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Hamiltonian Cycle in undirected graphs

Problem

Input: undirected graph G .
Goal: Find a Hamiltonian cycle.
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Hamiltonian Path in undirected graphs

Problem

Input: undirected graph G .
Goal: Find a Hamiltonian path.
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k-Path in undirected graphs

Problem

Input: undirected graph G , integer k .
Goal: Find a k-vertex path (shortly: k-path).
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(k , `)-Tree in undirected graphs

Problem

Input: undirected graph G , integers k , `.
Goal: Find a tree T with k vertices including exactly ` leaves, (shortly:
(k, `)-tree).
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k-Internal Spanning Tree (k-IST)

Problem

Input: undirected graph G , integer k .
Goal: Find a spanning tree T with at least k internal vertices
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k-Internal Spanning Tree (k-IST)

Problem

Input: undirected graph G , integer k .
Goal: Find a tree T with at least k internal vertices s.t. edges from
leaves to parents form a matching
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k-Internal Spanning Tree (k-IST)

Problem

Input: undirected graph G , integer k .
Goal: Find a (k + l , l)-tree for some l = 2, . . . , k
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FPT and exponential-time algorithms

All these problems are NP-complete.

In this talk we are interested in

Parameterized (FPT) algorithms: running time of O∗(ck)

Exponential-time algorithms: running time of O∗(cn)

and we want c to be small.
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Previous results

Hamiltonian Cycle / Path

Held, Karp 1962, O∗(2n) time, O(2n) space.
Kohn et al 1969 O∗(2n) time, poly space.
Björklund 2010 O∗(1.66n) time, poly space

k-Path

Björklund, Husfeldt, Kaski, Koivisto 2010: O∗(1.66k), poly space

(k, `)-Tree

Dauligault 2011, Zehavi 2013: O∗(2k), poly space

k-Internal Spaning Tree: FPT algorithms

Daligault 2011; Zehavi 2013; Li et al. 2014: O∗(4k), poly space
Zehavi 2015: O∗(3.62k), exp space

k-Internal Spaning Tree: exponential time algorithms

Raible et al. 2008: O∗(2n), exp space
Nederlof 2009: O∗(2n), poly space

Open question (Raible et al): Can the approach of Björklund (2010) be
extended from finding paths to finding trees?
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Our results (1): from paths to trees

k-Path
BHKK 2010
O∗(1.66k)
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Note: All our algorithms

use polynomial space,

are randomized Monte-Carlo with one sided error, i.e.,

No solution → correct answer
Solution Exists → correct answer with probability 99%.
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Previous results: restricted graph classes

Hamiltonian Cycle / Path in cubic graphs

Eppstein WADS 2003 O∗(1.26n), poly space.
Iwama and Nakashima 2007 O∗(1.251n), poly space.
Cygan et al. 2011 O∗(1.201n), exp space

Hamiltonian Cycle / Path in max degree 4 graphs

Björklund 2010 O∗(1.66n), poly space
Cygan et al. 2011 O∗(1.588n), exp space

k-Path in bipartite graphs

Björklund, Husfeldt, Kaski, Koivisto 2010: O∗(1.41k), poly space

Question: Is there anything interesting going on between bipartite and
general graphs?

What about d-colorable graphs?
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Our results (2): colored graphs

k-Path
BHKK 2010
O∗(1.66k)

Note: These results generalize to (k, l)-Tree (for l = O(1) we get the
same bounds) and to k-IST.
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Fractional coloring

(a : b)-coloring

Assign b-element subsets of {1, . . . , a}
Adjacent vertices get disjoint sets.

Fractional chromatic number χf (G ) = inf{ ab | G is (a : b)-colorable}.
Example: C5 is (5 : 2)-colorable, and χf (G ) = 5

2 .

Note: χf (G ) ≤ χ(G ).
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Our results (3): fractionally-colored graphs

Theorem

Given a proper (a : b)-coloring of the input graph, for any t = 1, . . . , b one
can solve (k, `)−Tree in time

2

(
1−(a−b

t )−(a−2b
t )

(at)

)
k+

(
1−(a−b

t )
(at)

)
l

nO(1).

Main consequences:

1.571k1.274lnO(1)-time algorithm for (k , l)-Tree in triangle-free
graphs of maximum degree 3,

⇓ ⇓ ⇓ ⇓
1.571knO(1)-time algorithm for k-Path in general graphs of
maximum degree 3
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Our results: updated bounded degree table

Updated table:

∆ Running Time

3 O∗(1.571k)

4 O∗(22k/3) = O∗(1.5874k)

5, 6 O∗(27k/10) = O∗(1.6245k)

7, 8 O∗(25k/7) = O∗(1.6406k)

9, 10 O∗(213k/18) = O∗(1.6497k)

11, 12 O∗(28k/11) = O∗(1.6555k)
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Vector coloring

An r-vector coloring of a graph G is an assignment c : V (G )→ Rn s.t.

||c(v)|| = 1 for every v ∈ V (G ) and

for every edge uv , c(u) · c(v) ≤ −1/(r − 1).

The vector chromatic number χv (G ) is the smallest such (real) r .

c(u) · c(v) = cos∠(u, v) = cos( 4π
5 ) = − 1√

5−1
, so χv (C5) ≤

√
5.
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Relaxation property and computational complexity

Let ω(G ) be the size of a maximum clique in G .

Theorem (Folklore)

For any graph G

ω(G ) ≤ χv (G ) ≤ χf (G ) ≤ χ(G )

Theorem (Karger, Motwani, Sudan)

The vector chromatic number can be (1 + ε)-approximated in polynomial
time.
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Our results (4): r -vector-colorable graphs

Theorem

For any ε > 0, (k , `)-Tree can be solved in time

O∗(2

(
k+`

2
+
(

1− arccos(−1/(r−1))
π

)
k−1

2
+ε

)
)

for r -vector colorable graphs (hence also for r -colorable or fractionally
r -colorable).

Concrete running times for k-Path:

χv (G ) Running Time

3 O∗(1.5875k)

4 O∗(1.6199k)

5 O∗(1.6356k)

6 O∗(1.6448k)

7 O∗(1.6510k)

8 O∗(1.6554k)
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A glimpse of eye at our approach
for d -colored graphs
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BHKK’s k-Path algorithm as black box

partition V = V1 ∪ V2 such that for a solution
k-path P we have |E (P) ∩ V1 × V2| ≥ t

Some algebraic magic...

O∗(2k−t/2)-time algorithm
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partitions in colored graphs

d-colored graphs

Idea: Pick bd/2c colors as V1.

Possibly, the saving |E (P) ∩ V1 × V2| is small.

Solution: test all the
( d
bd/2c

)
choices!

(a : b)-colored graphs

V1 is a subset of
(a
t

)
colors (t = 1, . . . , ba/2c).

Test all choices

vector r -colored graphs

pick a random hyperplane through the origin: it divides the unit
sphere into two half-spheres: green and red.

V1 are the vertices mapped to the green half-space.

The expected value of |E (P) ∩ V1 × V2| is large.
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Further work

Some more interesting partitions (in other graph classes)?

A better algorithm when many leaves?

Lower bounds under SETH, Set Cover Conjecture, etc.?

Max Leaf problem (is there a spanning tree with at least k leaves?).
State of the art: Zehavi’15: O∗(3.188k)-time branching algorithm
Can we use the algebraic approach to get a faster algorithm? Ideally,
O∗(2k)-time algorithm?
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Thank you!
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