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A Representative Result

Example Theorem: [Syrgkanis/Tardos 13] (improving  
[Hassidim/Kaplan/Nisan/Mansour 11]) Suppose m items are 
sold simultaneously via first-price single-item auctions:
•  for every product distribution over submodular 

bidder valuations (independent, not necessarily 
identical), and

•  for every (mixed) Bayes-Nash equilibrium,
expected welfare of the equilibrium is within 63% of the 
maximum possible. 

 (matches best-possible algorithms!)
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The Price of Anarchy
  Network with 2 players:
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The Price of Anarchy
      Nash Equilibrium:

 cost = 14+14 = 28

s t
2x 12

5x5
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The Price of Anarchy
      Nash Equilibrium:              To Minimize Cost:

Price of anarchy (POA) = 28/24 = 7/6.
•  if multiple equilibria exist, look at the worst one
•  [Koutsoupias/Papadimitriou 99]
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What Do POA Bounds Look Like?

•  n players, each picks a strategy si

•  player i incurs a cost Ci(s)

Objective function: cost(s) := Σi Ci(s)
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What Do POA Bounds Look Like?

•  n players, each picks a strategy si

•  player i incurs a cost Ci(s)

Objective function: cost(s) := Σi Ci(s)

To Bound POA: (let s =a Nash eq; s* =optimal)

cost(s)      =  Σi Ci(s)         [defn of cost]                
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What Do POA Bounds Look Like?

•  n players, each picks a strategy si

•  player i incurs a cost Ci(s)

Objective function: cost(s) := Σi Ci(s)

To Bound POA: (let s =a Nash eq; s* =optimal)

cost(s)      =  Σi Ci(s)         [defn of cost]                
                     ≤  Σi Ci(s*

i,s-i)   [s a Nash eq]
“baseline” strategies
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What Do POA Bounds Look Like?

Suppose: we prove that (for λ > 0; μ < 1)

    Σi Ci(s*
i,s-i) ≤  λ�cost(s*) + μ�cost(s)    [(*)]
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What Do POA Bounds Look Like?

Suppose: we prove that (for λ > 0; μ < 1)

    Σi Ci(s*
i,s-i) ≤  λ�cost(s*) + μ�cost(s)    [(*)]

Implies: cost(s)  ≤  Σi Ci(s*
i,s-i)        [s a Nash eq] 

                           ≤  λ�cost(s*) + μ�cost(s)   [by (*)]

So: POA (of pure Nash equilibria)  ≤ λ/(1-μ).
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Canonical Example
Claim [Christodoulou/Koutsoupias 05] (see also [Awerbuch/Azar 

Epstein 05]) worst-case POA in routing games with 
affine cost functions is 5/2.

•  for all integers y,z: y(z+1)  ≤ (5/3)y2 + (1/3)z2

•  so: ay(z+1)  + by ≤ (5/3)[ay2 + by] + (1/3)[az2 + bz]
•  for all integers y,z and a,b ≥ 0

•  so: Σe [ae(xe+1)  + be)xe
*] ≤ (5/3) Σe [(aexe

* + be)xe
*]

            + (1/3) Σe [(aexe + be)xe]

•  so: Σi Ci(s*
i,s-i) ≤ (5/3)�cost(s*) + (1/3)�cost(s)
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Smooth Games
Definition: [Roughgarden 09] A game is (λ,μ)-smooth w.r.t. 

baselines s* if, for every outcome s (λ > 0; μ < 1):

    Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s)    [(*)]
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Smooth Games
Definition: [Roughgarden 09] A game is (λ,μ)-smooth w.r.t. 

baselines s* if, for every outcome s (λ > 0; μ < 1):

    Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s)    [(*)]

Implies: cost(s)  ≤  Σi Ci(s*
i,s-i)       [s a Nash eq] 

                           ≤  λ�cost(s*) + μ�cost(s)  [by (*)]

So: if (λ,μ)-smooth w.r.t. optimal outcome,  then POA 
(of pure Nash equilibria)  is at most λ/(1-μ).

(using (*) only in the special case where s = equilibrium)
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POA Bounds Without Convergence

Meaning of a POA bound: if the game is at an 
equilibrium, then outcome is near-optimal.

Problem: what if can’t reach an equilibrium?
•  non-existence (pure Nash equilibria)
•  intractability (mixed Nash equilibria) 

[Daskalakis/Goldberg/Papadimitriou 06], [Chen/
Deng/Teng 06],[Etessami/Yannakakis 07]

Worry: fail to converge, POA bound won’t apply.
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Learnable Equilibria
Fact: simple strategies converge quickly to more 

permissive equilibrium sets.
•  correlated equilibria: [Foster/Vohra 97], [Fudenberg/

Levine 99], [Hart/Mas-Colell 00], ...
•  coarse/weak correlated equilibria (of [Moulin/Vial 78]): 

[Hannan 57], [Littlestone/Warmuth 94], ...

Question: are there good “robust” POA bounds, which 
hold more generally for such “easily learned” equilibria?
[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/
Epstein/Mirrokni/Skopalik 08], [Christodoulou/Koutsoupias 05], 
[Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]
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A Hierarchy of Equilibria

pure
Nash

mixed Nash

correlated eq

no regret

Recall: POA determined by worst equilibrium 
(only increases with the equilibrium set).

need not
exist

hard to
compute

easy to
compute/
learn



An Out-of-Equilibrium Bound

Theorem: [Roughgarden 09] if game is (λ,μ)-
smooth w.r.t. an optimal outcome, then the 
average cost of every no-regret sequence is 
at most  

                          

[λ/(1-μ)] � cost of optimal outcome.

 (the same bound as for pure Nash equilibria!)
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No-Regret Sequences
Definition: a sequence s1,s2,...,sT of outcomes of a 

game is no-regret if: 
•  for each i, each (time-invariant) deviation qi:

(1/T) Σt Ci(st)  ≤  (1/T) Σt Ci(qi,st
-i)  [+ o(1)]

(will ignore the “o(1)” term)

20
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Smooth => No-Regret Bound
•  notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

 Σt cost(st)  = Σt Σi Ci(st)               [defn of cost]
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Smooth => No-Regret Bound
•  notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

 Σt cost(st)  = Σt Σi Ci(st)               [defn of cost]
                

    = Σt Σi  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]
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Smooth => No-Regret Bound
•  notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

 Σt cost(st)  = Σt Σi Ci(st)               [defn of cost]
                

    = Σt Σi  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]
 

   ≤ Σt [λ�cost(s*) + μ�cost(st)] + Σi Σt ∆i,t   [smooth]
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Smooth => No-Regret Bound
•  notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

 Σt cost(st)  = Σt Σi Ci(st)               [defn of cost]
                

    = Σt Σi  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]
 

    ≤ Σt [λ�cost(s*) + μ�cost(st)] + Σi Σt ∆i,t   [smooth]

No regret: Σt ∆i,t ≤ 0 for each i.

To finish proof: divide through by T.
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Extension Theorems

permissive equilibrium 
concept (e.g., no-regret 
outcomes)

what we care about
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Extension Theorems

permissive equilibrium 
concept (e.g., no-regret 
outcomes)

easier

what we care about
what’s easy
to analyze

pure Nash equilibria
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Extension Theorems

permissive equilibrium 
concept (e.g., no-regret 
outcomes)

easier

POA
extension
theorem

what we care about
what’s easy
to analyze

pure Nash equilibria



Bells and Whistles

•  can allow baseline s*
i to depend on si, but not s-i

•  POA bound extends to correlated equilibria
•  but not to no-regret sequences
•  applications include:

•  splittable routing games [Roughgarden/Schoppman 11]

•  opinion formation games [Bhawalkar/Gollapudi/ 
Munagala 13]

•  sequential composition of auctions [Syrgkanis/Tardos 
13]
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Outline

1.  Smooth Games, Extension Theorems, and Robust 
POA Bounds

2.  Smooth Mechanisms and Bayes-Nash POA Bounds

3.  Reducing Complex Mechanisms to Simple 
Mechanisms Using Composition Theorems

4.  Complexity-Based POA Lower Bounds
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Incomplete-Information Games
Game of incomplete information: [Harsanyi 67,68] 

specified by players, types, actions, payoffs.
•  e.g., type = private valuation for a good
•  player payoff depends on outcome and type
•  strategy: function from types to actions
•  semantics: “if my type is t, then I will play action a”

Common Prior Assumption: types drawn from a 
distribution known to all players (independent, or not)

•  realization of type i known only to player i
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Example: First-Price Auction
Bayes-Nash Equilibrium: every player picks expected 

utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from 
U[0,1], the following is a Bayes-Nash equilibrium: all 
bidders use the strategy vi       [(n-1)/n] � vi.

•  highest-valuation player wins (maximizes welfare)



32

Example: First-Price Auction
Bayes-Nash Equilibrium: every player picks expected 

utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from 
U[0,1], the following is a Bayes-Nash equilibrium: all 
bidders use the strategy vi       [(n-1)/n] � vi.

•  highest-valuation player wins (maximizes welfare)

Exercise: with 2 bidders, valuations from U[0,1] and 
U[0,2], no Bayes-Nash equilibrium maximizes 
expected welfare.  (Second bidder shades bid more.)
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POA with Incomplete Information: The 
Best-Case Scenario

Ideal: POA bounds w.r.t an arbitrary prior distribution.
(or maybe assuming only independence)

Observation: point mass prior distribution ó game of 
full-information (Bayes-Nash equilibria ó Nash eq).
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POA with Incomplete Information: The 
Best-Case Scenario

Ideal: POA bounds w.r.t an arbitrary prior distribution.
(or maybe assuming only independence)

Observation: point mass prior distribution ó game of 
full-information (Bayes-Nash equilibria ó Nash eq).

Coolest Statement That Could Be True: POA of Bayes-
Nash equilibria (for worst-case prior distribution) same 
as that of Nash equilibria in worst induced full-info 
game.   (Observation above => can only be worse)
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Ideal Extension Theorem

Hypothesis: in every induced full-information game, a 
smoothness-type proof shows that the POA of (pure) 
Nash equilibria is α or better.
•  induced full-info game ó specific type profile
•  ex: first-price auction with known valuations

Conclusion: for every common prior distribution, the 
POA of (mixed) Bayes-Nash equilibria is α or better.
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Extension Theorem (Informal)

incomplete-info games
•  i.e., uncertain payoffs

mixed Bayes-Nash
 equilibria

what we care about
(e.g., for auctions)



37

Extension Theorem (Informal)

full-information games
•  i.e., certain payoffs

pure Nash equilibria

incomplete-info games
•  i.e., uncertain payoffs

mixed Bayes-Nash
 equilibria

easier

what we care about
(e.g., for auctions)

what’s easy
to analyze
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Extension Theorem (Informal)

full-information games
•  i.e., certain payoffs

pure Nash equilibria

incomplete-info games
•  i.e., uncertain payoffs

mixed Bayes-Nash
 equilibria

easier

POA
extension
theorem

what we care about
(e.g., for auctions)

what’s easy
to analyze



Smoothness Paradigm 
(Full Information)

1. Fix a game. 
(fixes optimal outcomes)

2. Choose baseline s* = some optimal outcome.
(in many games, only one option)

3. Fix outcome s.

4. Prove Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s).

5. Conclude that POA of no-regret sequences ≤ λ/(1-μ).
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Smoothness Paradigm 
(Full => Incomplete)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline s* = some optimal outcome.
(in many games, only one option)

3. Fix outcome s.

4. Prove Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s).

5. Conclude that POA of no-regret sequences ≤ λ/(1-μ).
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Smoothness Paradigm 
(Full => Incomplete)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome s.

4. Prove Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s).

5. Conclude that POA of no-regret sequences ≤ λ/(1-μ).
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Smoothness Paradigm 
(Full => Incomplete)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome b.

4. Prove Σi Ci(s*
i,s-i)  ≤  λ�cost(s*) + μ�cost(s).

5. Conclude that POA of no-regret sequences ≤ λ/(1-μ).
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Smoothness Paradigm 
(Full => Incomplete)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of no-regret sequences ≤ λ/(1-μ).
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[Syrgkanis/ 
Tardos 13] 



Smoothness Paradigm 
(Incomplete Information)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is ≥ λ.
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[Syrgkanis/ 
Tardos 13] 



Smoothness Paradigm 
(Incomplete Information)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is ≥ λ.
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first-price auctions: 
for suitable b*, λ≥½ 



First-Price Auctions

Claim: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  ½�[OPT Welfare] – Revenue(b).

Proof: Set b*
i = vi/2 for every i.  (a la [Lucier/Paes Leme 11])

•  since LHS ≥ 0, can assume ½�[maxi vi] > maxi bi

•  suppose bidder 1 has highest valuation.  Then:
u1(b*

1,b-1) = v1 – (v1/2) = v1/2  ≥  ½�[OPT Welfare] 

Optimization: [Syrgkanis 12] 50% => 63% (different b*)
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Smoothness Paradigm 
(Incomplete Information)

1. Fix a setting and the private valuations. 
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

3. Fix outcome b.

4. Prove Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare] – Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is ≥ λ.
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general extension 
theorem 



Extension Theorem (PNE)

Assume: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: POA of pure Nash equilibria is ≥ λ.
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Extension Theorem (PNE)

Assume: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: POA of pure Nash equilibria is ≥ λ.

Proof: Let b = a pure Nash equilibrium.  Then:
     welfare(b) = Rev(b) + Σi ui(b)           [defn of utility]

 ≥ Rev(b) + Σi ui(b*
i,b-i)     [b a Nash eq]

 ≥ Rev(b) + [λ�[OPT Welfare] – Rev(b)]
 = λ�[OPT Welfare] 
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Extension Theorem (BNE)

Assume: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: (≈[Lucier/Paes Leme 11]) for all (possibly correlated) 
valuation distributions, POA of Bayes-Nash eq is ≥ λ.

Proof: Let b() = a Bayes-Nash equilibrium.  Then:
Ev[welfare(b(v))] = Ev[Rev(b(v))] + Σi Ev[ui(b(v))]     [defn of utility]

 ≥ Ev[Rev(b(v))] + Σi Ev[ui(b*
i(vi),b-i(v-i))]     [b a BNE]

 ≥ Ev[Rev(b(v))] + [λ�Ev[OPT Welfare] – Ev[Rev(b(v))]]
 = λ�Ev[OPT Welfare] 
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First-Price Auctions

Summary: for all (possibly correlated) valuation 
distributions, every Bayes-Nash equilibrium of a first-
price auction has welfare at least 50% (or even 63%) 
of the maximum possible.
•  63% is tight for correlated valuations [Syrgkanis 14]

•  independent valuations = worst-case POA unknown 
•  worst known example = 87% [Hartline/Hoy/Taggart 14]

•  63% extends to simultaneous single-item auctions 
(covered tomorrow)
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Further Applications

•  first-price sponsored search auctions 
[Caragiannis/Kaklamanis/Kanellopolous/Kyropoulou/
Lucier/Paes Leme/Tardos 12]

•  greedy pay-as-bid combinatorial auctions                  
[Lucier/Borodin 10]

•  pay-as-bid mechanisms based on LP rounding 
[Duetting/Kesselheim/Tardos 15]



Second-Price Rules

•  simultaneous second-price auctions [Christodoulou/
Kovacs/Schapira 08]
•  worst-case POA = 50%, and this is tight (even for PNE)

•  truthful greedy combinatorial auctions [Borodin/
Lucier 10]
•  worst-case POA close to greedy approximation ratio

•  can be reinterpreted via modified smoothness 
condition [Roughgarden 12, Syrgkanis 12]

•  “bluffing equilibria” => need a no overbidding 
condition for non-trivial POA bounds
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Revenue Covering

•  [Hartline/Hoy/Taggart 14] define “revenue covering” 
•  for every b, Rev(b) ≥ critical bids of winners in OPT
•  implies smoothness condition
•  near-equivalent in some cases [Duetting/Kesselheim 15]

•  application #1: POA bounds w.r.t. revenue objective
•  e.g., simultaneous first-price auctions with monopoly reserves

•  application #2: [Hoy/Nekipelov/Syrgkanis 15] bound the 
“empirical POA” from data
•  do not need to explicitly estimate valuations!
•  can prove instance-by-instance bounds that beat the worst-

case bound
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Dynamic Auctions

[Lykouris/Syrgkanis/Tardos 15]  first POA guarantees when 
bidder population changing (p fraction drops out each 
time  step, replaced by new bidders).
•  convergence to (Nash) equilibrium hopeless
•  positive results for “adaptive learners” (assume 

agents use sufficiently good learning algorithm)
•  need baseline near-optimal strategy profiles (one per 

time step) s.t. no player changes frequently
•  novel use of differential privacy! (in the analysis)
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Outline

1.  Smooth Games, Extension Theorems, and Robust 
POA Bounds

2.  Smooth Mechanisms and Bayes-Nash POA Bounds

3.  Reducing Complex Mechanisms to Simple 
Mechanisms Using Composition Theorems

4.  Complexity-Based POA Lower Bounds
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Multi-Item Auctions

•  suppose m different items
•  for now: unit-demand valuations
•  each bidder i has private valuation

vij for each item j
•  vi(S) := maxj in S vij

57
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submod

subadd

general
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you are here 



Simultaneous Composition

•  suppose have mechanisms M1,...,Mm

•  in their simultaneous composition:
•  new action space = product of the m action spaces
•  new allocation rule = union of the m allocation rules
•  new payment rule = sum of the m payment rules

•  example: each Mj a single-item first-price auction

Question: as a unit-demand bidder, how should you bid?
(not so easy)

58



Composition Preserves 
Smoothness

Hypothesis: every single-item auction Mj is λ-smooth:  
for every v, there exists b* such that, for every b,

Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, 
then composed mechanism is also λ-smooth.
•  holds more generally from arbitrary smooth Mj’s and “XOS” 

valuations (generalization of submodular)
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Composition Preserves 
Smoothness

Hypothesis: every single-item auction Mj is λ-smooth:  for every v, 
there exists b* such that, for every b,

Σi ui(b*
i,b-i)  ≥  λ�[OPT Welfare(v)] – Rev(b).

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, 
then composed mechanism is also λ-smooth.

Proof idea: Fix unit-demand valuations v, fixes OPT.
•  baseline strategy for a bidder i that gets item j in OPT 
•  bid 0 in mechanisms other Mj
•  in Mj, use assumed baseline strategy for Mj
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Simultaneous First-Price 
Auctions (First Try)

Consequence: for all (possibly correlated) unit-demand 
valuation distributions, every Bayes-Nash equilibrium 
of simultaneous first-price auctions has welfare at least 
50% (or even 63%) of the maximum possible.
•  prove smoothness inequality for first-price auction
•  use composition theorem to extend smoothness to 

simultaneous first-price auctions
•  use extension theorem to conclude Bayes-Nash 

POA bound for simultaneous first-price auctions
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Counterexample

Fact: [Feldman/Fu/Gravin/Lucier 13], following [Bhawalkar/
Roughgarden 11] there are (highly correlated) valuation 
distributions over unit-demand valuations such that 
every Bayes-Nash equilibrium has expected welfare 
arbitrary smaller than the maximum possible.
•  idea: plant a random matching plus some additional 

highly demanded items; by symmetry, a bidder can’t 
detect the item “reserved” for it
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Revised Statement

Consequence: for all product unit-demand valuation 
distributions, every Bayes-Nash equilibrium of 
simultneous first-price auction has welfare at least 50% 
(or even 63%) of the maximum possible.
•  prove smoothness inequality for first-price auction
•  use composition theorem to extend smoothness to 

simultaneous first-price auctions
•  use modified extension theorem to conclude Bayes-

Nash POA bound for simultaneous first-price 
auctions
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Private Baseline Strategies

First-price auction: set b*
i=vi/2 for every i.

•  independent of v-i   (“private” baseline strategies)

Simultaneous first-price auctions: b*
i is “bid half your 

value only on the item j you get in OPT(v)”.
•  “public” baseline strategies
•  not well defined unless v-i known
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Extension Theorem (BNE)

Assume: for suitable choice of b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: (≈[Lucier/Paes Leme 11]) for all (possibly correlated) 
valuation distributions, POA of Bayes-Nash eq is ≥ λ.

Proof: Let b() = a Bayes-Nash equilibrium.  Then:
Ev[welfare(b(v))] = Ev[Rev(b(v))] + Σi Ev[ui(b(v))]     [defn of utility]

 ≥ Ev[Rev(b(v))] + Σi Ev[ui(b*
i(vi),b-i(v-i))]     [b a BNE]

 ≥ Ev[Rev(b(v))] + [λ�Ev[OPT Welfare] – Ev[Rev(b(v))]]
 = λ�Ev[OPT Welfare] 

65

deviation can depend 
on vi but not v-i 



Extension Theorem (BNE)

Assume: for suitable choice of private b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Claim: (≈[Lucier/Paes Leme 11]) for all (possibly correlated) 
valuation distributions, POA of Bayes-Nash eq is ≥ λ.

Proof: Let b() = a Bayes-Nash equilibrium.  Then:
Ev[welfare(b(v))] = Ev[Rev(b(v))] + Σi Ev[ui(b(v))]     [defn of utility]

 ≥ Ev[Rev(b(v))] + Σi Ev[ui(b*
i(vi),b-i(v-i))]     [b a BNE]

 ≥ Ev[Rev(b(v))] + [λ�Ev[OPT Welfare] – Ev[Rev(b(v))]]
 = λ�Ev[OPT Welfare] 

66
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Modified Extension Theorem

Assume: for suitable choice of public b*, for every b,
Σi ui(b*

i,b-i)  ≥  λ�[OPT Welfare] – Rev(b).

Theorem: [Syrgkanis/Tardos 13], following [Christodoulou/
Kovacs/Schapira 08] for all product valuation 
distributions, POA of Bayes-Nash eq is ≥ λ.

Proof idea: to transform public b*i to a deviation:
•  sample w-i from prior distribution
•  play baseline strategy for valuation profile (vi,w-i)
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Outline

1.  Smooth Games, Extension Theorems, and Robust 
POA Bounds

2.  Smooth Mechanisms and Bayes-Nash POA Bounds

3.  Reducing Complex Mechanisms to Simple 
Mechanisms Using Composition Theorems

4.  Complexity-Based POA Lower Bounds
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] 

the worst-case POA of S1A’s with subadditive bidder 
valuations is precisely 2.

monotone subadditive valuations: 
•  vi(A U B) ≤ vi(A) + vi(B) for

all disjoint A,B
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] 

the worst-case POA of S1A’s with subadditive bidder 
valuations is precisely 2.
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14] 

the worst-case POA of S1A’s with subadditive bidder 
valuations is precisely 2.

Question: Can we do better?
(without resorting to the VCG mechanism)
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The Upshot

Meta-theorem: equilibria are generally bound by the 
same limitations as algorithms with polynomial 
computation or communication.
•  lower bounds without explicit constructions!

Caveats: requires that equilibria are
•  guaranteed to exist (e.g., mixed Nash equilibria)
•  can be efficiently verified

Example consequence: no “simple” auction has POA 
< 2 for bidders with subadditive valuations.
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From Protocol Lower Bounds to 
POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:
•  no nondeterministic subexponential-communication 

protocol approximates the welfare-maximization 
problem (with valuations V) to within factor of α.
•  i.e., impossible to decide OPT  ≥  W* vs. OPT  ≤ W* /α

Then worst-case POA of ε-approximate mixed Nash 
equilibria of every “simple” mechanism is at least α.
•  simple = number of strategies sub-doubly-exponential in m
•  ε can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower 
bounds for communication protocols.
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Consequences

Corollary: (via [Nisan/Segal 06], [Dobsinski/Nisan/Schapira 05]) 
•  With subadditive bidder valuations, no simple auction 

guarantees equilibrium welfare better than 50% OPT.
•  “simple”: bid space dimension ≤ subexponential in # of goods

•  With general valuations, no simple auction guarantees 
non-trivial equilibrium welfare.

Take-aways:
1.  In these cases, S1A’s optimal among simple auctions.
2.  With complements, complex bid spaces (e.g., package 

bidding) necessary for welfare guarantees.
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Why Approximate MNE?

Issue: in an S1A, number of strategies = (Vmax + 1)m

•  valuations, bids assumed integral and poly-bounded
•   

Consequence: can’t efficiently guess/verify a MNE.

Theorem: [Lipton/Markakis/Mehta 03] a game with n players 
and N strategies per player has an ε-approximate 
mixed Nash equilibrium with support size polynomial in 
n, log N, and ε-1.
•  proof idea based on sampling from an exact MNE
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Nondeterministic Protocols

•  each of n players has a private valuation vi

•  a “referee” wants to convince the players that the 
value of some function f(v1,...,vn) has the value z

•  referees knows all vi’s and writes, in public view, an 
alleged proof P that f(v1,...,vn) = z

•  protocol accepts if and only if every player i accepts 
the proof P (knowing only vi)

•  communication used = length (in bits) of proof P
•  example: Non-Equality vs. Equality
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From Protocol Lower Bounds to 
POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:
•  no nondeterministic subexponential-communication 

protocol approximates the welfare-maximization 
problem (with valuations V) to within factor of α.
•  i.e., impossible to decide OPT  ≥  W* vs. OPT  ≤ W* /α

Then worst-case POA of ε-approximate mixed Nash 
equilibria of every “simple” mechanism is at least α.
•  simple = number of strategies sub-doubly-exponential in m
•  ε can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower 
bounds for communication protocols.
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Proof of Theorem

Suppose worst-case POA of ε-MNE is ρ<α:

Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 



Proof of Theorem

Suppose worst-case POA of ε-MNE is ρ<α:
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“proof ” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 



Proof of Theorem

Suppose worst-case POA of ε-MNE is ρ<α:
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“proof ” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 

if  E[wel(x)] > W*/
α then OPT > 
W*/αso in case (i) 



Proof of Theorem

Suppose worst-case POA of ε-MNE is ρ<α:

Key point: every ε-MNE is a short, efficiently           
verifiable certificate for membership in case (ii). 
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Input: game 
G s.t. either 
(i) OPT ≥ W* 
or (ii) OPT ≤ 
W*/α 

Protocol: 
“proof ” =       
ε-MNE x with 
small support 
(exists by 
LMM); players 
verify it privately 

if  E[wel(x)] > W*/
α then OPT > 
W*/αso in case (i) 

if  E[wel(x)] ≤ W*/
α then OPT ≤       
(ρ/α)W* < W* 
so in case (ii) 



Exact vs. Approximate 
Equilibria

Claim: POA lower bounds for ε-MNE with small enough ε 
essentially as good as for exact MNE.  Reasons:
1.  All known upper bound techniques apply automatically 

to approximate equilibria.
1.  e.g., “smoothness proofs” [Roughgarden 09]
2.  so our lower bounds limit all known proof techniques

2.  Lower bounds for approximate equilibria can 
sometimes be translated into bounds for exact 
equilibria. 

3.  If POA of exact equilibria << POA of approximate 
equilibria, the latter is likely more relevant (and robust).
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More Applications

•  optimality results for “simple” auctions with 
other valuation classes (general, XOS)

•  analogous results for combinatorial auctions 
with succinct valuations (if coNP not in MA)

•  impossibility results for low-dimensional price 
equilibria (assuming NP ≠ coNP)  
[Roughgarden/Talgam-Cohen 15]

•  unlikely to reduce planted clique to ε-Nash 
hardness

83



Open Questions

1.  Tight POA bounds for important auction formats
1.  e.g. first-price auctions with independent valuations

2.  Best “simple” auction for submodular valuations?
1.  S1A’s give 63% [Syrgkanis/Tardos 13], [Christodoulou et al 14]
2.  > 77% impossible [Dobzinski/Vondrak 13] + [R14]
3.  > 63% is possible with poly communication [Feige/Vondrak 06]

3.  Design “natural” games with POA matching hardness 
lower bound for the underlying optimization problem.

1.  e.g., many auction and scheduling problems
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