\right)k+\binom{a-b}{\binom{a}{t}}k$$

Our results (3): fractionally-colored graphs

Theorem

Given a proper (a : b)-coloring of the input graph, for any t = 1, ..., b one can solve (k, ℓ) -TREE in time

$$\frac{2}{2} \left(1 - \frac{\binom{a-b}{t} - \binom{a-2b}{t}}{\binom{a}{t}}\right) k + \left(1 - \frac{\binom{a-b}{t}}{\binom{a}{t}}\right) k + \left(1 - \frac{\binom{a-b}{t}}\right) k + \left($$

Main consequences:

1.571^k1.274^ln^{O(1)}-time algorithm for (k, l)-TREE in triangle-free graphs of maximum degree 3,

$$\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow$$

• 1.571^k n^{O(1)}-time algorithm for k-PATH in **general** graphs of maximum degree 3

Updated table:

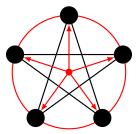
Δ	Running Time
3	$O^*(1.571^k)$
4	$O^*(2^{2k/3}) = O^*(1.5874^k)$
5,6	$O^*(2^{7k/10}) = O^*(1.6245^k)$
7,8	$O^*(2^{5k/7}) = O^*(1.6406^k)$
9,10	$O^*(2^{13k/18}) = O^*(1.6497^k)$
11,12	$O^*(2^{8k/11}) = O^*(1.6555^k)$

Vector coloring

An *r*-vector coloring of a graph *G* is an assignment $c: V(G) \to \mathbb{R}^n$ s.t.

- ||c(v)|| = 1 for every $v \in V(G)$ and
- for every edge uv, $c(u) \cdot c(v) \leq -1/(r-1)$.

The vector chromatic number $\chi_{\nu}(G)$ is the smallest such (real) *r*.



$$c(u)\cdot c(v)=\cos \angle (u,v)=\cos (rac{4\pi}{5})=-rac{1}{\sqrt{5}-1}$$
, so $\chi_v(C_5)\leq \sqrt{5}.$

Relaxation property and computational complexity

Let $\omega(G)$ be the size of a maximum clique in G.

Theorem (Folklore)

For any graph G

$$\omega(G) \leq \chi_{\nu}(G) \leq \chi_f(G) \leq \chi(G)$$

Relaxation property and computational complexity

Let $\omega(G)$ be the size of a maximum clique in G.

Theorem (Folklore)

For any graph G

$$\omega(G) \leq \chi_{\nu}(G) \leq \chi_f(G) \leq \chi(G)$$

Theorem (Karger, Motwani, Sudan)

The vector chromatic number can be $(1 + \epsilon)$ -approximated in polynomial time.

Our results (4): r-vector-colorable graphs

Theorem

For any $\epsilon > 0$, (k, ℓ) -TREE can be solved in time

$$O^*\left(2^{\left(\frac{k+\ell}{2}+\left(1-\frac{\arccos(-1/(r-1))}{\pi}\right)\frac{k-1}{2}+\epsilon}\right)\right)$$

for r-vector colorable graphs (hence also for r-colorable or fractionally r-colorable).

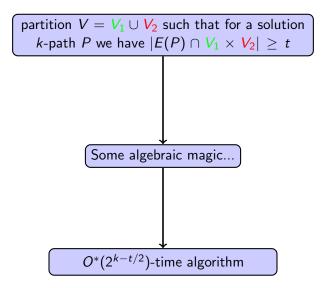
Concrete running times for k-PATH:

$\chi_v(G)$	Running Time
3	$O^*(1.5875^k)$
4	$O^*(1.6199^k)$
5	$O^*(1.6356^k)$
6	$O^*(1.6448^k)$
7	$O^*(1.6510^k)$
8	$O^*(1.6554^k)$

Björklund, Kamat, Kowalik, Zehavi

A glimpse of eye at our approach for *d*-colored graphs

BHKK's k-Path algorithm as black box



d-colored graphs

• Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{\lfloor d/2 \rfloor}$ choices!

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{|d/2|}$ choices!

(*a* : *b*)-colored graphs

• V_1 is a subset of $\binom{a}{t}$ colors $(t = 1, \dots, \lfloor a/2 \rfloor)$.

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{\lfloor d/2 \rfloor}$ choices!

(*a* : *b*)-colored graphs

•
$$V_1$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, \dots, \lfloor a/2 \rfloor)$.

Test all choices

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{\lfloor d/2 \rfloor}$ choices!

(*a* : *b*)-colored graphs

•
$$V_1$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, \dots, \lfloor a/2 \rfloor)$.

Test all choices

vector *r*-colored graphs

• pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{|d/2|}$ choices!

(*a* : *b*)-colored graphs

•
$$V_1$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, \dots, \lfloor a/2 \rfloor)$.

Test all choices

vector *r*-colored graphs

- pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.
- V₁ are the vertices mapped to the green half-space.

d-colored graphs

- Idea: Pick $\lfloor d/2 \rfloor$ colors as V_1 .
- Possibly, the saving $|E(P) \cap V_1 \times V_2|$ is small.
- Solution: test all the $\binom{d}{|d/2|}$ choices!

(a : b)-colored graphs

•
$$V_1$$
 is a subset of $\binom{a}{t}$ colors $(t = 1, \dots, \lfloor a/2 \rfloor)$.

Test all choices

vector *r*-colored graphs

- pick a random hyperplane through the origin: it divides the unit sphere into two half-spheres: green and red.
- V₁ are the vertices mapped to the green half-space.
- The expected value of $|E(P) \cap V_1 \times V_2|$ is large.

- Some more interesting partitions (in other graph classes)?
- A better algorithm when many leaves?
- Lower bounds under SETH, Set Cover Conjecture, etc.?
- MAX LEAF problem (is there a spanning tree with at least k leaves?). State of the art: Zehavi'15: O*(3.188^k)-time branching algorithm Can we use the algebraic approach to get a faster algorithm? Ideally, O*(2^k)-time algorithm?

Thank you!