Why Biology is Different

Bernard Chazelle

Princeton University

On leave at Collège de France
and Institute for Advanced Study

∂T ∂t

PDE

Natural algorithm

PDE

Natural algorithm

loops, conditionals, memory...

PDE

Natural algorithm

not human-designed

$$
P, V, T, S, G
$$

Beware of Linear A

Mathematics ?

" The only thing more unreasonable than the effectiveness of mathematics in physics is its ineffectiveness in biology. "

Israel Gelfand
"... unreasonable effectiveness of mathematics in the natural sciences "

Eugene Wigner

Why is biology different?

History may repeat itself...

but not quite enough for mathematics

Mathematics = language of symmetry

Algorithms = language of memory

Universal Turing machine

The distinction is not intrinsic to computation

Universal Turing machine

head

program

data
defined as the data that tends not to change

Universal Turing machine

head

memory

In blology

memory works on many timescales

In biology

ribosomal dna ... gene expression

dna binding
millions of years

minutes

microseconds
and length scales of ratio $\approx 1,000,000,000,000$

Scaling

Brownian motion

Microscopic

Intractable !

Deterministic Newtonian mechanics

Mesoscopic

Scale-free !

Stochastic Brownian motion

Macroscopic

solvable

Deterministic diffusion

Causation in physics

Causation in biology

NEWYOMREK

A model to study mixed scales

Influence systems

Interacting particles, each one with its own physical law !

\bigcirc
\mathbf{R}^{d}

How are the networks formed?

network $=f$ (agents' positions)

for example... two nearest neighbors

Any first-order sentence over reals is OK
$\forall y_{1} \exists y_{2} \forall y_{3} \cdots P\left(\right.$ agent locations, $\left.y_{1}, y_{2}, \ldots\right) \geq 0$

How do the agents move?

Her next position is function only of her neighbors \& herself

If she stays in convex hull the system is called diffusive

To specifiy a diffusive influence system...

a set of formulas

$\forall y_{1} \exists y_{2} \forall y_{3} \cdots P\left(\right.$ agent locations, $\left.y_{1}, y_{2}, \ldots\right) \geq 0$
a set of stochastic matrices

Space of diffusive influence systems

A very rich theory

Markov chains

Theorem [C '12]

Very surprising: all Lyapunov exponents are $\leq 0 \quad$!!!

To perturb a diffusive influence system...

a set of formulas
$\forall y_{1} \exists y_{2} \forall y_{3} \cdots P\left(\right.$ agent locations, $\left.y_{1}, y_{2}, \ldots\right) \geq \mathcal{E}$
a set of stochastic matrices

Set of diffusive influence systems

Asymptotically periodic everywhere else

Dynamic renormalization

" or how to analyze mixed scales "

Influence system

Ising model

Agents keep interacting

entropy

Particles keep jiggling

Criticality
(2 ${ }^{\text {nd }}$ order phase transitions)
Particles want to jiggle in sync with neighbors

Influence system

Ising model

Topology changes endogenously
Infinite \# of critical points

Topology is fixed
Single critical point
Equilibrated

Ising model

Renormalization group [Kadanoff, Wilson, ...]

$$
9.9
$$

Peadspeginaicurayse-graining

long-range correlations

Can we do the same?

Note the mixing of scales !

What is phase space ?

n agents, each with d coordinates

Phase space $\boldsymbol{R}^{d n}$

[Tarski-Seidenberg-Collins quantifier elimination]

Phase space $\boldsymbol{R}^{d n}$

[Diffusive agent motion]

$t=0$

$$
4=1
$$

$$
t=0
$$

time

Coding tree

The coding tree has all the answers

Criticality

" matrix rigidity " argument

Entropy $=\lim _{k \rightarrow \infty} \frac{1}{k} \log \#$ paths of length $k=0$ almost surely

Criticality

Thinning denotes loss of free energy

For periodicity, we hope to see this ...

Foutojerneaygegetthiss .can oscillate

s-energy [C '10]

Infinite set of stochastic matrices P_{0}, P_{1}, \ldots

Let G_{t} denote the graph induced by P_{t}

$$
\left.E(x, s)=\sum_{t=0}^{\infty} \sum_{(i, j) \in G_{t}} \mid\left(P_{t} \cdots P_{0} x\right)_{i}-\left(P_{t} \cdots P_{0} x\right)_{j}\right)\left.\right|^{s}
$$

$$
\left.E(x, s)=\sum_{t=0}^{\infty} \sum_{(i, j) \in G_{t}} \mid\left(P_{t} \cdots P_{0} x\right)_{i}-\left(P_{t} \cdots P_{0} x\right)_{j}\right)\left.\right|^{s}
$$

Dirichlet series (invertible !)

Bounds on s-energy [C'10]

Idea is to pick s near 0
$E(x, 0)=\infty$ and derive Chernofflike bounds on mixing

$$
\left.\begin{array}{cccc}
0.3 & 0.2 & 0 & 0.5 \\
0.1 & 0.4 & 0.4 & 0.1 \\
0 & 0.9 & 0.1 & 0 \\
0.6 & 0.1 & 0 & 0.3
\end{array}\right)
$$

$P_{1} \rightarrow$

$P_{1} \rightarrow$

$P_{2} P_{1} ?$

$$
P_{2} \rightarrow
$$

 in Markov chain theory + much more!

$\left\{\otimes_{s=1}^{n^{\alpha(\alpha)}} \otimes_{k=0}^{\prime}\left(\mathcal{T}_{w_{k}} \oplus \mathcal{T}_{n-w_{1} k_{V_{k-1}-t_{k}-1}} \otimes \mathcal{T}_{n}^{\mathrm{I}}\right)\right\} \otimes \mathcal{T}_{n}^{*}$

What the direct sum does

Bound entropy growth and energy decay term by term

If energy decays faster than entropy grows

then system is asymptotically periodic

Theorem [C'12]

Diffusive influence systems are asymptotically periodic almost surely. They can be chaotic or even Turing-complete. Bidirectional systems have fixed-point attractors.

Number of attractors can be exponential (up to foliation)

The mixing of timescales creates
phenomena unknown in physics

Goose learns about her

Limit cycle means amnesia

Recurrent mixing of timescales

[

Chaos and Turing universality

The view from physics

The view from physics

1-way springs with friction and changing topology

The view from physics

1-way springs with friction
Damped coupled oscillators
Minimize free energy

The view from physics

Changing topology re-injects free energy

The view from physics

Prigogine's dissipative structures

Capture the narrative complexity of natural algorithms

- Mixed scales
via dynamic renormalization and influence systems
- Open systems \} (ongoing w/ Stan Leibler)
Adaptiveness

