Fine-Grained Counting Complexity |

Holger Dell

50 Shades of ine-Grai

HWI[1] - W1

#ETH ,\T

fixed-parameter tractability

SETH — ETH exponential-time “exact algorithms”
' APSP
OVP polynomial-time algorithms

3SUM

Outline

classical counting complexity

\

\

fine-grained lens

\

specific problems

structural results

\

\

open problems

The classics

Decision

SAT

Is the CNF formula
satisfiable?

NP

problems L : {0,1}* — {0,1]
that reduce to SAT

VS.

Counting

#SAT

How many satisfying
assignments are there?

#P

problems f: {0,1}* - N
that reduce to #SAT

Example: Counting Hamiltonian Cycles reduces to #SAT

M} L X

Three Hamiltonian Cycles

Circuit C

Input variables Three satisfying assignments

C() accepts
iff - is a length-n cycle

Parsimonious reductions
and the counting version of NP

Risa reduction from f to g if

f(x) =g(R(x)) forall x

problems f that parsimoniously
#P = poly-time reduce to #SAT

ing one

ind

_—

e v

o —

is harder than f

101S

\ ||.| ‘ .W.u.: ... h
i aran m’&g

[T P s —
A..l!l.lh‘inww.ﬁlll ——
S -

Counting solut

s
o

Some examples of counting problems

“Combinatorial” counting problems #P-complete using
existing hardness
f(G) = # Hamiltonian Cycles reduction
“Optimization” problems In PN* and probably
not #P-hard

f(G) = size of the largest clique

“Algebraic” problems
in poly-time
f(matrix A) = value of the determinant

Count Perfect Matchings in Bipartite Graphs

)

XK SR KX

d + d vertices

Perfect Matchings
= per(A)
dxd matrix A

Aij =1 iff {i,j} is an edge

= Zpermutation T Hje{l,,d} Ai (i)

- Evaluation time
Computing the permanent 4l ~ ydlogd
per(dxd matrix A) = Zpermutatiom A n(])"'A d(d)

- 2.all functions f: [1.d} — {1.d} A, f(l)"'Ad f(d) {Hien..d} Zje{l..d} Aij}
- Zj Zf :{1.d} — [L.dNMjl Al f(l)"’Ad f(d)
T Zj,k Zf: {1.d} — {1.dNj .kl Al f(l)"'Ad f(d)

Evaluation time

O(d2%)

_ _1)ISI
ZS;{I..d}(1) HiE{Ld} Zje{l--d}\s AiJ'

11

Permanent and Determinant

per(A)=> [I A,

1 1(1)

det(A)=Y (-1)"™ [T A,

1 m(1)

det(A) = per(A) (mod 2)

Permanent: Probably not parsimoniously hard

If there was a parsimonious reduction R from #SAT to per:

- #SAT(F) =per(R(F)) =det(R(F)) (mod 2)
- Distinguish #SAT(F) from

- RP = NP [Valiant-Vazirani isolation lemma]

13

Polynomial-time oracle reductions from f to g

R is a Turing machine with oracle access to g

such that f(x) = R8(x) holds for all x

Theorem [Valiant 79].

Poly-time oracle reduction from #SAT to Permanent.

— If Permanent is poly-time, then PH=P

14

Proof that the Permanent is Hard |

[D and Marx 15+] Reduction from # 3-Dimensional Matching

- Sets of size 3
- 3 colors
- Every set is multicolored

3D-matching = n/3 disjoint sets

Fact: The known reduction from 3-Sat to 3-Dimensional
Matching is parsimonious.

15

Proof that the Permanent is Hard Il

Compute: # 3-Dimensional Matching (n elements, m sets)

Oracle: # Size-n Matchings in n + 3m bipartite graphs.

@

O O O

Set Gadget

V — W\

Higher moduli
+ Chinese Remainder Theorem

.. — Recover exact number

2 Matchieegeooo

‘ ‘lected”
6 Mat { of this type

Size-n Matchings = 2x #3DM (mod 3)

16

Proof that the Permanent is Hard Il

Compute: # k-Matchings in a k+n bipartite graph

Oracle: Permanent = # Perfect Matchings in n+n bipartite graph

k +n

O O O O

x # k-Matchings(G)

connected to
every vertex on
the larger side

Perfect Matchings(G')

17

Proof that the Permanent is Hard, Summary

3-CNF Sat Permanent
L] A

parsimonious standard reduction
+ Chinese Remainder Theorem

simple
standard
v reduction
3-dimensional matchings mod 3
5-dimensional matchings mod 5 -
B——— # k-matchings in k+n graph mod p

simple gadget
p-dimensional matchings mod p

18

.l
"

—
=
=,
o
=
D
=

Gra

Counting Satisfying Assignments of CNFs

Theorem

Deterministically compute #SAT for a CNF formula

i time 2 D (1 - savings)

- ' isa k-CNF — savings ~1/k
- " has cn clauses — savings ~1/logc

20

Counting Exponential Time Hypotheses

#ETH
#SAT for k-CNFs does not have exp(o(n)) time algorithm

Sparsification Lemma

Can assume m ~ k¥ n

#SETH
#SAT for CNFs does not have 1.999" time algorithm

21

Fine-Grained Complexity of the Permanent

Theorem

If per(dxd matrix A) can be computed in exp(o(d)),
then #ETH is false

Theorem

If A has cn nonzero entries,
per(A) can be computed in time (2—¢)? where g(c) <1

PETH (Permanent Exponential Time Hypothesis)

per(A) cannot be computed in time 1.999¢

22

Counting Solutions to 2-CNF formulas

#SAT for 3-CNFs Theorem
#SAT for 2-CNFs is #ETH-hard
Sparsification
Lemma

#SAT for 2-CNFs
#SAT for 3-CNFs each variable appears O(1) times

each variable appears O(1) times

(—x V —y)

via Permanent
I[Curticapean 15] X / (—x V zZ)
(—y V —z)

All Matchings y

in constant degree graph

y4

23

Results for Various Gounting Problems

Count Perfect Matchings in General Graphs

per((n/2)%x(n/2) matrix)
= # Perfect Matchings of bipartite graph with n/2+n/2 vertices

— 22 algorithm

Theorem [Bjorklund 11].

Count perfect matchings in general graphs in time 2"

25

Proper g-colorings

Chromatic polynomial & Deletion-Contraction
x(G,) = # proper «-colorings of G

G

>
\,

Gle

=

1(Gle,)

VANIAN

X(Ga)= X(G_e,)
w(k-independent set, <) = (¥

— %(G,) is a degree-n polynomial in .

Compute # g-Colorings

The deletion-contraction algorithm takes time 2™

Theorem
Compute the number of g-colorings in time 2"

Theorem
ETH — no 2°™ algorithm for g-coloring,

28

The Tutte Polynomial

T(G, x,y) = ZACE (x—1)k(A)K(G) (y_l)k(A)+|A|—|V|

Generalizes

- chromatic polynomial (G, q) = (-1)"KG) qk(G) T(G, 1-q, 0)
- Ising model, g-state Potts model
- many combinatorial problems

29

Computing the Tutte polynomial

The trivial algorithm runs in time 2™

Theorem
[t can be computed in time 2"

Theorem

#ETH — no 2°™ algorithm

30

The Tutte Plane of Computational Problems

Fix x,y €Q Input: G Output: T(G, x, y)

Black:
not in 2°t™ Y
under #ETH

poly-time

#P-hard ; Open under #ETH

|F
Zforest FCE 2

31

Polynomial Interpolation

— compute p in poly-time from samples

polynomial p
degree d

d + 1 samples

(a, p(a))

32

Interpolation in Counting Complexity

Only rules out 2°(/leg m)
time algorithms under G
#ETH

IG 2,)

T(G,23)

T(G, z) = T(G, 2)
o

Need m+1 samples
— m+] different gadgets
— m(G,) ~m log m

Tutte polynomial T(G, z)

degree m

= > @)

33

Block interpolation [Curticapean 15]

— k(A) |A]
TG, 2) = 2pced 7 Can rule out 2°® time

algorithms under #ETH

Partition edges E into n/r blocks of size r

k(A) IA(l)I |A(n/r)]
T(G, Z.s s Z) dackq . Z e

n/r
— Multivariate interpolation
~ ' = exp(c n) samples

r+1 distinct gadgets per variable

34

Approximate Counting

T X

Approximate Counting

poly(n/e)-time (1+¢)-approximation (FPRAS) for Permanent

FPRAS for # Sat when given access to an NP-oracle

If CNF-Sat is in 1.99" time,
we can (1+1.17")-approximate # CNF-Sat in time 1.99001"

36

Open Problems

Dichotomy theorems

Constraint Satisfaction Problems (CSPs)

R (x,y,2) N R(x,y.,2,) A R(x,y,2) A ...

Theorem
Dichotomy for #CSP depending on IR, R, .1I:

It’s either in P or #P-complete

Is there a Dichotomy under #ETH ¢
- Weighted #CSP

- Planar Holant problems

38

Is Counting really harder than Decision?

If SETH is true,
- CNF-SAT takes time 2"
- # CNF-SAT takes time 2"
- QBF-SAT takes time 2"

In applications: CNF-SAT much easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ¢

39

Summary

\

counting is hard: PH & P*"

is computing 2" hard under ETH or #ETH ?
is the permanent hard under SETH ?¢

which problems are hard under PETH ¢

fine-grained inapproximability ¢

is fine-grained counting really harder than decision?
can we tightly reduce QBF-SAT to # CNF-SAT ¢

40

