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One message

ETH can be used to refute the existence of exponential time
approximation algorithms.
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Max-k-Subset-Intersection

Max-k-Subset-Intersection
Input: A collection F = {S1,S2, · · · ,Sn} of subsets

over [n].
Solution: k distinct subsets Sj1 ,Sj2 , · · · ,Sjk from F .

Cost: |Sj1 ∩ · · · ∩ Sjk |.
Goal: max.

Another formulation: given a bipartite graph G = (A ∪̇ B,E ), find a
k-vertex set V ∈

(
A
k

)
with maximum number of common neighbors.

Remark

1. Max-k-Subset-Intersection is NP-hard

2. Max-k-Subset-Intersection can be solved in time nO(k).
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Max-k-Subset-Intersection
Input: A collection F = {S1,S2, · · · ,Sn} of subsets

over [n].
Solution: k distinct subsets Sj1 ,Sj2 , · · · ,Sjk from F .

Cost: |Sj1 ∩ · · · ∩ Sjk |.
Goal: max.

Let OPTkmsi (F) be the maximum k-subset intersection size of F .

Question
Is there an f (k) · nO(1)-time algorithm that, given F , finds k distinct
subsets from F with intersection size at least 1

r ·OPTkmsi?
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Previous work

Results of Polynomial-time inapproximability:

Problem Ratio Assumptions Ref

Max-Biclique 2(log n)δ 3SAT /∈
DTIME(2n3/4+ε

)
Feige and Ko-
gan 04

Max-Biclique nε′ SAT has no random-
ized 2nε algorithm

Khot 05

Max-Edge-Biclique nε′ SAT has no random-
ized 2nε algorithm

Ambuhl et al.
11

Max-k-Subset-Intersection nε′ SAT has no random-
ized 2nε algorithm

Eduardo C.
Xavier 12

It does not rule out approximate algorithms in f (k) · nO(1)-time.
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Difficulity of showing parameterized inapproximability

1. Most proofs of the classical inapproximability rely on the PCP
theorem.

2. Reductions based on the PCP theorem produce instances with
optimal solutions of relatively large size, e.g. k = nΘ(1).

3. In parameterized complexity, we assume the value of k is small,
hence k should not depend on n.
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A gap-producing reduction

Theorem (main)
We can construct a bipartite graph H = (A ∪̇ B,E ) in polynomial time
on input an n-vertex graph G and k ∈ N with (k + 1)! < nΘ(1/k) s.t.:

1. if Kk ⊆ G , then there are s vertices in A with at least nΘ(1/k)

common neighbors in B;

2. if Kk * G , every s vertices in A have at most (k + 1)! common
neighbors in B,

where s =
(
k
2

)
.

Remark

I This reduction does not use the PCP theorem. It is based on some
extremal combinatorics construction.

I It applies in case wtih small value of k.
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Consequence under ETH

Theorem (Chen et. al 04)
Assuming ETH, k-Clique cannot be solved in f (k) · no(k)-time for any
computable function f .

Corollary
Assuming ETH, Max-k-Subset-Intersection does not admit

f (k) · no(
√
k)-time approximation algorithm with ratio n1/

√
k .
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A variant of main theorem

Fix ∆ ∈ N+.

Theorem
We can construct a bipartite graph H = (A ∪̇ B,E ) in polynomial time
on input an n-vertex graph G and k ∈ N with (k + 1)! < nΘ(1/k) s.t.:

1. if Kk ⊆ G , then there are s ·∆ vertices in A with at least nΘ(1/k)

common neighbors in B;

2. if Kk * G , every s ·∆ vertices in A have at most (k + 1)! common
neighbors in B,

where s =
(
k
2

)
.
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Trade-off between running-time and approximation ratio

Theorem
Assuming ETH, Max-k-Subset-Intersection does not admit

f (k) · no(
√

k/∆)-time approximation algorithm with ratio n
√

∆/
√
k .

10 / 24



A variant of main theorem

Let ∆ = 2k/s.

Theorem
We can construct a bipartite graph H = (A ∪̇ B,E ) in fpt time on input
an n-vertex graph G and k ∈ N with (k + 1)! < nΘ(1/k) s.t.:

1. if Kk ⊆ G , then there are 2k = s ·∆ vertices in A with at least
nΘ(1/k) common neighbors in B;

2. if Kk * G , every 2k = s ·∆ vertices in A have at most (k + 1)!
common neighbors in B,

where s =
(
k
2

)
.

Corollary
Max-k-Subset-Intersection does not admit f (k) · no(log k)-time
approximation algorithm to ratio n1/ log k under ETH.
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What can we do with this gap?
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Inapproximability of other natural parameterized problem

Question
Find gap-preserving fpt-reduction from Max-k-Subset-Intersection
to

I k-Clique

I k-Dominating-Set
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From Max-k-Subset-Intersection to k-Clique?

Question
Is there any fpt-algorithm A such that on input a bipartite graph
H = (A ∪̇ B,E ), it construct a graph G satisfying:

I (1) if there exists V ∈
(
A
s

)
with nΘ(1/k) common neighbors, then G

contains a g(k) clique;

I (2) if every V ∈
(
A
s

)
has at most (k + 1)! common neighbors, then

G contains no g(k)
2 clique.

A naive idea: color A (resp. B) with s (resp. 2(k + 1)!) colors, add edges
between vertices in A (resp. B) with different colors.

I in case (1), H has a (s + 2(k + 1)!)-clique;

I in case (2), H has no clique with > (s + (k + 1)!) vertices.
Wrong: there might exist s − 1 vertices in A with nΘ(1/k)

common neighbors, leading to a (s − 1 + 2(k + 1)!)-clique.
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From Max-k-Subset-Intersection to
k-Dominating-Set?

Let γ(G ) be the size of its minimum dominating set.

Question
Is there any fpt-algorithm A such that on input a bipartite graph
H = (A ∪̇ B,E ), it construct a graph G satisfying:

I (i) if there exists V ∈
(
A
s

)
with nΘ(1/k) common neighbors, then

γ(G ) < g(k);

I (ii) if every V ∈
(
A
s

)
has at most (k + 1)! common neighbors, then

γ(G ) > 2g(k).

where s =
(
k
2

)
.
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Constant inapproximability of dominating set

Theorem (Chen and Lin 15)
There is an algorithm A such that on input a bipartite graph
H = (A ∪̇ B,E ), it construct a graph G in f (k , d) · |H|O(c)-time
satisfying:

I if there exists V ∈
(
A
s

)
with d common neighbors, then

γ(G ) < (1 + ε)dc ;

I if every V ∈
(
A
s

)
has at most (k + 1)! common neighbors, then

γ(G ) > cdc/3.

where s =
(
k
2

)
, d = kO(k3).

Theorem
Assuming ETH, there is no f (γ(G )) · |G |O(1)-time algorithm which on
every input graph G outputs a dominating set of size at most

4+ε
√

log(γ(G )) · γ(G ).
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Previous inapproximability results of dominating set

Results of Polynomial-time inapproximability:

Ratio Assumptions Ref
c log n P 6= NP Raz and Safra

97

(1− ε) ln n NP * DTIME(nO(log log n)) Feige 98
(1− ε) ln n P 6= NP Dinur and

Steuer 14

Parameterized inapproximability of independent dominating set problem:

Ratio Assumptions Ref
ρ(k) FPT 6= W[2] Dowen et. al 08

Remark
Independent dominating set problem is not monotone.
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Proof of the gap-producing reduction
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Proof of the gap-producing reduction

Notation: Γ(X ) is the set of common neighbors of all vertices in X .
Goal: Given n-vertex graph G construct H = (A ∪̇ B,E ) in FPT, such
that:

H1 if Kk ⊆ G , then ∃V ∈
(
A
s

)
, |Γ(V )| ≥ h;(h = nΘ(1/k))

H2 if Kk * G , then ∀V ∈
(
A
s

)
, |Γ(V )| ≤ `.(` = (k + 1)!)

where s =
(
k
2

)
.

Example (k = 3, s = 3)

G T

V (G ) B

h

h

`

key idea: construct a bipartite
graph T = (V (G ) ∪̇ B,E (T ))
satifying:

T1 ∀V ∈
(
V (G)
k+1

)
, |Γ(V )| ≤ `;

T2 for a random V ∈
(
V (G)
k

)
,

with high probability
|Γ(V )| ≥ h;
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Probabilistic construction of T

Bipartite Random Graph: T = (A ∪̇ B,E )

I |A| = |B| = n

I u ∈ A and v ∈ B is joined by an edge with probability p = n−1/(k+1)

The expected number of common neighbors of a (k + 1)-vertex subset of
A is

n · pk+1 = O(1)

The expected number of common neighbors of a k-vertex subset of A is

n · pk = n1/(k+1)
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Derandomizing the reduction

Define bipartite graph T = (A ∪̇ B,E ) = ((V1 ∪̇ V2 ∪̇ · · · ∪̇ Vn) ∪̇ B,E )
satifying:

T1 every k + 1 vertices in A has at most ` common neighbors;

T2’ for every k distinct indices i1, · · · , ik , there exist

vi1 ∈ Vi1 , · · · , vik ∈ Vik

s.t. v1, · · · , vk have at least h common neighbors.

Remark
The reduction can be adapted to T satisfying T1 and T2’.

Lemma
For ` = (k + 1)! < h = nΘ(1/k), we can construct T satisfying T1 and
T2’ in polynomial time.

22 / 24



Derandomizing the reduction

Define bipartite graph T = (A ∪̇ B,E ) = ((V1 ∪̇ V2 ∪̇ · · · ∪̇ Vn) ∪̇ B,E )
satifying:

T1 every k + 1 vertices in A has at most ` common neighbors;

T2’ for every k distinct indices i1, · · · , ik , there exist

vi1 ∈ Vi1 , · · · , vik ∈ Vik

s.t. v1, · · · , vk have at least h common neighbors.

Remark
The reduction can be adapted to T satisfying T1 and T2’.

Lemma
For ` = (k + 1)! < h = nΘ(1/k), we can construct T satisfying T1 and
T2’ in polynomial time.

22 / 24



Summary

I We give an fpt gap-producing reduction from k-Clique to
Max-k-Subset-Intersection.

I Under ETH, we can rule out moderate exponential approximation
algorithms for Max-k-Subset-Intersection.

I Inapproximability of other natural parameterized problem.
I k-Dominating-Set: no constant fpt-approximation

Open questions

I Does k-Clique have constant fpt-approximation?

I Does k-Dominating-Set have fpt-approximation with ratio ρ(k)?

23 / 24



Summary

I We give an fpt gap-producing reduction from k-Clique to
Max-k-Subset-Intersection.

I Under ETH, we can rule out moderate exponential approximation
algorithms for Max-k-Subset-Intersection.

I Inapproximability of other natural parameterized problem.
I k-Dominating-Set: no constant fpt-approximation

Open questions

I Does k-Clique have constant fpt-approximation?

I Does k-Dominating-Set have fpt-approximation with ratio ρ(k)?

23 / 24



Thank You!
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