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Lower bounds
So far we have seen positive results: basic algorithmic techniques
for fixed-parameter tractability.

What kind of negative results we have?
Can we show that a problem (e.g., Clique) is not FPT?
⇒ Today
Can we show that a problem (e.g., Vertex Cover) has no
algorithm with running time, say, 2o(k) · nO(1)?
⇒ Thursday 3pm

This would require showing that P 6= NP: if P = NP, then, e.g.,
k-Clique is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
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Goals of this talk
Two goals:

1 Explain the theory behind parameterized intractability.
2 Show examples of parameterized reductions.
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Parameterized complexity
To build a complexity theory for parameterized problems, we need
two concepts:

An appropriate notion of reduction.
An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n − k .

⇒ Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n − k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.
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Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P .
φ(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x),
then k ′ ≤ g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n − k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.
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Multicolored Clique
A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or Partitioned Clique)

V1 V2 . . . Vk

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v
V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set.
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Dominating Set
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Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that
dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union
covers the universe.
Hitting Set: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as Clique.
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Regular graphs

Theorem
There is a parameterized reduction from Clique to Clique on
regular graphs.

Proof: Given a graph G and an integer k , let d be the maximum
degree of G . Take d copies of G and for every v ∈ V (G ), fully
connect every copy of v with a set Vv of d − d(v) vertices.

G G ′

G1 G2 . . . Gd
v1

vn

Vv1

Vvn

v2
Vv2

Observe the edges incident to Vv do not appear in any triangle,
hence every k-clique of G ′ is a k-clique of G (assuming k ≥ 3).

9



Regular graphs

Theorem
There is a parameterized reduction from Clique to Clique on
regular graphs.

Proof: Given a graph G and an integer k , let d be the maximum
degree of G . Take d copies of G and for every v ∈ V (G ), fully
connect every copy of v with a set Vv of d − d(v) vertices.

G G ′

G1 G2 . . . Gd
v1

vn

Vv1

Vvn

Vv2

v2

Observe the edges incident to Vv do not appear in any triangle,
hence every k-clique of G ′ is a k-clique of G (assuming k ≥ 3).

9



Partial Vertex Cover
Partial Vertex Cover: Given a graph G , integers k and s,
find k vertices that cover at least s edges.

Theorem
There is a parameterized reduction from Independent Set on
regular graphs parameterized by k to Partial Vertex Cover
parameterized by k .

Proof: If G is d-regular, then k vertices can cover s := kd edges if
and only if there is a independent set of size k .

d = 3, k = 4, s = 12
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Hard problems
Hundreds of parameterized problems are known to be at least as
hard as Clique:

Independent Set

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover parameterized by k

Dominating Set in bipartite graphs
. . .

We believe that none of these problems are FPT.
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Basic hypotheses
It seems that parameterized complexity theory cannot be built on
assuming P 6= NP – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

Which hypothesis is the most plausible?
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Independent Set ⇒ Turing machines

Theorem
There is a parameterized reduction from Independent Set to
the k-Step Halting Problem.

Proof: Given a graph G and an integer k , we construct a Turing
machine M and an integer k ′ = O(k2) such that M halts in k ′

steps if and only if G has an independent set of size k .

The alphabet Σ of M is the set of vertices of G .
In the first k steps, M nondeterministically writes k vertices to
the first k cells.
For every 1 ≤ i ≤ k , M moves to the i-th cell, stores the
vertex in the internal state, and goes through the tape to
check that every other vertex is nonadjacent with the i-th
vertex (otherwise M loops).
M does k checks and each check can be done in 2k steps ⇒
k ′ = O(k2).
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Turing machines ⇒ Independent Set

Theorem
There is a parameterized reduction from the k-Step Halting
Problem to Independent Set.

Proof: Given a Turing machine M and an integer k , we construct
a graph G that has an independent set of size k ′ := (k + 1)2 if and
only if M halts in k steps.

cell 0 cell 1 cell k

before
step 1

before
step k + 1
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Turing machines ⇒ Independent Set

Theorem
There is a parameterized reduction from the k-Step Halting
Problem to Independent Set.

Proof: Given a Turing machine M and an integer k , we construct
a graph G that has an independent set of size k ′ := (k + 1)2 if and
only if M halts in k steps.

G consists of (k + 1)2 cliques, thus a k ′-independent set has
to contain one vertex from each.
The selected vertex from clique Ki ,j describes the situation
before step i at cell j : what is written there, is the head there,
and if so, what the state is, and what the next transition is.
We add edges between the cliques to rule out inconsistencies:
head is at more than one location at the same time, wrong
character is written, head moves in the wrong direction etc.
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Summary

Independent Set and k-Step Halting Problem can be
reduced to each other ⇒ Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!
Independent Set and k-Step Halting Problem can be
reduced to Dominating Set.

Is there a parameterized reduction from Dominating Set to
Independent Set?
Probably not. Unlike in NP-completeness, where most
problems are equivalent, here we have a hierarchy of hard
problems.

Independent Set is W[1]-complete.
Dominating Set is W[2]-complete.

Does not matter if we only care about whether a problem is
FPT or not!
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Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if
there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit
C and an integer k , decide if there is an assignment of weight k
making the output true.
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Weighted Circuit Satisfiability
Independent Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

Dominating Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

To express Dominating Set, we need more complicated circuits.
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Depth and weft
The depth of a circuit is the maximum length of a path from an
input to the output.
A gate is large if it has more than 2 inputs. The weft of a circuit is
the maximum number of large gates on a path from an input to the
output.

Independent Set: weft 1, depth 3
x2 x3 x4 x6 x7x1

Dominating Set: weft 2, depth 2
x1 x7x6x4x3x2
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The W-hierarchy
Let C [t, d ] be the set of all circuits having weft at most t and
depth at most d .

Definition
A problem P is in the class W[t] if there is a constant d and a
parameterized reduction from P to Weighted Circuit
Satisfiability of C [t, d ].

We have seen that Independent Set is in W[1] and
Dominating Set is in W[2].

Fact: Independent Set is W[1]-complete.
Fact: Dominating Set is W[2]-complete.

If any W[1]-complete problem is FPT, then FPT = W[1] and every
problem in W[1] is FPT.

If any W[2]-complete problem is in W[1], then W[1] = W[2].

⇒ If there is a parameterized reduction from Dominating Set to
Independent Set, then W[1] = W[2].
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Weft

Weft is a term related to weaving cloth: it is the thread that runs
from side to side in the fabric.
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Parameterized reductions
Typical NP-hardness proofs: reduction from e.g., Clique or
3SAT, representing each vertex/edge/variable/clause with a
gadget.

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Usually does not work for parameterized reductions: cannot afford
the parameter increase.

Types of parameterized reductions:
Reductions keeping the structure of the graph.

Clique ⇒ Independent Set
Independent Set on regular graphs ⇒ Partial Vertex
Cover

Reductions with vertex representations.
Multicolored Independent Set ⇒ Dominating Set

Reductions with vertex and edge representations.
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Vertex representation

Recall: Reduction from Multicolored Independent Set to
Dominating Set:

V1

x1 y1 x2 y2 xk yk

u

v

we

V2 Vk
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List Coloring
List Coloring is a generalization of ordinary vertex coloring:
given a

graph G ,
a set of colors C , and
a list L(v) ⊆ C for each vertex v ,

the task is to find a coloring c where c(v) ∈ L(v) for every v .

Theorem
Vertex Coloring is FPT parameterized by treewidth.

However, list coloring is more difficult:

Theorem
List Coloring is W[1]-hard parameterized by treewidth.
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List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the
k vertices of the clique, hence we set L(ui ) = Vi .

If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure
that c(ui ) = x and c(uj) = y are not true at the same time ⇒
we add a vertex adjacent to ui and uj whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5 24



List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the
k vertices of the clique, hence we set L(ui ) = Vi .
If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure
that c(ui ) = x and c(uj) = y are not true at the same time ⇒
we add a vertex adjacent to ui and uj whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5

{x , y}
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Vertex representation

Key idea
Represent the k vertices of the solution with k gadgets.
Connect the gadgets in a way that ensures that the
represented values are compatible.

But sometimes it is very difficult to create connections that force
two gadgets to be compatible. . .
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Odd Set
Odd Set: Given a set system F over a universe U and an integer
k , find a set S of at most k elements such that |S ∩ F | is odd for
every F ∈ F .

Theorem
Odd Set is W[1]-hard parameterized by k .

First try: Reduction from Multicolored Independent Set.
Let U = V1 ∪ . . .Vk and introduce each set Vi into F .
⇒ The solution has to contain exactly one element from each Vi .

If xy ∈ E (G ), how can we express that x ∈ Vi and y ∈ Vj cannot
be selected simultaneously? Seems difficult:

introducing {x , y} into F forces that exactly one of x and y
appears in the solution,
introducing {x} ∪ (Vj \ {y}) into F forces that either both x
and y or none of x and y appear in the solution.
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Odd Set
Reduction from Multicolored Clique.

U :=
⋃k

i=1 Vi ∪
⋃

1≤i<j≤k Ei ,j .

k ′ := k +
(k
2

)
.

Let F contain Vi (1 ≤ i ≤ k) and Ei ,j (1 ≤ i < j ≤ k).

For every v ∈ Vi and x 6= i , we introduce the sets:
(Vi \ {v}) ∪ {every edge from Ei ,x with endpoint v}
(Vi \ {v}) ∪ {every edge from Ex ,i with endpoint v}

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3
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Vertex and edge representation

Key idea
Represent the vertices of the clique by k gadgets.
Represent the edges of the clique by

(k
2

)
gadgets.

Connect edge gadget Ei ,j to vertex gadgets Vi and Vj such
that if Ei ,j represents the edge between x ∈ Vi and y ∈ Vj ,
then it forces Vi to x and Vj to y .

The connection between the edge gadget and a vertex gadget needs
to express a simple projection relation: a selection of an edge forces
a selection of a vertex.

Typically blows up the parameter to O(k2)!
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Variants of Odd Set
The following problems are W[1]-hard:

Odd Set

Exact Odd Set (find a set of size exactly k . . . )
Exact Even Set

Unique Hitting Set
(at most k elements that hit each set exactly once)
Exact Unique Hitting Set
(exactly k elements that hit each set exactly once)

Open question:

? Even Set: Given a set system F and an integer k , find a
nonempty set S of at most k elements such |F ∩S | is even
for every F ∈ F .
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Summary

By parameterized reductions, we can show that lots of
parameterized problems are at least as hard as Clique, hence
unlikely to be fixed-parameter tractable.
Connection with Turing machines gives some supporting
evidence for hardness (only of theoretical interest).
The W-hierarchy classifies the problems according to hardness
(only of theoretical interest).
Important trick in W[1]-hardness proofs: vertex and edge
representations.
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