
Fine–Grained Counting Complexity I

Holger Dell

Saarland University and Cluster of Excellence (MMCI)

&

Simons Institute for the Theory of Computing

1

exponential-time “exact algorithms”

2

fixed-parameter tractability

polynomial-time algorithms

50 Shades of Fine-Grained

ETHSETH

APSP

W[1]

OVP

3SUM

#W[1]

#ETH

Outline
- classical counting complexity

- fine-grained lens

- specific problems

- structural results

- open problems

3

The classics
4

Decision vs. Counting

SAT

Is the CNF formula

satisfiable?

NP

problems L : {0,1}* → {0,1}

that reduce to SAT

#SAT

How many satisfying

assignments are there?

#P

problems f : {0,1}* → N

that reduce to #SAT

5

Example: Counting Hamiltonian Cycles reduces to #SAT

6

Three satisfying assignments

Circuit C

Input variables x

e

C(x) accepts

iff x is a length-n cycle

Three Hamiltonian Cycles

R is a parsimonious reduction from f to g if

f(x) = g(R(x)) for all x.

#P = { }

Parsimonious reductions
and the counting version of NP

problems f that parsimoniously

poly-time reduce to #SAT

7

Counting solutions is harder than finding one

Toda’s theorem

PH ⊆ P

#P

When we count solutions to 3-CNF formulas,

we can also decide quantified Boolean formulas*

∃ X

0

 ∀ X

1

∃ X

2

 ∀ X

3

 … ∃ X

k-1

 ∀ X

k

 : F(X

0

 … X

k

)

* (for any constant number k of quantifier alternations)
8

Some examples of counting problems
“Combinatorial” counting problems

f(G) = # Hamiltonian Cycles

“Optimization” problems

f(G) = size of the largest clique

“Algebraic” problems

f(matrix A) = value of the determinant

9

#P-complete using

existing hardness

reduction

In PNP and probably

not #P-hard

in poly-time

Count Perfect Matchings in Bipartite Graphs

10

d + d vertices

d×d matrix A

A

ij

= 1 iff {i,j} is an edge

Perfect Matchings

= per(A)

= ∑

permutation π

 ∏

i∊{1..d}

 A

i π(i)

i

j

per(d×d matrix A) = ∑

permutation π

 A

1 π(1)

...A

d π(d)

Computing the permanent

11

Evaluation time

~ d! ~ 2

d log d

Evaluation time

O(d2

d

)

Ryser’s Inclusion-Exclusion Formula (1963)

= ∑

S⊆{1..d}

(−1)

|S|

∏

i∊{1..d}

∑

j∊{1..d}∖S

 A

ij

 = ∑

all functions f : {1..d} → {1..d}

A

1 f(1)

...A

d f(d)

 − ∑

j

∑

f : {1..d} → {1..d}∖{j}

A

1 f(1)

...A

d f(d)

 + ∑

j,k

∑

f : {1..d} → {1..d}∖{j,k}

A

1 f(1)

...A

d f(d)

…

∏

i∊{1..d}

∑

j∊{1..d}

 A

ij

Permanent and Determinant

12

per(A) = ∑

π

 ∏

i

 A

i π(i)

det(A) = ∑

π

(−1)

sgn(π)

 ∏

i

 A

i π(i)

det(A) ≡ per(A) (mod 2)

Permanent: Probably not parsimoniously hard

If there was a parsimonious reduction R from #SAT to per:

- #SAT(F) ≡ per(R(F)) ≡ det(R(F)) (mod 2)

- Distinguish #SAT(F) = 1 from = 0

- RP = NP [Valiant-Vazirani isolation lemma]

13

Polynomial-time oracle reductions from f to g
R is a Turing machine with oracle access to g

such that f(x) = R

g

(x) holds for all x

Theorem [Valiant 79].

Poly-time oracle reduction from #SAT to Permanent.

→ If Permanent is poly-time, then PH=P

14

3D-matching = n/3 disjoint sets

Proof that the Permanent is Hard I
[D and Marx 15+] Reduction from # 3-Dimensional Matching

15

- Sets of size 3

- 3 colors

- Every set is multicolored

Fact: The known reduction from 3-Sat to 3-Dimensional

Matching is parsimonious.

Proof that the Permanent is Hard II

16

Set

Compute: # 3-Dimensional Matching (n elements, m sets)

Oracle: # Size-n Matchings in n + 3m bipartite graphs.

Set Gadget

“Set selected”

2 Matchings of this type

“Set not selected”

6 Matchings of this type

Size-n Matchings ≡ 2× #3DM (mod 3)

Higher moduli

+ Chinese Remainder Theorem

→ Recover exact number

Compute: # k-Matchings in a k+n bipartite graph

Oracle: Permanent = # Perfect Matchings in n+n bipartite graph

Proof that the Permanent is Hard III

17

k + n

n−k

new vertices

connected to

every vertex on

the larger side

(n−k)! × # k-Matchings(G) = # Perfect Matchings(G')

n + n

3-CNF Sat

Proof that the Permanent is Hard, Summary

18

3-dimensional matchings mod 3

5-dimensional matchings mod 5

…

p-dimensional matchings mod p

parsimonious standard reduction

+ Chinese Remainder Theorem

k-matchings in k+n graph mod p

Permanent

simple

standard

reduction

simple gadget

19

Fine-Grained Counting Complexity

Counting Satisfying Assignments of CNFs

Theorem [Chan and Williams 15]

Deterministically compute #SAT for a CNF formula F

in time 2

n (1 − savings)

- F is a k-CNF → savings ~ 1 / k

- F has cn clauses → savings ~ 1 / log c

20

Counting Exponential Time Hypotheses
#ETH

#SAT for k-CNFs does not have exp(o(n)) time algorithm

Sparsification Lemma [Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06]

Can assume m ~ k

k

 n

#SETH

#SAT for CNFs does not have 1.999

n

 time algorithm

21

Fine-Grained Complexity of the Permanent
Theorem [Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10]

If per(d×d matrix A) can be computed in exp(o(d)),

then #ETH is false

Theorem [Servedio and Wan 05]

If A has cn nonzero entries,

per(A) can be computed in time (2−ε)d

 where ε(c) < 1

PETH (Permanent Exponential Time Hypothesis)

per(A) cannot be computed in time 1.999

d

22

Counting Solutions to 2-CNF formulas

23

#SAT for 2-CNFs

each variable appears O(1) times

#SAT for 3-CNFs

#SAT for 3-CNFs

each variable appears O(1) times

Sparsification

Lemma

All Matchings

in constant degree graph

via Permanent

[Curticapean 15]

x

y

z

(￢x ∨ ￢y)

(￢x ∨ ￢z)

(￢y ∨ ￢z)

Theorem

#SAT for 2-CNFs is #ETH-hard

Results for Various Counting Problems

24

per((n/2)×(n/2) matrix)

= # Perfect Matchings of bipartite graph with n/2+n/2 vertices

→ 2

n/2

 algorithm

Theorem [Björklund 11].

Count perfect matchings in general graphs in time 2

n/2

.

Count Perfect Matchings in General Graphs

25

Proper q-colorings

26

χ(G, q)= χ(G−e, q) − χ(G/e, q)

χ(k-independent set, q) = q

k

→ χ(G, q) is a degree-n polynomial in q.

Chromatic polynomial & Deletion-Contraction

27

χ(G, q) = # proper q-colorings of G

e

G G/eG−e

Compute # q-Colorings

The deletion-contraction algorithm takes time 2

m

.

Theorem [Björklund Husfeldt Koivisto 09]

Compute the number of q-colorings in time 2

n

.

Theorem [Impagliazzo Paturi Zane 01]

ETH → no 2

o(n)

 algorithm for q-coloring.

28

The Tutte Polynomial

T(G, x, y) = ∑

A⊆E

 (x−1)

k(A)−k(G)

(y−1)

k(A)+|A|−|V|

Generalizes

- chromatic polynomial χ(G, q) = (−1)

n-k(G)

 q

k(G)

 T(G, 1−q, 0)

- Ising model, q-state Potts model

- many combinatorial problems

29

Computing the Tutte polynomial

The trivial algorithm runs in time 2

m

Theorem [Björklund Husfeldt Kaski Koivisto 08]

It can be computed in time 2

n

Theorem [Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10;

Jaeger Vertigan Welsh 1990]

#ETH → no 2

o(m)

 algorithm

30

The Tutte Plane of Computational Problems
Fix x,y ∊Q Input: G Output: T(G, x, y)

31

poly-time

Black:

not in 2

o(m)

under #ETH

#P-hard ; Open under #ETH

∑

forest F⊆E

 2

|F|

Polynomial Interpolation

32

polynomial p

degree d

d + 1 samples

(a, p(a))

→ compute p in poly-time from samples

Interpolation in Counting Complexity

33

T

(
G

,
z
)

T

(

G

,
z 2

)

[seriously, like, every paper in the area]

Tutte polynomial T(G, z)

degree m

T
(G

,z

3

)

T(G, z

i

) = T(G

i

, z)

T
(G

,z

4

)

G G

i

Need m+1 samples

→ m+1 different gadgets

→ m(G

i

) ~ m log m

Only rules out 2

o(m/log m)

time algorithms under

#ETH

T(G, z) = ∑

A⊆E

 q

k(A)

 z

|A|

Partition edges E into n/r blocks of size r

T(G, z

1

, …, z

n/r

) = ∑

A⊆E

 q

k(A)

 z

1

|A(1)|

 … z

n/r

|A(n/r)|

→ Multivariate interpolation

~ r

n/r

= exp(ε n) samples

r+1 distinct gadgets per variable

Block interpolation [Curticapean 15]

34

Can rule out 2

o(m)

 time

algorithms under #ETH

Approximate Counting

35

ᶢ ×

(German idiom)

Approximate Counting
[Jerrum Sinclair Vigoda 04]

poly(n/ε)-time (1+ε)-approximation (FPRAS) for Permanent

[Stockmeyer 1985]

FPRAS for # Sat when given access to an NP-oracle

[Traxler 14]

If CNF-Sat is in 1.99

n

 time,

we can (1+1.1

−n

)-approximate # CNF-Sat in time 1.99001

n

36

Open Problems

37

Dichotomy theorems
Constraint Satisfaction Problems (CSPs)

R

1

(x

1

,y

1

,z

1

) ∧ R

1

(x

2

,y

1

,z

3

) ∧ R

2

(x

2

,y

2

,z

1

) ∧ …

Theorem [Bulatov 08, Dyer Richerby 10]

Dichotomy for #CSP depending on {R

1

, R

2

, .. } :

It’s either in P or #P-complete

Is there a Dichotomy under #ETH ?

- Weighted #CSP [Cai, Chen, Lu 11]

- Planar Holant problems [Cai, Fu, Guo, Williams 15]

38

Is Counting really harder than Decision?

If SETH is true,

- CNF-SAT takes time 2

n

- # CNF-SAT takes time 2

n

- QBF-SAT takes time 2

n

In applications: CNF-SAT much easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ?

39

Summary
- counting is hard: PH ⊆ P

#P

- is computing ∑

forest F⊆E

 2

|F|

 hard under ETH or #ETH ?

- is the permanent hard under SETH ?

- which problems are hard under PETH ?

- fine-grained inapproximability ?

- is fine-grained counting really harder than decision?

can we tightly reduce QBF-SAT to # CNF-SAT ?

40

