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The G10K Community of Scientists 



The Genome 10K Community Goal:  
To understand how complex animal life evolved 

through changes in DNA and use this knowledge to 

become better stewards of the planet. 

• Collect samples and sequence at least 10,000 different 

vertebrate species, bank fibroblast cell lines and make 

iPS lines for > 1,000 species. Currently ~350 genomes 

and dozens of iPS lines from various labs. 

 

• Annotate genomes, map and interpret genetic differences 

between species, and compute the evolutionary record of 

genetic changes on each lineage  

 

• Correlate with ecologic, biologic and geologic data for 

deep study of vertebrate diversity, biology, evolution, and 

for species conservation 

The G10K Community of Scientists 



Grand scientific challenge of vertebrate 

molecular evolution 

Reconstruct the evolutionary history 

of each base in the genomes of the living 

species 

 
 • Recognize functional elements from patterns of 

negative and positive selection 

• Find the origins of evolutionary innovations 

specific to the human and other lineages 



Early look at some evolutionary 

differences in human neurodevelopment 



Neural Rosette 

hEB-wk5 

Pax6: Marker for young neuro-
precursors  
Tbr1: Marker for Cortical layer 
VI neurons 

Frank Jacobs 

Differentiating stem 
cells into neurons to 
discover specific 
regulatory changes 



Differences in gene expression during early 

neural development between rhesus and human 

• Neural genes are 
defined as genes 
having 5 fold higher 
expression after 
neural differentiation 
compared to their 
expression in 
embryonic stem cells 

 

• Between 160-300 genes are >2-fold differentially expressed 
between human and rhesus for each week of development 

 

Frank Jacobs 
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Genome-wide gene profiling by RNA-seq, 

ChIP-seq & DNaseI-seq 
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OCT4: An Embryonic Stem Cell-specific enhancer 
Frank Jacobs 
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HES5: differentially expressed & 

regulated 

Frank Jacobs 



General differences observed 

• Increased expression of genes involved in cell proliferation during 

early human neurodevelopment 

• Genes associated with neural differentiation are delayed in human 

relative to rhesus, prolonging process 

• Challenging to find specific substitutions and rearrangements that 

account for the differences 

• Once we find them, using new technology we can make selective 

changes in the genomes of the cells in cell culture and study the 

effects 



Mathematical Foundations for 

Comparative Genomics 

 



 
 
 

Sequence 
Graphs 

Benedict Paten 

One kind of graph unifies key data 

structures in comparative genomics 



Sequence graphs are a simple construction 

kit to describe genome variation 



Segments of DNA are attached in 

different ways in different genomes  

Variation exists even within a single 

genome representation, as represented 

in a De Bruijn graph (a kind of 

sequence graph) 



Sequence graphs include both the breakpoint 

graph and bi-directed graph formalisms  

a	green	and	
blue	genome	

bi-directed	sequence	graph	
for	green	and	blue	genomes	

break	point	graph	
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Colored lines are bonds DNA-labeled 
arrows are 
sequences 

            



History graphs add descent edges to 

sequence graphs 

Benedict Paten, Preprint: http://arxiv.org/abs/1303.2246 

Colored arrows are DNA sequences 
Horizontal black lines are bonds 

Dotted lines are 

descent edges 

Lightning bolts are 

substitutions 
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Stochastic Models of Genome Evolution: the 

Jukes-Cantor model of base substitution 

rate matrix  

The probabilities of specific substitutions in time t  
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Figure 1: The state t ransit ion diagram for the Jukes-Cantor model of DNA subst itut ion.

2.1 T he Jukes-Cant or M odel

We obtain a simpler model with only one non-t rivial frequency by imposing addit ional symmetry. This is

the Jukes-Cantor model [?]. It is parameterized by a single mutat ion rate, s > 0 (Figure ??). Its rate matrix

is
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The spectral decomposition of the  

rate matrix is 

where the betas are the eigenvalues and  

are mutually orthogonal projection matrices. The 

probabilities of specific state changes in time t are 

given by the matrix 
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when st is small enough so that e− 4st ≈ 1 − 4st. For large st , the matrix approaches the instant ly mixing

process in which each row is the uniform stat ionary dist ribut ion { 1/ 4, 1/ 4, 1/ 4, 1/ 4} as above.

2.2 T he subst i t ut ion model appl ied t o ent ire genomes

When applying the model for subst itut ions to model the evolut ion of an ent ire genome, each site in the

genome is t reated independent ly. Thus, if x i and yi are individual sites in a genome, each occupied by a
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For Jukes-Cantor, the eigenvalues are 0 and 

-4r, and the (integer-valued !) projection  

matrices are 

Plugging these into the general formula we get 
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Whole genomes change by  

2-break rearrangements 

State space of all genome 

configurations for 2 genes 

Here we restrict to 

circular chromosomes 



For this case of 2-gene genomes, the rate 

matrix for 2-break rearrangements is 

The spectral decomposition has integer-valued 

projection matrices like the Jukes-Cantor model, 

and gives 



For 3-gene genomes, there are 15 states 

 

3 types of 

transitions: 0, 1 

and 2 ops 



For n-gene genomes, there are (2n-1)(2n-3) … (1) states. 

The general model of evolution of n-gene genomes by 2-

break rearrangements is a random processes on matchings, 

explored in many areas: 

 

1. Diaconis and Holmes (mixing times),  

2. Saxl (group representation theory),  

3. MacDonald and James (symmetric functions and zonal 

polynomials),  

4. Chillag (generalized circulants),  

5. Saw and Takemura (multivariate statistics, Wishart 

distributions),  

6. Godsil (association schemes), 

7. Krieg, Bump (Hecke algebras),  

8. Thrall (Lie groups). 



A homogeneous space is a set X (e.g. the state 

space of a Markov process) and a group G that acts 

on X. When states are matchings on {1,2, …, 2n} (i.e. 

n-gene genomes), G is naturally the group S2n of 

permutations of {1,2, …, 2n}. For a permutation     

and state 

the action of     changes    to 



   X 

random walk on X by action of group G 

1 

x0 

 2 4 

3 

5 

8      

 6 

7 

9 

x1 =   1x0  

x2 =   2    1x0 (in this case = x1)  

x3 = x5 

  

x4 

x6 = x7 = x8 

 

  



Let the state x0 be an arbitrary origin. The 

stabilizer subgroup H = Hn is the subgroup of 

actions in G that leave x0 fixed. For matchings, H is 

the hyperoctahedral group of symmetries of the n-

cube. States in X are cosets of G = S2n w.r.t. H.  

 

We write X = G/H.  This is why 



In homogeneous space X = G/H, the group G acts 

naturally on pairs of states 

 

 

The orbital of            is 

 

All state pairs in the same orbital are said to have the 

same difference. Thus, each orbital defines a 

difference in a difference set D. In the case of the 

discrete Fourier space, 

  

       D ={-(n-1), -(n-2), …, -1, 0, 1, …, n-1}. 

 



unlabeled breakpoint graph break point graph 
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Partition: d = (2,1) 

The difference 

between two n-

gene genomes 

is a partition of 

the integer n. So 

D = set of 

partitions of n. 

For example, if 

n = 3, then D = 

{(1,1,1),(2,1), 

(3)}.  



In a symmetric random walk on X the probability is the 

same for all transitions with the same difference. The 

dynamics are defined by a function on the difference set D. 

The theory can be generalized to all complex functions on D. 

We call these radial functions. A radial function on D 

induces a unique function on X and G.  

For radial functions f and g, here viewed as functions on the 

group G, we define their convolution as 

This becomes the usual notion of convolving the effect of 

one random action followed by another when f and g are 

probability distributions. 



A homogeneous space X = G/H is a Gelfand 

space if convolution of radial functions is 

commutative, i.e. 

 

 

 

In this case (G,H) is said to be a Gelfand pair. 

(Same Israel Gelfand that Bernard quoted.) 

 

The Jukes-Cantor space, the discrete Fourier 

space {0, …, n-1}, and the space of  n-gene 

genomes are all Gelfand spaces.  



Think of a radial function as a |D|-dimensional 

vector. Then the Fourier transform     is defined by a 

matrix whose rows are a special orthogonal set of 

radial functions                    called normalized 

spherical functions. The Fourier transform is 

written 

 

 

where    is the Fourier transform of f and    is the 

complex conjugate of f. For the Fourier state space 

The Fourier Transform is a linear mapping  that 

converts convolution into multiplication. 



We say that the Fourier transform converts 

convolution into multiplication because for any 

radial functions f and g,  

Gelfand spaces are precisely the homogneous 

spaces where there is a well-defined Fourier 

transform of the simple type we have described.  

There are only a few infinite families of discrete 

Gelfand pairs on the permutation group, so we are 

lucky to get one for genome rearrangements. 



The spectral decomposition is associated with the 

inverse Fourier transform 

The radial functions f and                    are 

represented as matrices, and the Fourier 

coefficients     play the role of eigenvalues.  
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As an example, for the Jukes Cantor case, as |D|-

dimensional vectors (functions on D), the normalized 

spherical functions are (1,1)T and (3, -1)T. 

Equivalently, these can be represented by |X|-by-|X| 

matricies, which turn out to be the projection 

matrices in the spectral decomposition. 



Because of the conversion of convolution to 

multiplication, if you convolve f with itself i 

times, you get 

By Taylor expansion you can get any analytical 

function of convolution powers, e.g. an exponential.  



Thus, if f is taken from a radial rate matrix R (i.e. 

rate depending only on differences in D) and t is 

any amount of time, the matrix of probabilities of 

state changes over various differences is   

This generalizes the spectral decomposition 

method for Jukes-Cantor to a broad set of state 

spaces. 



The Fourier transform for a general Gelfand space 

can be expressed as a matrix whose columns are 

the unnormalized spherical functions. For example, 

for the Jukes Cantor case, the normalized spherical 

functions are (1,1)T and (3, -1)T so the Fourier 

transform matrix is  

Wonderful thing: for a Gelfand space in which the 

difference is symmetric, all the coefficients of the 

Fourier transform are integers.  



For the case of n-gene genomes (matchings), the Fourier 

transform has an integer-valued matrix indexed by the 

partitions of n. The first few transform matrices are: 

n = 2 

n = 3 

n = 4 



• There is no known computationally tractable 

closed-form formula for the integers in the 

Fourier transform matrix for matchings.  

 

• Nevertheless, genome evolution by 2-break 

rearrangements is a special case of an 

extensive and beautiful theory (symmetric 

Gelfand spaces) 

 

• Including duplications, gains and losses 

complicates the model considerably 



Comparative Genomics in Cancer 

 



In cancers driven by a single mutation,     

like BRAF V600 in metastatic melanoma, 

targeted drugs can give spectacular results 

 Roche 



But combination or immunotherapies will 

be required to prevent relapse, just as in 

the treatment of HIV AIDS 

 Roche 



Some motivations for large-scale application 

of comparative genomics in cancer 

• Bring data to research and insights to clinical practice 

• Learn to link phenotypes, including clinical outcomes, to underlying 

molecular aberrations 

• Create the infrastructure to select patient populations for targeted 

clinical trials, and to enable a new kind of global rapid learning cycle 

that complements targeted trials 

• Gain a mechanistic, molecular level understanding of the etiology of 

disease and mechanisms of resistance to treatment 

 

All these require statistical power 



Genomes are the key to  

the future of cancer treatment 

Patient 

Cancer Genome Database 

Doctor 



The Broad Institute 

Harvard 

Wash U 

Baylor 

BC  

USC  UNC  

TCGA Sequencing Centers 

The Cancer Genome Atlas:10,000 tumors 

from 20 adult cancers 



The Broad  

Institute 

MSK Cancer Ctr 

MD Anderson 
UCSC, 

Buck Institute  

UNC  

TCGA Analysis Centers 
Institute for 

Systems Biology, 

Seattle 

Oregon  

H&S U  



The Broad  

Institute 

MSK Cancer Ctr 

MD Anderson 

Oregon  

H&S U  

UCSC, 

Buck Institute  

Institute for 

Systems Biology, 

Seattle 

The Cancer Genomics Hub 

Harvard 

Wash U BC  

USC  

CG Hub 

UNC  

Baylor 



CGHub group 

CANCER GENOMICS HUB 

• Total Cost ~ $100/year/genome at 50K 

genomes 

• Houses genomes from all major NCI 

projects 

• Planned 5 PB, Scalable to 20 PB 

 

• FISMA compliant 

• 1st NIH Trusted Partner 

• COTS hardware 

• High availability 

• CentOS, standard linux tools 

• General Parallel Filesystem  

• Dual RAID 6 

• Co-location opportunities 

 

CGHub at San Diego 

Supercomputer Center 



Current Stats 

716,000 total files downloaded 
 
 
 
10,462 TB transferred 
 
 
 
495 TB data 
43,000 files 
 
 
 
2-4 Gb/s typical downloads in aggregate  
outbound from CGHub 
 



Future Requires Global Network of Hubs 



Different Requirements for 1M Genomes 

• Different types of data interactions: 
• Support both research and clinical practice 

• Compute within a provided cloud 

• Separately URIed, metadata-tagged parts of a single patient file 

supporting 3rd party mashups and tools 

• Harmonized portable consents, sample donor has fined-

grained control of who can access their data parts, trusts 

the security provided 

• APIs, not file formats. 3rd parties must be able to build on 

it: goal to enable research and clinical analysis, not 

usurp it 

• Benchmarking so all can use system to improve 

methods, e.g. variant calling 

Dave Patterson, www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-211.html 



Possible Genome Commons Architecture 

Sequence graphs 

Read Layer 

Interpretation  Layer 

Variation Layer 



What would it cost to store and analyze 

1M Cancer Genomes in 2014? 

 

• Our estimate is ~ $50/genome/year in 2014                                  

to store and analyze 1M whole genomes (~ 100 

petabytes, 2 months of YouTube growth)  

• 25,000 disks and 100,000 processor cores 

• Including operating costs: space, electricity, 

operators 

• Including 2nd center to protect against disasters  

• Note that cancer is the high water mark for global 

genome commons requirements, requirements for 

other diseases are smaller, less complex, assuming 

cancer includes full germline and somatic cell analysis.  

Dave Patterson, www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-211.html 
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                                        ATTGCTGGCTGGCTGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCATCAGAGGGCATCTCCTCCATCCCCCATCCCCGCCCTC                                                                                           

                                                     TGCACCCTATATTGTCTGAGAACAGAGTGGCTACACAGAAAATGGAGGCCCACAAAGGGCCACTTCCCCACCTCCCCTCCCTGCCCACTGGCTCCCTCCTC                                                                                                                                                                                                                                                                  

                                                        

                                                       cactttctacagacgatgtcaccttccacctCACAGAAAATGGAGGCCATCAGAGGGCATCTCCtccatctcccatcgctgccatctgtctcccaccttccctccttctcctgatttgacaga      

OV-0751 Somatic Reads 

Tandem Duplication Size = 564,053 bp 

chr2 : 29,064,107 

chr2 : 28,500,054 

Extracting molecular state from 

raw DNA reads 

 Zack Sanborn, now at Five3 Genomics 



Completely solved problem? Not yet.  
Given the same raw sequence (BAM) files, different 

mutation calling pipelines do not completely agree 

Total calls:               Called by 2          Called by at  

                              other centers        least 1 other 

Broad: 3,194 62%  85% 

UCSC:  2,688 74% 89% 

WUSTL:  3,125 63%          82% 

Still work to do to harden mutation-

calling software, even for point mutations 

TCGA-13-0725_

Broad UCSC

WUSTL 0

575

304

126

494

442

276

1982

Singer Ma 

Point mutations called in tumor TCGA-

13-0725 

UCSC, Broad are leading a series of 

TCGA/ICGC international benchmark 

challenges. Visit cghub.ucsc.edu for 

TCGA Benchmark 4 



Even more differences in calling 

structural changes 

06-0152 06-0188 

• 2 Glioblastoma samples. Circle plot shows amplifications, 

deletions, inter/intra chromosomal rearrangement 

• These 2 samples have 23/25 top Broad, 21/29 top UCSC events 
GBM group 



In 11/16 WGS TCGA glioblastoma cases 

similar events lead to homozygous loss of 

CDKN2A/B 

One Copy Deleted by Other Copy Deleted by 

5 GBMs Focal Loss 
Arm-Level loss of chr9p  
(via inter-chrom translocation) 

3 GBMs Focal Loss 
Arm-Level loss of chr9p 

(mechanism unknown) 

2 GBMs Focal Loss Complete loss of chr9 

1 GBM  Focal Loss Complex event 

5 GBMs No loss detected No loss detected 

 Zack Sanborn 



• Chromothripsis: DNA replication process get confused for a 

period or DNA is shattered into pieces by some high energy 

event when chromosome is in condensed state 

• DNA repair mechanisms try to stitch genome back together 

• Can generate rearrangements, losses, and circular “double 

minute” chromosomes 

Massive Genomic Rearrangement 

Acquired in a Single Catastrophic Event 

during Cancer Development  

x 

x 

x 

x 

x 

 Zack Sanborn 
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 Zack Sanborn 



(a) (c)

CPM-Novel Exon

MDM2

CAND1

RAPB1

(Partial)

891,176 bp

chr9

*

chr12

chr9

w

a b dc e f h i k l m n o p q r s t u vjg

(b)

Figure 1

Inter-chromosomal Rearrangements

Intra-chromosomal Rearrangements

Tumor vs. Normal Relative Coverage

200kb

*

Validation by FISH 

 Zack Sanborn, Cameron Brennan 

DM from another GBM tumor. We estimate 

20% of GBMs have oncogenic DMs 



Highlights from analysis of 500 GBMs  

 TCGA GBM Analysis 

Working Group 



Tumors have metagenomes: mixture of 

clones resulting from somatic selection of 

subclones 

Adapted from Campbell et al. Nature (2010) by Gaddy Getz 

Fitness 

‘driver’ events 

time 

‘passenger’ events 

Initiating  

‘driver’ event 

Last clonal 

‘driver’ events 



One can use sequence graphs for 

analysis of cancer metagenomes 

Daniel Zerbino 



Algebraic/Combinatorial Approach to 

Comparative Metagenomics 

Flows: 

Alternating and  

simple flows: 

Daniel Zerbino 



Duplication – raw data 

Detected Breakend Primary Copy-Number  

     Signal 

Brian Raney 



Duplication – model from data 

Single duplication event (Copy number change + Breakend) 

Red = creation/duplication 

Daniel Zerbino 



Deletion – raw data 

(No breakend detected) 

Daniel Zerbino 



Deletion – model from data 

Suggested novel  

breakend creation 
Single deletion event 

Blue = removal/deletion 

Daniel Zerbino 



Finally, key is interpretation of 

genomics data at the pathway level 

Curated and/or Collected 

Reactome 

KEGG 

Biocarta 

NCI-PID 

Pathway Commons 
… 

TCGA 

Glioblastoma 

Analysis 



The Age of Opportunity for the Study of 

Genetics and Medicine 

• #1 infrastructure issue is to achieve statistical power by 

aggregating information. We must head off the development of 

genomic information silos 

• #1 interpretive challenge is to accurately read a genome and 

model effects of genetic changes on molecular pathways and 

phenotypes 

• We must accelerate biomedical research and improve clinical 

practice by building new global platforms for storage, 

exchange and analysis of molecular and phenotypic 

information  



Some Current Collaborators 
Collaborators 

• Dave Patterson group, UC Berkeley 

• David Altshuler, Charles Sawyers, Mike Stratton,  Betsy Nabel, Brad 

Margus, Karen Kennedy, Tom Hudson 

• Richard Durbin, Sanger Centre 

• Broad Institute, Wash U., Baylor 

• The Cancer Genome Atlas and its labs, esp. GBM analysis working 

group 

• Stand Up To Cancer and its labs 

• Intl. Cancer Genome Consortium and its labs 

• Chris Benz, Buck Institute 

• Laura Van’t Veer, Laura Esserman, Joe Costello, Eric Collisson, 

Margaret Tempero, UCSF 

• UCSC Storage Systems Group 

• Joe Gray, Paul Spellman, OHSU 
 

 

 



Steve Benz Charlie Vaske 

James Durbin 

Zack Sanborn Jing Zhu 

Chris Szeto 

Mark Diekhans * Josh Stuart, Co-PI 

Sam Ng Mia Grifford 

Amie Radenbaugh 

Ted Golstein 

Melissa Cline Brian Craft Chris Wilks Sofie Salama * 

* 

Daniel Zerbino 

Kyle Elrott 

Singer Ma 

Artem Sokolov 

Chris Benz 

UCSC Cancer Integration Group 


