Near-Optimal Equilibria

Tim Roughgarden (Stanford)

Simons Institute boot camp on economics and computation

A Representative Result

Example Theorem: [Syrgkanis/Tardos 13] (improving [Hassidim/Kaplan/Nisan/Mansour 11]) Suppose m items are sold simultaneously via first-price single-item auctions:

- for every product distribution over submodular bidder valuations (independent, not necessarily identical), and
- for every (mixed) Bayes-Nash equilibrium,
 expected welfare of the equilibrium is within 63% of the maximum possible.

(matches best-possible algorithms!)

Outline

- 1. Smooth Games, Extension Theorems, and Robust POA Bounds
- 2. Smooth Mechanisms and Bayes-Nash POA Bounds
- 3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
- 4. Complexity-Based POA Lower Bounds

The Price of Anarchy

Network with 2 players:

The Price of Anarchy

Nash Equilibrium:

cost = 14 + 14 = 28

Price of anarchy (POA) = 28/24 = 7/6.

- if multiple equilibria exist, look at the worst one
 - [Koutsoupias/Papadimitriou 99]

- n players, each picks a strategy s_i
- player i incurs a cost C_i(s)

Objective function: $cost(s) := \Sigma_i C_i(s)$

- n players, each picks a strategy s_i
- player i incurs a cost C_i(s)

Objective function: $cost(s) := \Sigma_i C_i(s)$

To Bound POA: (let **s** =a Nash eq; **s**^{*} =optimal)

 $cost(s) = \sum_{i} C_{i}(s)$ [defn of cost]

- n players, each picks a strategy s_i
- player i incurs a cost C_i(s)

Objective function: $cost(s) := \Sigma_i C_i(s)$

To Bound POA: (let **s** =a Nash eq; **s**^{*} =optimal)

 $cost(\mathbf{s}) = \sum_{i} C_{i}(\mathbf{s}) \quad [defn of cost]$ $\leq \sum_{i} C_{i}(\mathbf{s}^{*}_{i}, \mathbf{s}_{-i}) \quad [\mathbf{s} a Nash eq]$

10

"baseline" strategies

Suppose: we prove that (for $\lambda > 0$; $\mu < 1$)

 $\Sigma_i C_i(s_i^*, \mathbf{S}_{-i}) \le \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$ [(*)]

- Suppose: we prove that (for $\lambda > 0$; $\mu < 1$)
 - $\Sigma_i C_i(s_i^*, \mathbf{S}_{-i}) \le \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$ [(*)]
- So: POA (of pure Nash equilibria) $\leq \lambda/(1-\mu)$.

Canonical Example

Claim [Christodoulou/Koutsoupias 05] (see also [Awerbuch/Azar Epstein 05]) worst-case POA in routing games with affine cost functions is 5/2.

- for all integers y,z: $y(z+1) \le (5/3)y^2 + (1/3)z^2$
- so: ay(z+1) + by ≤ (5/3)[ay² + by] + (1/3)[az² + bz]
 for all integers y,z and a,b ≥ 0
- so: $\Sigma_e [a_e(x_e+1) + b_e)x_e^*] \le (5/3) \Sigma_e [(a_ex_e^* + b_e)x_e^*] + (1/3) \Sigma_e [(a_ex_e + b_e)x_e]$
- so: $\Sigma_i C_i(s_i^*, \mathbf{S}_{-i}) \le (5/3) \cdot \text{cost}(\mathbf{s}^*) + (1/3) \cdot \text{cost}(\mathbf{s})$

Smooth Games

Definition: [Roughgarden 09] A game is (λ, μ) -smooth w.r.t. baselines s^{*} if, for every outcome s $(\lambda > 0; \mu < 1)$:

 $\Sigma_i C_i(s_i^*, \mathbf{s}_{-i}) \le \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$ [(*)]

Smooth Games

Definition: [Roughgarden 09] A game is (λ, μ) -smooth w.r.t. baselines s^{*} if, for every outcome s $(\lambda > 0; \mu < 1)$:

 $\Sigma_i C_i(s_i^*, \mathbf{s}_{-i}) \le \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$ [(*)]

So: if (λ,μ)-smooth w.r.t. optimal outcome, then POA (of pure Nash equilibria) is at most λ/(1-μ).
 (using (*) only in the special case where s = equilibrium)

POA Bounds Without Convergence

Meaning of a POA bound: *if* the game is at an equilibrium, *then* outcome is near-optimal.

Problem: what if can't reach an equilibrium?

- non-existence (pure Nash equilibria)
- intractability (mixed Nash equilibria) [Daskalakis/Goldberg/Papadimitriou 06], [Chen/ Deng/Teng 06], [Etessami/Yannakakis 07]

Worry: fail to converge, POA bound won't apply.

Learnable Equilibria

Fact: simple strategies converge quickly to more permissive equilibrium sets.

- correlated equilibria: [Foster/Vohra 97], [Fudenberg/ Levine 99], [Hart/Mas-Colell 00], ...
- coarse/weak correlated equilibria (of [Moulin/Vial 78]): [Hannan 57], [Littlestone/Warmuth 94], ...

Question: are there good "robust" POA bounds, which hold more generally for such "easily learned" equilibria? [Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/ Epstein/Mirrokni/Skopalik 08], [Christodoulou/Koutsoupias 05], [Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]

A Hierarchy of Equilibria

Recall: POA determined by *worst* equilibrium (only increases with the equilibrium set).

An Out-of-Equilibrium Bound

Theorem: [Roughgarden 09] if game is (λ,μ)smooth w.r.t. an optimal outcome, then the average cost of every no-regret sequence is at most

 $[\lambda/(1-\mu)]$ • cost of optimal outcome.

(the same bound as for pure Nash equilibria!)

No-Regret Sequences

- Definition: a sequence s¹,s²,...,s^T of outcomes of a game is *no-regret* if:
- for each i, each (time-invariant) deviation q_i:

```
(1/T) \Sigma_t C_i(s^t) \leq (1/T) \Sigma_t C_i(q_i, s^t_{-i}) [+ o(1)]
```

(will ignore the "o(1)" term)

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (λ, μ) -smooth:

 $\Sigma_t \operatorname{cost}(\mathbf{s}^t) = \Sigma_t \Sigma_i C_i(\mathbf{s}^t)$

[defn of cost]

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (λ, μ) -smooth:

 $\Sigma_t \operatorname{cost}(\mathbf{s}^t) = \Sigma_t \Sigma_i C_i(\mathbf{s}^t)$ [defn of cost]

 $= \Sigma_t \Sigma_i \left[C_i(s^*_i, \mathbf{s}^t_{-i}) + \Delta_{i,t} \right] \quad \left[\Delta_{i,t} := C_i(\mathbf{s}^t) - C_i(s^*_i, \mathbf{s}^t_{-i}) \right]$

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (λ, μ) -smooth:

 $\Sigma_{t} \operatorname{cost}(\mathbf{s}^{t}) = \Sigma_{t} \Sigma_{i} C_{i}(\mathbf{s}^{t}) \qquad [defn of cost]$

 $= \sum_{t} \sum_{i} \left[C_{i}(s_{i}^{*}, \mathbf{s}_{-i}^{t}) + \Delta_{i,t} \right] \quad \left[\Delta_{i,t} := C_{i}(\mathbf{s}^{t}) - C_{i}(s_{i}^{*}, \mathbf{s}_{-i}^{t}) \right]$

 $\leq \Sigma_{t} [\lambda \cdot cost(\mathbf{s}^{*}) + \mu \cdot cost(\mathbf{s}^{t})] + \Sigma_{i} \Sigma_{t} \Delta_{i,t}$ [smooth]

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (λ, μ) -smooth:

 $\Sigma_{t} \operatorname{cost}(\mathbf{s}^{t}) = \Sigma_{t} \Sigma_{i} C_{i}(\mathbf{s}^{t}) \qquad [defn of cost]$

 $= \sum_{t} \sum_{i} \left[C_{i}(s_{i}^{*}, \mathbf{s}_{-i}^{t}) + \Delta_{i,t} \right] \quad \left[\Delta_{i,t} := C_{i}(\mathbf{s}^{t}) - C_{i}(s_{i}^{*}, \mathbf{s}_{-i}^{t}) \right]$

 $\leq \Sigma_{t} [\lambda \bullet cost(\mathbf{s}^{*}) + \mu \bullet cost(\mathbf{s}^{t})] + \Sigma_{i} \Sigma_{t} \Delta_{i,t}$ [smooth]

No regret: $\Sigma_t \Delta_{i,t} \leq 0$ for each i.

To finish proof: divide through by T.

Extension Theorems

Bells and Whistles

- can allow baseline s^{*}_i to depend on s_i, but not s_i
- POA bound extends to correlated equilibria
- but *not* to no-regret sequences
- applications include:
 - splittable routing games [Roughgarden/Schoppman 11]
 - opinion formation games [Bhawalkar/Gollapudi/ Munagala 13]
 - sequential composition of auctions [Syrgkanis/Tardos 13]

Outline

- 1. Smooth Games, Extension Theorems, and Robust POA Bounds
- 2. Smooth Mechanisms and Bayes-Nash POA Bounds
- 3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
- 4. Complexity-Based POA Lower Bounds

Incomplete-Information Games

Game of incomplete information: [Harsanyi 67,68] specified by players, types, actions, payoffs.

- e.g., type = private valuation for a good
- player payoff depends on outcome *and type*
- strategy: function from types to actions
 - semantics: "if my type is t, then I will play action a"

Common Prior Assumption: types drawn from a distribution known to all players (independent, or not)

• realization of type i known only to player i

Example: First-Price Auction

- Bayes-Nash Equilibrium: every player picks expected utility-maximizing action, given its knowledge.
- Exercise: with n bidders, valuations drawn i.i.d. from U[0,1], the following is a Bayes-Nash equilibrium: all bidders use the strategy $v_i \rightarrow [(n-1)/n] \bullet v_i$.
- highest-valuation player wins (maximizes welfare)

Example: First-Price Auction

- Bayes-Nash Equilibrium: every player picks expected utility-maximizing action, given its knowledge.
- Exercise: with n bidders, valuations drawn i.i.d. from U[0,1], the following is a Bayes-Nash equilibrium: all bidders use the strategy $v_i \rightarrow [(n-1)/n] \bullet v_i$.
- highest-valuation player wins (maximizes welfare)

Exercise: with 2 bidders, valuations from U[0,1] and U[0,2], no Bayes-Nash equilibrium maximizes expected welfare. (Second bidder shades bid more.)

POA with Incomplete Information: The Best-Case Scenario

Ideal: POA bounds w.r.t an *arbitrary* prior distribution. (or maybe assuming only independence)

Observation: point mass prior distribution ⇔ game of full-information (Bayes-Nash equilibria ⇔ Nash eq).

POA with Incomplete Information: The Best-Case Scenario

Ideal: POA bounds w.r.t an *arbitrary* prior distribution. (or maybe assuming only independence)

Observation: point mass prior distribution ⇔ game of full-information (Bayes-Nash equilibria ⇔ Nash eq).

Coolest Statement That Could Be True: POA of Bayes-Nash equilibria (for worst-case prior distribution) same as that of Nash equilibria in worst induced full-info game. (Observation above => can only be worse)

Ideal Extension Theorem

Hypothesis: in every induced full-information game, a smoothness-type proof shows that the POA of (pure) Nash equilibria is α or better.

- induced full-info game ⇔ specific type profile
- ex: first-price auction with known valuations

Conclusion: for every common prior distribution, the POA of (mixed) Bayes-Nash equilibria is α or better.

Extension Theorem (Informal)

Smoothness Paradigm (Full Information)

1. Fix a game.

(fixes optimal outcomes)

- 2. Choose baseline **s**^{*} = some optimal outcome. (in many games, only one option)
- 3. Fix outcome s.

4. Prove $\Sigma_i C_i(s_i^*, \mathbf{s}_{-i}) \leq \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$.

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline s^{*} = some optimal outcome. (in many games, only one option)
- 3. Fix outcome s.
- 4. Prove $\Sigma_i C_i(s_i^*, \mathbf{s}_i) \leq \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$.

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline $\mathbf{b}^* =$ some optimal outcome. (note the large number of possible options)
- 3. Fix outcome s.
- 4. Prove $\Sigma_i C_i(s_i^*, \mathbf{s}_{-i}) \leq \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$.

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline \mathbf{b}^* = some optimal outcome. (note the large number of possible options)
- 3. Fix outcome **b**.
- 4. Prove $\Sigma_i C_i(s_i^*, \mathbf{s}_i) \leq \lambda \cdot \text{cost}(\mathbf{s}^*) + \mu \cdot \text{cost}(\mathbf{s})$.
- 5. Conclude that POA of no-regret sequences $\leq \lambda/(1-\mu)$.

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline \mathbf{b}^* = some optimal outcome. (note the large number of possible options)
- 3. Fix outcome **b**.
- 4. Prove $\Sigma_i u_i(b_i^*, \mathbf{b}_{-i}) \ge \lambda \cdot [OPT Welfare] Revenue(\mathbf{b}).$

[Syrgkanis/

Tardos 13]

Smoothness Paradigm (Incomplete Information)

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline \mathbf{b}^* = some optimal outcome. (note the large number of possible options)
- 3. Fix outcome **b**.
- 4. Prove $\Sigma_i u_i(b_i^*, \mathbf{b}_{-i}) \ge \lambda \bullet [OPT Welfare] Revenue(\mathbf{b}).$

[Syrgkanis/

Tardos 13]

5. Conclude that POA of Bayes-Nash equilibria is $\geq \lambda$.

Smoothness Paradigm (Incomplete Information)

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline $\mathbf{b}^* =$ some optimal outcome. (note the large number of possible options)
- 3. Fix outcome **b**.

First-price auctions: for suitable \mathbf{b}^* , $\lambda \geq \frac{1}{2}$

- 4. Prove $\Sigma_i u_i(b_i^*, \mathbf{b}_{-i}) \geq \lambda \cdot [OPT Welfare] Revenue(\mathbf{b}).$
- 5. Conclude that POA of Bayes-Nash equilibria is $\geq \lambda$.

First-Price Auctions

Claim: for suitable choice of \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \frac{1}{2} \cdot [\text{OPT Welfare}] - \text{Revenue}(\mathbf{b}).$

Proof: Set $b_i^* = v_i/2$ for every i. (a la [Lucier/Paes Leme 11])

- since LHS ≥ 0 , can assume $\frac{1}{2} \cdot [\max_i v_i] > \max_i b_i$
- suppose bidder 1 has highest valuation. Then: $u_1(b_1^*, b_1) = v_1 - (v_1/2) = v_1/2 \ge \frac{1}{2} \cdot [OPT Welfare]$

Optimization: [Syrgkanis 12] 50% => 63% (different **b**^{*})

Smoothness Paradigm (Incomplete Information)

- 1. Fix a setting *and the private valuations.* (fixes optimal outcomes)
- 2. Choose baseline \mathbf{b}^* = some optimal outcome. (note the large number of possible options)
- 3. Fix outcome b. general extension theorem
- 4. Prove $\Sigma_i u_i(b_i^*, \mathbf{b}_i) \ge \lambda \cdot [OPT Welfare] Revenue(\mathbf{b}).$
- 5. Conclude that POA of Bayes-Nash equilibria is $\geq \lambda$.

Extension Theorem (PNE)

Assume: for suitable choice of \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Claim: POA of pure Nash equilibria is $\geq \lambda$.

Extension Theorem (PNE)

Assume: for suitable choice of \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Claim: POA of pure Nash equilibria is $\geq \lambda$.

Proof: Let $\mathbf{b} = a$ pure Nash equilibrium. Then: welfare(\mathbf{b}) = Rev(\mathbf{b}) + $\Sigma_i u_i(\mathbf{b})$ [defn of utility] $\geq \text{Rev}(\mathbf{b}) + \Sigma_i u_i(b_i^*, \mathbf{b}_{-i})$ [\mathbf{b} a Nash eq] $\geq \text{Rev}(\mathbf{b}) + [\lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b})]$ $= \lambda \cdot [\text{OPT Welfare}]$

Extension Theorem (BNE)

Assume: for suitable choice of \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Claim: (\approx [Lucier/Paes Leme 11]) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof: Let $\mathbf{b}(\mathbf{j}) = a$ Bayes-Nash equilibrium. Then: $E_v[welfare(\mathbf{b}(\mathbf{v}))] = E_v[Rev(\mathbf{b}(\mathbf{v}))] + \Sigma_i E_v[u_i(\mathbf{b}(\mathbf{v}))]$ [defn of utility] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + \Sigma_i E_v[u_i(b^*_i(v_i), \mathbf{b}_{-i}(\mathbf{v}_{-i}))]$ [**b** a BNE] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + [\lambda \cdot E_v[OPT Welfare] - E_v[Rev(\mathbf{b}(\mathbf{v}))]]$ $= \lambda \cdot E_v[OPT Welfare]$

First-Price Auctions

Summary: for all (possibly correlated) valuation distributions, every Bayes-Nash equilibrium of a firstprice auction has welfare at least 50% (or even 63%) of the maximum possible.

- 63% is tight for correlated valuations [Syrgkanis 14]
- independent valuations = worst-case POA unknown
 worst known example = 87% [Hartline/Hoy/Taggart 14]
- 63% extends to simultaneous single-item auctions (covered tomorrow)

Further Applications

- first-price sponsored search auctions
 [Caragiannis/Kaklamanis/Kanellopolous/Kyropoulou/ Lucier/Paes Leme/Tardos 12]
- greedy pay-as-bid combinatorial auctions [Lucier/Borodin 10]
- pay-as-bid mechanisms based on LP rounding [Duetting/Kesselheim/Tardos 15]

Second-Price Rules

- simultaneous second-price auctions [Christodoulou/ Kovacs/Schapira 08]
 - worst-case POA = 50%, and this is tight (even for PNE)
- truthful greedy combinatorial auctions [Borodin/ Lucier 10]
 - worst-case POA close to greedy approximation ratio
- can be reinterpreted via modified smoothness condition [Roughgarden 12, Syrgkanis 12]
- "bluffing equilibria" => need a no overbidding condition for non-trivial POA bounds

Revenue Covering

- [Hartline/Hoy/Taggart 14] define "revenue covering"
- for every b, Rev(b) ≥ critical bids of winners in OPT
- implies smoothness condition
 - near-equivalent in some cases [Duetting/Kesselheim 15]
- application #1: POA bounds w.r.t. revenue objective
 - e.g., simultaneous first-price auctions with monopoly reserves
- application #2: [Hoy/Nekipelov/Syrgkanis 15] bound the "empirical POA" from data
 - do not need to explicitly estimate valuations!
 - can prove instance-by-instance bounds that beat the worstcase bound

Dynamic Auctions

[Lykouris/Syrgkanis/Tardos 15] first POA guarantees when bidder population changing (p fraction drops out each time step, replaced by new bidders).

- convergence to (Nash) equilibrium hopeless
- positive results for "adaptive learners" (assume agents use sufficiently good learning algorithm)
- need baseline near-optimal strategy profiles (one per time step) s.t. no player changes frequently
- novel use of differential privacy! (in the analysis)

Outline

- 1. Smooth Games, Extension Theorems, and Robust POA Bounds
- 2. Smooth Mechanisms and Bayes-Nash POA Bounds
- *3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems*
- 4. Complexity-Based POA Lower Bounds

Multi-Item Auctions

- suppose m different items
- for now: unit-demand valuations
- each bidder i has private valuation
 v_{ii} for each item j
- $v_i(S) := \max_{j \text{ in } S} v_{ij}$

Simultaneous Composition

- suppose have mechanisms M₁,...,M_m
- in their *simultaneous composition*:
 - new action space = product of the m action spaces
 - new allocation rule = union of the m allocation rules
 - new payment rule = sum of the m payment rules
- example: each M_i a single-item first-price auction

Question: as a unit-demand bidder, how should you bid? (not so easy)

Composition Preserves Smoothness

Hypothesis: every single-item auction M_j is λ-smooth: for every **v**, there exists **b**^{*} such that, for every **b**, $\Sigma_i u_i(b_i^*, \mathbf{b}_{-i}) \ge \lambda \cdot [OPT Welfare(\mathbf{v})] - Rev(\mathbf{b}).$

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, then composed mechanism is also λ -smooth.

 holds more generally from arbitrary smooth M_j's and "XOS" valuations (generalization of submodular)

Composition Preserves Smoothness

Hypothesis: every single-item auction M_j is λ -smooth: for every **v**, there exists **b**^{*} such that, for every **b**,

 $\Sigma_i u_i(b_i^*, \mathbf{b}_i) \ge \lambda \cdot [OPT Welfare(\mathbf{v})] - Rev(\mathbf{b}).$

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, then composed mechanism is also λ -smooth.

Proof idea: Fix unit-demand valuations v, fixes OPT.

- baseline strategy for a bidder i that gets item j in OPT
 - bid 0 in mechanisms other M_i
 - in M_i, use assumed baseline strategy for M_i

Simultaneous First-Price Auctions (First Try)

Consequence: for all (possibly correlated) unit-demand valuation distributions, every Bayes-Nash equilibrium of simultaneous first-price auctions has welfare at least 50% (or even 63%) of the maximum possible.

- prove smoothness inequality for first-price auction
- use composition theorem to extend smoothness to simultaneous first-price auctions
- use extension theorem to conclude Bayes-Nash POA bound for simultaneous first-price auctions

Counterexample

Fact: [Feldman/Fu/Gravin/Lucier 13], following [Bhawalkar/ Roughgarden 11] there are (highly correlated) valuation distributions over unit-demand valuations such that every Bayes-Nash equilibrium has expected welfare arbitrary smaller than the maximum possible.

 idea: plant a random matching plus some additional highly demanded items; by symmetry, a bidder can't detect the item "reserved" for it

Revised Statement

Consequence: for all *product* unit-demand valuation distributions, every Bayes-Nash equilibrium of simultneous first-price auction has welfare at least 50% (or even 63%) of the maximum possible.

- prove smoothness inequality for first-price auction
- use composition theorem to extend smoothness to simultaneous first-price auctions
- use *modified* extension theorem to conclude Bayes-Nash POA bound for simultaneous first-price auctions

Private Baseline Strategies

First-price auction: set $b_i^* = v_i/2$ for every i.

independent of v_{-i} ("private" baseline strategies)

Simultaneous first-price auctions: b_i^* is "bid half your value only on the item j you get in OPT(**v**)".

- "public" baseline strategies
- not well defined unless v_{-i} known

Extension Theorem (BNE)

Assume: for suitable choice of \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Claim: (\approx [Lucier/Paes Leme 11]) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof: Let $\mathbf{b}(\mathbf{j}) = a$ Bayes-Nash equilibrium. Then: $E_v[welfare(\mathbf{b}(\mathbf{v}))] = E_v[Rev(\mathbf{b}(\mathbf{v}))] + \sum_i E_v[u_i(\mathbf{b}(\mathbf{v}))]$ [defn of utility] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + \sum_i E_v[u_i(\mathbf{b}_i^*(v_i), \mathbf{b}_{-i}(v_{-i}))]$ [b a BNE] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + [\lambda \cdot E_v[OPT Welfare] - E_v[Rev(\mathbf{b}(\mathbf{v}))]]$ $= \lambda \cdot E_v[OPT Welfare]$ deviation can depend on v_i but not \mathbf{v}_{-i}

Extension Theorem (BNE)

Assume: for suitable choice of *private* \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Claim: (\approx [Lucier/Paes Leme 11]) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof: Let $\mathbf{b}(\mathbf{j}) = a$ Bayes-Nash equilibrium. Then: $E_v[welfare(\mathbf{b}(\mathbf{v}))] = E_v[Rev(\mathbf{b}(\mathbf{v}))] + \sum_i E_v[u_i(\mathbf{b}(\mathbf{v}))]$ [defn of utility] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + \sum_i E_v[u_i(\mathbf{b}_i^*(v_i), \mathbf{b}_{-i}(v_{-i}))]$ [b a BNE] $\geq E_v[Rev(\mathbf{b}(\mathbf{v}))] + [\lambda \cdot E_v[OPT Welfare] - E_v[Rev(\mathbf{b}(\mathbf{v}))]]$ $= \lambda \cdot E_v[OPT Welfare]$ deviation can depend on v_i but not \mathbf{v}_{-i}

Modified Extension Theorem

Assume: for suitable choice of *public* \mathbf{b}^* , for every \mathbf{b} , $\Sigma_i u_i(\mathbf{b}^*_i, \mathbf{b}_{-i}) \ge \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(\mathbf{b}).$

Theorem: [Syrgkanis/Tardos 13], following [Christodoulou/ Kovacs/Schapira 08] for all *product* valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof idea: to transform public b_i^* to a deviation:

- sample w_{-i} from prior distribution
- play baseline strategy for valuation profile (v_i, w_{-i})

Outline

- 1. Smooth Games, Extension Theorems, and Robust POA Bounds
- 2. Smooth Mechanisms and Bayes-Nash POA Bounds
- 3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
- 4. Complexity-Based POA Lower Bounds

Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/ Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A's with subadditive bidder valuations is precisely 2.

monotone *subadditive* valuations:

• $v_i(A \cup B) \le v_i(A) + v_i(B)$ for all disjoint A,B

Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/ Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A's with subadditive bidder valuations is precisely 2.

70

Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/ Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A's with subadditive bidder valuations is precisely 2.

Question: Can we do better?

(without resorting to the VCG mechanism)

The Upshot

Meta-theorem: equilibria are generally bound by the same limitations as algorithms with polynomial computation or communication.

• lower bounds without explicit constructions!

Caveats: requires that equilibria are

- guaranteed to exist (e.g., mixed Nash equilibria)
- can be efficiently verified

Example consequence: no "simple" auction has POA < 2 for bidders with subadditive valuations.
From Protocol Lower Bounds to POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:

 no nondeterministic subexponential-communication protocol approximates the welfare-maximization problem (with valuations V) to within factor of α.

i.e., impossible to decide OPT \geq W^{*} vs. OPT \leq W^{*}/ α

Then worst-case POA of ε -approximate mixed Nash equilibria of every "simple" mechanism is at least α .

simple = number of strategies sub-doubly-exponential in m

• ε can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower bounds for communication protocols.

Consequences

Corollary: (via [Nisan/Segal 06], [Dobsinski/Nisan/Schapira 05])

- With subadditive bidder valuations, no simple auction guarantees equilibrium welfare better than 50% OPT.
 "simple": bid space dimension ≤ subexponential in # of goods
- With general valuations, no simple auction guarantees non-trivial equilibrium welfare.

Take-aways:

- 1. In these cases, S1A's optimal among simple auctions.
- 2. With complements, complex bid spaces (e.g., package bidding) necessary for welfare guarantees.

Why Approximate MNE?

Issue: in an S1A, number of strategies = $(V_{max} + 1)^m$

• valuations, bids assumed integral and poly-bounded

Consequence: can't efficiently guess/verify a MNE.

Theorem: [Lipton/Markakis/Mehta 03] a game with n players and N strategies per player has an ε -approximate mixed Nash equilibrium with support size polynomial in n, log N, and ε^{-1} .

proof idea based on sampling from an exact MNE

Nondeterministic Protocols

- each of n players has a private valuation v_i
- a "referee" wants to convince the players that the value of some function $f(v_1,...,v_n)$ has the value z
- referees knows all v_i's and writes, in public view, an alleged proof P that f(v₁,...,v_n) = z
- protocol accepts if and only if every player i accepts the proof P (knowing only v_i)
- communication used = length (in bits) of proof P
- example: Non-Equality vs. Equality

From Protocol Lower Bounds to POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:

no nondeterministic subexponential-communication protocol approximates the welfare-maximization problem (with valuations V) to within factor of α.
 i.e., impossible to decide OPT ≥ W^{*} vs. OPT ≤ W^{*}/α

• i.e., impossible to decide OPT $\geq vv vs$. OPT $\leq vv /d$

Then worst-case POA of *ε-approximate* mixed Nash equilibria of every "simple" mechanism is at least α.

- simple = number of strategies sub-doubly-exponential in m
- ε can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower bounds for communication protocols.

Proof of Theorem

Suppose worst-case POA of ϵ -MNE is $\rho < \alpha$:

Input: game G s.t. either (i) OPT \geq W* or (ii) OPT \leq W*/ α

Proof of Theorem

Suppose worst-case POA of ϵ -MNE is $\rho < \alpha$:

Input: game G s.t. either (i) OPT \ge W* or (ii) OPT \le W*/ α

Protocol:

"proof" = ε -MNE x with small support (exists by LMM); players verify it privately

Key point: every ε-MNE is a short, efficiently verifiable certificate for membership in case (ii).

Exact vs. Approximate Equilibria

Claim: POA lower bounds for ϵ -MNE with small enough ϵ essentially as good as for exact MNE. Reasons:

- 1. All known upper bound techniques apply automatically to approximate equilibria.
 - 1. e.g., "smoothness proofs" [Roughgarden 09]
 - 2. so our lower bounds limit all known proof techniques
- 2. Lower bounds for approximate equilibria can sometimes be translated into bounds for exact equilibria.
- 3. If POA of exact equilibria << POA of approximate equilibria, the latter is likely more relevant (and robust).

More Applications

- optimality results for "simple" auctions with other valuation classes (general, XOS)
- analogous results for combinatorial auctions with succinct valuations (if coNP not in MA)
- impossibility results for low-dimensional price equilibria (assuming NP ≠ coNP) [Roughgarden/Talgam-Cohen 15]
- unlikely to reduce planted clique to ε-Nash hardness

Open Questions

- Tight POA bounds for important auction formats
 e.g. first-price auctions with independent valuations
- 2. Best "simple" auction for submodular valuations?
 - 1. S1A's give 63% [Syrgkanis/Tardos 13], [Christodoulou et al 14]
 - 2. > 77% impossible [Dobzinski/Vondrak 13] + [R14]
 - 3. > 63% is possible with poly communication [Feige/Vondrak 06]
- 3. Design "natural" games with POA matching hardness lower bound for the underlying optimization problem.
 - 1. e.g., many auction and scheduling problems

