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The problems with rationally
targeting cancers

- Cancer cells and tissues are very similar to
their regenerating normal counterparts

- Even our best targeted drugs fail to correct
the actual oncogenic dysfunction (which is
sighal misregulation)

- We don’t know why any of our cancer
therapies kill cancer cells

- Cancer cells adapt to pharmacological
perturbation and evolve under
pharmacological selection
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The “ideal” cancer
drug target

* Its inhibition induces cancer cell death

* Its inhibition induces minimal/no side-effects
in any normal tissue

- Its function is obligate and non-redundant for
tumor maintenance

- Target is common to many/most/all cancers
“Impersonalized Medicine”
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P53

Transcription factor activated by DNA
damage and other stresses

Once activated, p53 triggers cytostatic
and/or apoptotic effectors

Either p53 or components of its
attendant pathways are functionally
inactivated in >85% of human
cancers

So there is something about p53 that
tumor cells could not, or cannot,
tolerate



Worldwide distribution of
cancers and p53 mutations

53

., DEVELOPING COUNTRIES | DEVELOPED COUNTRIES » R - .
' ' ' : ' | LUNG 70%
STOMACH 45%
B  BREAST 20%
B COLON 60%

I LIVER 20%*
I PROSTATE 10-30%
BN CERVIX/UTERI special
BN HEAD /NECK 60%
BN ESOPHAGUS 40%
BN LEUKEMIA 10%
S LYMPHOMA 30%

BN OVARY 60%

B BLADDER 60%

Cases of Cancer per annum (x1000)
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But which are important in tumor suppression?
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P53

- Member of an evolutionarily ancient,
metazoan family

- Evolved originally as transcriptional
coordinator of cellular responses to
stress/damage during development

- Tumor suppression is a “recent”
evolutionary retrofit



53 - an ancient
multifunctional effector



53 - an ancient
multifunctional effector

Transient stress/
repairable damage

|

Reversible arrest,
repair, autophagy

|

Survival and recovery




53 - an ancient
multifunctional effector

Persistent signals

Transient stress/ .
(oncogenic, irreparable

repairable damage

damage)
Reversible arrest, Apoptosis, irreversible
repair, autophagy arrest/senescence

| |

Survival and recovery Cell ablation




53 - an ancient
multifunctional effector

Persistent signals

Transient stress/ .
(oncogenic, irreparable

repairable damage

damage)
//
l / ( l
Reversible arrest, Apoptosis, irreversible
repair, autophagy arrest/senescence

| |

Survival and recovery Cell ablation




Ligand/Receptor
Where to Tyrosine Kinase cloud

target i
cancers? ( >
Intracellular kinase cloud
v
Robusthess
\ 4

Cell cycle genes



Ligand/Receptor
Where to Tyrosine Kinase cloud

target i
cancers? ( >
Intracellular kinase cloud
v
Robustness
:
\

Cell cycle genes



Ligand/Receptor
Where tQ Tyrosine Kinase cloud

target .

cancers? < v >
Intracellular kinase cloud
M*/c

Robustness
:
E2F




Many diverse
mutations in
cancers all
converge on a
few key
pathways

P53

Ligand/Receptor
Tyrosine Kinase cloud

RY

S
@Iar kina@
M*/c
E2F

Cell cycle genes




Many diverse ~ > LK 1] S «

mutations in * X VIrOseine* *

x
cancers all i
converge on a R‘gs
few key \ A—

X
pathways x ntrace A

X |

P93 M?/c




P53

Ligand/Receptor
Tyrosine Kinase cloud

Rgs

\
@Iar kina@
M?/c
E2F

Cell cycle genes




How can we Ligand/Receptor
model Tyrosine Kinase cloud
inhibition of

the common Rgs
cancer

\
pathways? @ lar kina@
P53 M?/c
E2F

Cell cycle genes




How can we
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Inhibiting endogenous Myc in
normal and tumour tissues in
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Systemic Myc inhibition suppresses
proliferation in normal tissues
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arrested hair growth
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Tumors recur at reduced multiplicity
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Tumors recur at reduced multiplicity
following Omomyc cessation
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37% mean reduction in tumor multiplicity



And remain completely susceptible to
repeated Myc inhibition
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Myc is a Ras downstream effector
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1982: Myc and Ras cooperate to
transform fibroblasts in culture

HRasV What does Myc
do for Ras and
Ras do for
HRasV12 + Myc Myc?

Myc

Land, Parada & Weinberg
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Is Myc a Ras effector or cooperator?

Ras Ras Myc

Myc

\/
Tumorigenesis Tumorigenesis
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If Ras can drive Myec,
why does Ras need
Myc for oncogene
cooperation?

Oncogenic Myc is
deregulated and
often over-expressed
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KRasG72D-driven lung
tumours have a very
low proliferative index

BrdU Hoechst

KRas&2D-driven lung tumours
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Myc deregulation exacerbates
K-RasG720- driven lung tumorigenesis

K-RasG72D alone K-RasG72D + Myc

Low mag " High mag>-. ("

Myc ON
6 weeks

Myc ON
12 weeks

Myc ON
18 weeks

n>10 n>10

staining Roderick Kortlever
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Acute activation of MycERTAM eljcits rapid
increase in KRas72D tumor proliferation,
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Acute activation of MycERTAM eljcits rapid
increase in KRas72D tumor proliferation,

angiogenesis
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FITC-Lycopersicon esculentum lectin
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(vascular permeability)
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Acute activation of MycERTAM eljcits rapid
increase in KRas72D tumor proliferation,

angiogenesis and inflammocyte infiltration
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KRas&72D-driven lung tumours acquire
dependency upon deregulated Myc

KRas&72D ON for 6 weeks
Then Myc ON as well for 6 weeks

KRas&720 ON for 6 weeks
Then Myc ON as well for 6 weeks
Then Myc OFF for 4 weeks
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Differential impact of KRas and Myc in
pancreatic epithelium

pdx1-KRas<'>? alone WMyc alone for 3 wks

12 wks age

Nicole Sodir pdx1-Cre; LSL-KRasC120; R26-LSL-MycERTAM



Activation of MycERTAM jn KRasG72D-driven PanliN triggers
the signature PDAC desmoplastic reaction

paxt -KF.’asG120 alone
12 wks age * :

pdx1-KRasG12D
+ Myc 3 wks

Nicole Sodir pdx1-Cre; LSL-KRasG2D; R26-LSL-MycERAM
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Myc de-activation triggers rapid growth arrest
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Sustained Myc de-activation
induces PDAC regression
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Sustained Myc de-activation
induces PDAC regression

Pdx1-cre; LSL-kras®120/* Myc
Pdx1-cre; LSL-kras®12D* Pdx1-cre; LSL-krasG12D/* ON (3 W);
Myc OFF Myc ON (3 wk) Myc OFF (3W)




Myc-driven regenerative
programmes - pancreas vs lung

Pancreas Lung

Highly proliferative

Highly proliferative PanIN—PDAC Adenoma—Adenocarcinoma

Avascular, Highly angiogenic,
highly desmoplastic little desmoplasia
normoxia—hypoxia hypoxia—normoxia

Influx of macrophages and Influx of PD-L I+ macrophages

neutrophils
Clearance of CD3+ T cells Clearance of CD3+ T cells
(PD-LI on tumor cells) (PD-LI on incoming M®)

Maintenance is Myc-dependent Maintenance is Myc-dependent




