## Why Biology is Different

Bernard Chazelle

**Princeton University** 

On leave at Collège de France

and Institute for Advanced Study



# $\frac{\partial T}{\partial t} = D\,\Delta T$







## PDE



## Natural algorithm



## PDE



## Natural algorithm

loops, conditionals, memory...



## PDE



## Natural algorithm

not human-designed











![](_page_9_Picture_0.jpeg)

## Beware of Linear A

![](_page_11_Figure_0.jpeg)

## Mathematics ?

![](_page_13_Picture_0.jpeg)

**Israel Gelfand** 

" The only thing more unreasonable than the effectiveness of mathematics in physics is its ineffectiveness in biology."

" ... unreasonable effectiveness of mathematics in the natural sciences "

![](_page_13_Picture_4.jpeg)

Eugene Wigner

## Why is biology different ?

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

#### Historical document

20

Mars a

History may repeat itself...

but not quite enough for mathematics

## Mathematics = language of symmetry

## Algorithms = language of memory

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

#### The distinction is not intrinsic to computation

## **Universal Turing machine**

![](_page_21_Figure_1.jpeg)

## **Universal Turing machine**

![](_page_22_Picture_1.jpeg)

#### memory

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

#### memory works on many timescales

![](_page_24_Picture_0.jpeg)

![](_page_24_Figure_1.jpeg)

#### and length scales of ratio $\approx 1,000,000,000,000$

## Scaling

![](_page_26_Picture_0.jpeg)

## **Brownian motion**

#### Microscopic

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

#### **Deterministic** Newtonian mechanics

#### Mesoscopic

![](_page_28_Picture_1.jpeg)

Scale-free !

#### **Stochastic** Brownian motion

#### Macroscopic

![](_page_29_Picture_1.jpeg)

solvable

**Deterministic** diffusion

![](_page_30_Figure_0.jpeg)

## **Causation in physics**

![](_page_31_Figure_0.jpeg)

## **Causation in biology**

![](_page_32_Figure_0.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

## A model to study mixed scales

## Influence systems


Interacting particles, each one with its own physical law !

# ( $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$

 $\mathbf{R}^{d}$ 

































### How are the networks formed ?



### network = f(agents' positions)



for example... two nearest neighbors

### Any first-order sentence over reals is OK

## $\forall y_1 \exists y_2 \forall y_3 \cdots P(\text{agent locations}, y_1, y_2, \ldots) \ge 0$

## How do the agents move?



Her next position is function only of her neighbors & herself



If she stays in convex hull



Each agentshasotsrdinatestecentide & enotion algorithm

## To specify a diffusive influence system...

# • a set of formulas $\forall y_1 \exists y_2 \forall y_3 \cdots P (\text{agent locations}, y_1, y_2, \dots) \ge 0$

### a set of stochastic matrices

## Space of diffusive influence systems



## A very rich theory





### Theorem [C'12]



#### Very surprising: all Lyapunov exponents are ≤ 0 !!!



## To perturb a diffusive influence system...

# • a set of formulas $\forall y_1 \exists y_2 \forall y_3 \cdots P \text{ (agent locations, } y_1, y_2, \dots \text{ )} \geq \mathcal{E}$

### a set of stochastic matrices

# Set of diffusive influence systems





#### Asymptotically periodic everywhere else



### **Dynamic** renormalization

" or how to analyze mixed scales "

### Influence system



# Ising model



Agents keep interacting

entropy Particles keep jiggling

energy

Agents want to move toward their neighbors

Criticality (2<sup>nd</sup> order phase transitions) Particles want to jiggle in sync with neighbors

### **Influence** system



# Ising model



Topology changes endogenously

Infinite # of critical points

Out of equilibrium

Topology is fixed

Single critical point

Equilibrated

# Ising model



### Renormalization group [Kadanoff, Wilson, ...]











### Evendspeginalicronagse-graining











### Can we do the same ?




Look out for decoupling





Note the mixing of scales !





.... while no red edges













### What is phase space ?

#### n agents, each with d coordinates

# Phase space $\mathbf{R}^{dn}$

#### [Tarski-Seidenberg-Collins quantifier elimination]





[Diffusive agent motion]













time Coding tree  $\mathcal{P}$  dn





### The coding tree has all the answers

### Criticality



#### " matrix rigidity " argument

Entropy =  $\lim_{k\to\infty} \frac{1}{k} \log \#$  paths of length k = 0 almost surely

### Criticality



### Thinning denotes loss of free energy



### For periodicity, we hope to see this ...

#### Pointoive may egrestotaise .can oscillate



s-energy [C'10]

### Infinite set of stochastic matrices $P_0, P_1, \dots$

## • Let $G_t$ denote the graph induced by $P_t$

$$E(x,s) = \sum_{t=0}^{\infty} \sum_{(i,j)\in G_t} |(P_t \cdots P_0 x)_i - (P_t \cdots P_0 x)_j)|^s$$

 $\infty$  $E(x,s) = \sum \sum |(P_t \cdots P_0 x)_i - (P_t \cdots P_0 x)_j)|^s$ t=0  $(i,j)\in G_t$ 

Dirichlet series (invertible !)

#### Bounds on s-energy [C'10]

•  $E(x,0) = \infty$ 

Idea is to pick s near 0 and derive Chernofflike bounds on mixing




















in Markov chain theory + much more !









#### What the direct sum does





## What the direct product does



Bound entropy growth and energy decay term by term

If energy decays faster than entropy grows then system is asymptotically periodic

## Theorem [C'12]

Diffusive influence systems are asymptotically periodic almost surely. They can be chaotic or even Turing-complete. Bidirectional systems have fixed-point attractors.

Number of attractors can be exponential (up to foliation)

The mixing of timescales creates

phenomena unknown in physics





#### Goose learns about her



























## **Recurrent mixing of timescales**



## Chaos and Turing universality





1-way springs with friction and changing topology



1-way springs with friction

Damped coupled oscillators Minimize free energy



#### Changing topology re-injects free energy



Prigogine's dissipative structures



# Capture the narrative complexity of natural algorithms

Mixed scales via dynamic renormalization and influence systems

Open systems
( ongoing w/ Stan Leibler )
Adaptiveness