Why Biology is Different

Bernard Chazelle

Princeton University

On leave at Collège de France

and Institute for Advanced Study

$\frac{\partial T}{\partial t} = D\,\Delta T$

PDE

Natural algorithm

PDE

Natural algorithm

loops, conditionals, memory...

PDE

Natural algorithm

not human-designed

Beware of Linear A

Mathematics ?

Israel Gelfand

" The only thing more unreasonable than the effectiveness of mathematics in physics is its ineffectiveness in biology."

" ... unreasonable effectiveness of mathematics in the natural sciences "

Eugene Wigner

Why is biology different ?

Historical document

20

Mars a

History may repeat itself...

but not quite enough for mathematics

Mathematics = language of symmetry

Algorithms = language of memory

The distinction is not intrinsic to computation

Universal Turing machine

Universal Turing machine

memory

memory works on many timescales

and length scales of ratio $\approx 1,000,000,000,000$

Scaling

Brownian motion

Microscopic

Deterministic Newtonian mechanics

Mesoscopic

Scale-free !

Stochastic Brownian motion

Macroscopic

solvable

Deterministic diffusion

Causation in physics

Causation in biology

A model to study mixed scales

Influence systems

Interacting particles, each one with its own physical law !

(\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 \mathbf{R}^{d}

How are the networks formed ?

network = f(agents' positions)

for example... two nearest neighbors

Any first-order sentence over reals is OK

$\forall y_1 \exists y_2 \forall y_3 \cdots P(\text{agent locations}, y_1, y_2, \ldots) \ge 0$

How do the agents move?

Her next position is function only of her neighbors & herself

If she stays in convex hull

Each agentshasotsrdinatestecentide & enotion algorithm

To specify a diffusive influence system...

• a set of formulas $\forall y_1 \exists y_2 \forall y_3 \cdots P (\text{agent locations}, y_1, y_2, \dots) \ge 0$

a set of stochastic matrices

Space of diffusive influence systems

A very rich theory

Theorem [C'12]

Very surprising: all Lyapunov exponents are ≤ 0 !!!

To perturb a diffusive influence system...

• a set of formulas $\forall y_1 \exists y_2 \forall y_3 \cdots P \text{ (agent locations, } y_1, y_2, \dots \text{)} \geq \mathcal{E}$

a set of stochastic matrices

Set of diffusive influence systems

Asymptotically periodic everywhere else

Dynamic renormalization

" or how to analyze mixed scales "

Influence system

Ising model

Agents keep interacting

entropy Particles keep jiggling

energy

Agents want to move toward their neighbors

Criticality (2nd order phase transitions) Particles want to jiggle in sync with neighbors

Influence system

Ising model

Topology changes endogenously

Infinite # of critical points

Out of equilibrium

Topology is fixed

Single critical point

Equilibrated

Ising model

Renormalization group [Kadanoff, Wilson, ...]

Evendspeginalicronagse-graining

Can we do the same ?

Look out for decoupling

Note the mixing of scales !

.... while no red edges

What is phase space ?

n agents, each with d coordinates

Phase space \mathbf{R}^{dn}

[Tarski-Seidenberg-Collins quantifier elimination]

[Diffusive agent motion]

time Coding tree \mathcal{P} dn

The coding tree has all the answers

Criticality

" matrix rigidity " argument

Entropy = $\lim_{k\to\infty} \frac{1}{k} \log \#$ paths of length k = 0 almost surely

Criticality

Thinning denotes loss of free energy

For periodicity, we hope to see this ...

Pointoive may egrestotaise .can oscillate

s-energy [C'10]

Infinite set of stochastic matrices P_0, P_1, \dots

• Let G_t denote the graph induced by P_t

$$E(x,s) = \sum_{t=0}^{\infty} \sum_{(i,j)\in G_t} |(P_t \cdots P_0 x)_i - (P_t \cdots P_0 x)_j)|^s$$

 ∞ $E(x,s) = \sum \sum |(P_t \cdots P_0 x)_i - (P_t \cdots P_0 x)_j)|^s$ t=0 $(i,j)\in G_t$

Dirichlet series (invertible !)

Bounds on s-energy [C'10]

• $E(x,0) = \infty$

Idea is to pick s near 0 and derive Chernofflike bounds on mixing

in Markov chain theory + much more !

What the direct sum does

What the direct product does

Bound entropy growth and energy decay term by term

If energy decays faster than entropy grows then system is asymptotically periodic

Theorem [C'12]

Diffusive influence systems are asymptotically periodic almost surely. They can be chaotic or even Turing-complete. Bidirectional systems have fixed-point attractors.

Number of attractors can be exponential (up to foliation)

The mixing of timescales creates

phenomena unknown in physics

Goose learns about her

Recurrent mixing of timescales

Chaos and Turing universality

1-way springs with friction and changing topology

1-way springs with friction

Damped coupled oscillators Minimize free energy

Changing topology re-injects free energy

Prigogine's dissipative structures

Capture the narrative complexity of natural algorithms

Mixed scales via dynamic renormalization and influence systems

Open systems
(ongoing w/ Stan Leibler)
Adaptiveness