Parameterized Inapproximability of Max k-Subset Intersection under ETH

Bingkai Lin

The University of Tokyo

Simons Institute, Berkeley, CA

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

1/24

ETH can be used to refute the existence of exponential time approximation algorithms.

MAX-k-SUBSET-INTERSECTION			
Input:	A collection $\mathcal{F} = \{S_1, S_2, \cdots, S_n\}$ of subsets		
	over [n].		
Solution:	k distinct subsets $S_{i_1}, S_{i_2}, \cdots, S_{i_k}$ from \mathcal{F} .		
Cost:	$ S_{i_1} \cap \cdots \cap S_{i_k} $		
Goal:	max.		

Another formulation: given a bipartite graph $G = (A \cup B, E)$, find a *k*-vertex set $V \in \binom{A}{k}$ with maximum number of common neighbors.

MAX-k-Subset-Intersection			
Input:	A collection $\mathcal{F} = \{S_1, S_2, \cdots, S_n\}$ of subsets		
	over [n].		
Solution:	k distinct subsets $S_{i_1}, S_{i_2}, \cdots, S_{i_k}$ from \mathcal{F} .		
Cost:	$ S_{i_1} \cap \cdots \cap S_{i_k} $.		
Goal:	max.		

Another formulation: given a bipartite graph $G = (A \cup B, E)$, find a *k*-vertex set $V \in \binom{A}{k}$ with maximum number of common neighbors. Remark

- 1. MAX-*k*-SUBSET-INTERSECTION *is* **NP**-*hard*
- 2. MAX-k-SUBSET-INTERSECTION can be solved in time $n^{O(k)}$.

MAX-k-SUBSET-INTERSECTION		
Input:	A collection $\mathcal{F} = \{S_1, S_2, \cdots, S_n\}$ of subsets	
	over [<i>n</i>].	
Solution:	k distinct subsets $S_{i_1}, S_{i_2}, \cdots, S_{i_k}$ from \mathcal{F} .	
Cost:	$ S_{i_1} \cap \cdots \cap S_{i_k} .$	
Goal:	max.	

Let $OPT_{kmsi}(\mathcal{F})$ be the maximum k-subset intersection size of \mathcal{F} .

Question

Is there an $f(k) \cdot n^{O(1)}$ -time algorithm that, given \mathcal{F} , finds k distinct subsets from \mathcal{F} with intersection size at least $\frac{1}{r} \cdot \operatorname{OPT}_{kmsi}$?

Results of **Polynomial-time** inapproximability:

Problem	Ratio	Assumptions	Ref
Max-Biclique	$2^{(\log n)^{\delta}}$	3SAT ∉	Feige and Ko-
		$DTIME(2^{n^{3/4+\varepsilon}})$	gan 04
Max-Biclique	$n^{\varepsilon'}$	SAT has no random-	Khot 05
		ized $2^{n^{\varepsilon}}$ algorithm	
Max-Edge-Biclique	$n^{\varepsilon'}$	SAT has no random-	Ambuhl et al.
		ized $2^{n^{\varepsilon}}$ algorithm	11
Max-k-Subset-Intersection	$n^{\varepsilon'}$	SAT has no random-	Eduardo C.
		ized $2^{n^{\varepsilon}}$ algorithm	Xavier 12

Results of **Polynomial-time** inapproximability:

Problem	Ratio	Assumptions	Ref
Max-Biclique	$2^{(\log n)^{\delta}}$	3SAT ∉	Feige and Ko-
		$DTIME(2^{n^{3/4+\varepsilon}})$	gan 04
Max-Biclique	$n^{\varepsilon'}$	SAT has no random-	Khot 05
		ized $2^{n^{\varepsilon}}$ algorithm	
Max-Edge-Biclique	$n^{\varepsilon'}$	SAT has no random-	Ambuhl et al.
		ized $2^{n^{\varepsilon}}$ algorithm	11
Max-k-Subset-Intersection	$n^{\varepsilon'}$	SAT has no random-	Eduardo C.
		ized $2^{n^{\varepsilon}}$ algorithm	Xavier 12

It does not rule out approximate algorithms in $f(k) \cdot n^{O(1)}$ -time.

Difficulity of showing parameterized inapproximability

- 1. Most proofs of the classical inapproximability rely on the PCP theorem.
- 2. Reductions based on the PCP theorem produce instances with optimal solutions of relatively large size, e.g. $k = n^{\Theta(1)}$.
- 3. In parameterized complexity, we assume the value of k is small, hence k should not depend on n.

A gap-producing reduction

Theorem (main)

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- if K_k ⊆ G, then there are s vertices in A with at least n^{Θ(1/k)} common neighbors in B;
- if K_k ⊈ G, every s vertices in A have at most (k + 1)! common neighbors in B,

where $s = \binom{k}{2}$.

A gap-producing reduction

Theorem (main)

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- if K_k ⊆ G, then there are s vertices in A with at least n^{Θ(1/k)} common neighbors in B;
- if K_k ⊈ G, every s vertices in A have at most (k + 1)! common neighbors in B,

where $s = \binom{k}{2}$.

Remark

This reduction does not use the PCP theorem. It is based on some extremal combinatorics construction.

A gap-producing reduction

Theorem (main)

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- if K_k ⊆ G, then there are s vertices in A with at least n^{Θ(1/k)} common neighbors in B;
- if K_k ⊈ G, every s vertices in A have at most (k + 1)! common neighbors in B,

where $s = \binom{k}{2}$.

Remark

- This reduction does not use the PCP theorem. It is based on some extremal combinatorics construction.
- It applies in case with small value of k.

Theorem (Chen et. al 04)

Assuming **ETH**, k-Clique cannot be solved in $f(k) \cdot n^{o(k)}$ -time for any computable function f.

Corollary

Assuming **ETH**, MAX-*k*-SUBSET-INTERSECTION does not admit $f(k) \cdot n^{o(\sqrt{k})}$ -time approximation algorithm with ratio $n^{1/\sqrt{k}}$.

$\mathsf{Fix}\;\Delta\in\mathbb{N}^+.$

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in polynomial time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- 1. if $K_k \subseteq G$, then there are $s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
- if K_k ⊈ G, every s · ∆ vertices in A have at most (k + 1)! common neighbors in B,

where $s = \binom{k}{2}$.

Theorem Assuming **ETH**, MAX-*k*-SUBSET-INTERSECTION does not admit $f(k) \cdot n^{o(\sqrt{k/\Delta})}$ -time approximation algorithm with ratio $n^{\sqrt{\Delta}/\sqrt{k}}$.

・ロ ・ ・ 一 ・ ・ 注 ・ ・ 注 ・ う へ ペ 10/24

A variant of main theorem

Let $\Delta = 2^k/s$.

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in fpt time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- 1. if $K_k \subseteq G$, then there are $2^k = s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
- if K_k ⊈ G, every 2^k = s · Δ vertices in A have at most (k + 1)! common neighbors in B,

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● → ○ ヘ

where $s = \binom{k}{2}$.

A variant of main theorem

Let $\Delta = 2^k/s$.

Theorem

We can construct a bipartite graph $H = (A \cup B, E)$ in fpt time on input an n-vertex graph G and $k \in \mathbb{N}$ with $(k + 1)! < n^{\Theta(1/k)}$ s.t.:

- 1. if $K_k \subseteq G$, then there are $2^k = s \cdot \Delta$ vertices in A with at least $n^{\Theta(1/k)}$ common neighbors in B;
- if K_k ⊈ G, every 2^k = s · Δ vertices in A have at most (k + 1)! common neighbors in B,

where $s = \binom{k}{2}$.

Corollary

MAX-k-SUBSET-INTERSECTION does not admit $f(k) \cdot n^{o(\log k)}$ -time approximation algorithm to ratio $n^{1/\log k}$ under **ETH**.

What can we do with this gap?

Find gap-preserving fpt-*reduction from* MAX-*k*-SUBSET-INTERSECTION *to*

- ▶ k-CLIQUE
- ► *k*-Dominating-Set

Is there any fpt-algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (1) if there exists V ∈ (^A_s) with n^{Θ(1/k)} common neighbors, then G contains a g(k) clique;
- ▶ (2) if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then G contains no $\frac{g(k)}{2}$ clique.

Is there any fpt-algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (1) if there exists V ∈ (^A_s) with n^{Θ(1/k)} common neighbors, then G contains a g(k) clique;
- ▶ (2) if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then G contains no $\frac{g(k)}{2}$ clique.

A naive idea: color A (resp. B) with s (resp. 2(k+1)!) colors, add edges between vertices in A (resp. B) with different colors.

14 / 24

- ▶ in case (1), H has a (s + 2(k + 1)!)-clique;
- in case (2), H has no clique with > (s + (k + 1)!) vertices.

Is there any fpt-algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (1) if there exists V ∈ (^A_s) with n^{Θ(1/k)} common neighbors, then G contains a g(k) clique;
- ▶ (2) if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then G contains no $\frac{g(k)}{2}$ clique.

A naive idea: color A (resp. B) with s (resp. 2(k+1)!) colors, add edges between vertices in A (resp. B) with different colors.

- ▶ in case (1), H has a (s + 2(k + 1)!)-clique;
- in case (2), *H* has no clique with > (s + (k + 1)!) vertices.
 Wrong: there might exist s − 1 vertices in A with n^{Θ(1/k)} common neighbors, leading to a (s − 1 + 2(k + 1)!)-clique.

From MAX-*k*-SUBSET-INTERSECTION to *k*-DOMINATING-SET?

Let $\gamma(G)$ be the size of its minimum dominating set.

Question

Is there any fpt-algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G satisfying:

- (i) if there exists $V \in \binom{A}{s}$ with $n^{\Theta(1/k)}$ common neighbors, then $\gamma(G) < g(k)$;
- (ii) if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then $\gamma(G) > 2g(k)$.

where $s = \binom{k}{2}$.

Constant inapproximability of dominating set

Theorem (Chen and Lin 15)

There is an algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G in $f(k, d) \cdot |H|^{O(c)}$ -time satisfying:

- ▶ if there exists $V \in {A \choose s}$ with d common neighbors, then $\gamma(G) < (1 + \varepsilon)d^c$;
- if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then $\gamma(G) > cd^c/3$.

where $s = \binom{k}{2}, d = k^{O(k^3)}$.

Constant inapproximability of dominating set

Theorem (Chen and Lin 15)

There is an algorithm \mathbb{A} such that on input a bipartite graph $H = (A \cup B, E)$, it construct a graph G in $f(k, d) \cdot |H|^{O(c)}$ -time satisfying:

- ▶ if there exists $V \in \binom{A}{s}$ with d common neighbors, then $\gamma(G) < (1 + \varepsilon)d^c$;
- if every $V \in \binom{A}{s}$ has at most (k + 1)! common neighbors, then $\gamma(G) > cd^c/3$.

where $s = {\binom{k}{2}}, d = k^{O(k^3)}$.

Theorem

Assuming **ETH**, there is no $f(\gamma(G)) \cdot |G|^{O(1)}$ -time algorithm which on every input graph G outputs a dominating set of size at most $\sqrt[4+\varepsilon]{\log(\gamma(G))} \cdot \gamma(G)$.

Previous inapproximability results of dominating set

Results of Polynomial-time	inapproximability:
----------------------------	--------------------

Ratio	Assumptions	Ref	
c log n	$P \neq NP$	Raz and Safra	
		97	
$(1-\varepsilon)\ln n$	$NP \nsubseteq DTIME(n^{O(\log \log n)})$	Feige 98	
$(1-\varepsilon) \ln n$	$P \neq NP$	Dinur and	
		Steuer 14	

Previous inapproximability results of dominating set

Ratio	Assumptions	Ref	
c log n	$P \neq NP$	Raz and Safra	
		97	
$(1-\varepsilon)\ln n$	$NP \nsubseteq DTIME(n^{O(\log \log n)})$	Feige 98	
$(1-\varepsilon)\ln n$	$P \neq NP$	Dinur and	
		Steuer 14	

Parameterized inapproximability of independent dominating set problem:

Ratio	Assumptions	Ref
$\rho(k)$	$FPT \neq W[2]$	Dowen et. al 08

Previous inapproximability results of dominating set

Results of	Polynomial-time	inapproximability:
------------	------------------------	--------------------

Ratio	Assumptions	Ref	
c log n	$P \neq NP$	Raz and Safra	
		97	
$(1-\varepsilon)\ln n$	$NP \nsubseteq DTIME(n^{O(\log \log n)})$	Feige 98	
$(1-\varepsilon)\ln n$	$P \neq NP$	Dinur and	
		Steuer 14	

Parameterized inapproximability of independent dominating set problem:

Ratio	Assumptions	Ref
$\rho(k)$	$FPT \neq W[2]$	Dowen et. al 08

Remark

Independent dominating set problem is not monotone.

◆□ → < 団 → < 臣 → < 臣 → 臣 → ○ Q (~ 19/24

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X.

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X. **Goal**: Given *n*-vertex graph G construct $H = (A \cup B, E)$ in **FPT**, such that:

H1 if $K_k \subseteq G$, then $\exists V \in \binom{A}{s}$, $|\Gamma(V)| \ge h$; $(h = n^{\Theta(1/k)})$ H2 if $K_k \notin G$, then $\forall V \in \binom{A}{s}$, $|\Gamma(V)| \le \ell \cdot (\ell = (k+1)!)$ where $s = \binom{k}{2}$.

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X. **Goal**: Given *n*-vertex graph G construct $H = (A \cup B, E)$ in **FPT**, such that:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

H1 if $K_k \subseteq G$, then $\exists V \in \binom{A}{s}$, $|\Gamma(V)| \ge h$; $(h = n^{\Theta(1/k)})$ H2 if $K_k \notin G$, then $\forall V \in \binom{A}{s}$, $|\Gamma(V)| \le \ell \cdot (\ell = (k+1)!)$ where $s = \binom{k}{2}$.

Example (k = 3, s = 3)

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X. **Goal**: Given *n*-vertex graph G construct $H = (A \cup B, E)$ in **FPT**, such that:

H1 if
$$K_k \subseteq G$$
, then $\exists V \in \binom{A}{s}$, $|\Gamma(V)| \ge h$; $(h = n^{\Theta(1/k)})$
H2 if $K_k \notin G$, then $\forall V \in \binom{A}{s}$, $|\Gamma(V)| \le \ell \cdot (\ell = (k+1)!)$
where $s = \binom{k}{2}$.

Example (k = 3, s = 3)

key idea: construct a bipartite graph $T = (V(G) \cup B, E(T))$ satifying: T1 $\forall V \in \binom{V(G)}{k+1}, |\Gamma(V)| \le \ell;$ T2 for a random $V \in \binom{V(G)}{k},$ with high probability $|\Gamma(V)| \ge h;$

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X. **Goal**: Given *n*-vertex graph G construct $H = (A \cup B, E)$ in **FPT**, such that:

H1 if $K_k \subseteq G$, then $\exists V \in \binom{A}{s}$, $|\Gamma(V)| \ge h$; H2 if $K_k \nsubseteq G$, then $\forall V \in \binom{A}{s}$, $|\Gamma(V)| \le \ell$. where $s = \binom{k}{2}$.

Example (k = 3, s = 3)

Notation: $\Gamma(X)$ is the set of common neighbors of all vertices in X. **Goal**: Given *n*-vertex graph G construct $H = (A \cup B, E)$ in **FPT**, such that:

H1 if
$$K_k \subseteq G$$
, then $\exists V \in \binom{A}{s}$, $|\Gamma(V)| \ge h$;
H2 if $K_k \nsubseteq G$, then $\forall V \in \binom{A}{s}$, $|\Gamma(V)| \le \ell$.
where $s = \binom{k}{2}$.

√) Q (→ 20 / 24

Probabilistic construction of T

Bipartite Random Graph: $T = (A \cup B, E)$

$$|A| = |B| = n$$

▶ $u \in A$ and $v \in B$ is joined by an edge with probability $p = n^{-1/(k+1)}$

Probabilistic construction of T

Bipartite Random Graph: $T = (A \cup B, E)$

▶ |A| = |B| = n

• $u \in A$ and $v \in B$ is joined by an edge with probability $p = n^{-1/(k+1)}$ The expected number of common neighbors of a (k + 1)-vertex subset of A is

$$n \cdot p^{k+1} = O(1)$$

Probabilistic construction of T

Bipartite Random Graph: $T = (A \cup B, E)$

▶ |A| = |B| = n

• $u \in A$ and $v \in B$ is joined by an edge with probability $p = n^{-1/(k+1)}$ The expected number of common neighbors of a (k + 1)-vertex subset of A is

$$n \cdot p^{k+1} = O(1)$$

The expected number of common neighbors of a k-vertex subset of A is

$$n \cdot p^k = n^{1/(k+1)}$$

Derandomizing the reduction

Define bipartite graph $T = (A \cup B, E) = ((V_1 \cup V_2 \cup \cdots \cup V_n) \cup B, E)$ satifying:

T1 every k + 1 vertices in A has at most ℓ common neighbors;

T2' for every k distinct indices i_1, \dots, i_k , there exist

$$v_{i_1} \in V_{i_1}, \cdots, v_{i_k} \in V_{i_k}$$

s.t. v_1, \dots, v_k have at least *h* common neighbors.

Derandomizing the reduction

Define bipartite graph $T = (A \cup B, E) = ((V_1 \cup V_2 \cup \cdots \cup V_n) \cup B, E)$ satifying:

T1 every k + 1 vertices in A has at most ℓ common neighbors;

T2' for every k distinct indices i_1, \dots, i_k , there exist

$$v_{i_1} \in V_{i_1}, \cdots, v_{i_k} \in V_{i_k}$$

s.t. v_1, \dots, v_k have at least *h* common neighbors.

Remark

The reduction can be adapted to T satisfying T1 and T2'.

Lemma

For $\ell = (k + 1)! < h = n^{\Theta(1/k)}$, we can construct T satisfying T1 and T2' in polynomial time.

- ► We give an fpt gap-producing reduction from *k*-CLIQUE to MAX-*k*-SUBSET-INTERSECTION.
- ► Under **ETH**, we can rule out moderate exponential approximation algorithms for MAX-*k*-SUBSET-INTERSECTION.
- Inapproximability of other natural parameterized problem.
 - ► *k*-DOMINATING-SET: no constant fpt-approximation

- ► We give an fpt gap-producing reduction from *k*-CLIQUE to MAX-*k*-SUBSET-INTERSECTION.
- ► Under **ETH**, we can rule out moderate exponential approximation algorithms for MAX-*k*-SUBSET-INTERSECTION.
- Inapproximability of other natural parameterized problem.
 - ► *k*-DOMINATING-SET: no constant fpt-approximation

Open questions

- ▶ Does *k*-CLIQUE have constant fpt-approximation?
- ▶ Does *k*-DOMINATING-SET have fpt-approximation with ratio $\rho(k)$?

Thank You!

◆□ → < 部 → < 差 → < 差 → 差 → 24/24</p>