Multilinear Maps over the Integers
From Design to Security
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The CLT Scheme

Multilinear maps over the integers [CoronLTibouchi'1315]

Second candidate construction
Composite-order maps (different from [GGH13,GGH15])
Follow [GGH13] recipe

» Level by multiplicative mask

» Zero-testing by multiplication and “shortness”
Similar to FHE schemes based on Approximate-GCD

Useful for many applications...
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SWHE vs. MMAPs
Computation over encrypted data A

We want to compute homomorphically over encrypted data

... but we do not want the same information from the result than with HE
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SWHE vs. MMAPs
Computation over encrypted data P Y

We want to compute homomorphically over encrypted data

encode ainto [a] <+— encrypt ainto [a] = Enc(a)
in both cases, computing low-degree polys of [a;]'s is possible, up to a degree k

... but we do not want the same information from the result than with HE

MMAPS can test if it is zero, at level k (and
hard to compute at degree > k)

SHWE no information on a from the result,
except with secret key CRYPTOEXPERTS ™
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Starting from Homomorphic Encryption
SWHE over the integers [pGHv10,CMNT11,CNT12,CCKLLMTY13,CLT14]
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Starting from Homomorphic Encryption
SWHE over the integers [pGHv10,CMNT11,CNT12,CCKLLMTY13,CLT14]

Secret key prime p

Public key Xo=0qo" P for very large (hard to factor) qo

Ciphertextofm c=q-p+g-r+m
for g <— [0, qo) and r < x “small”
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Starting from Homomorphic Encryption
SWHE over the integers [pGHv10,CMNT11,CNT12,CCKLLMTY13,CLT14]

Secret key primes py, ..., Pn

Public key Xo=0Gqo: P1-"" Pn for very large (hard to factor) qo

Ciphertextof m c¢=CRTgpp( 4 , gi-nn+m, ..., Go-fh+m, )
forg < [0,q0) and ry, .. ., ry < x "small”
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Starting from Homomorphic Encryption
SWHE over the integers [pGHvV10,MNT11,CNT12,CCKLLMTY13,CLT14]

Secret key primes py, ..., Pn

Public key Xo=Gqo: P1-""Pn for very large (hard to factor) go

Ciphertextof m ¢ =CRTgpp( 4  gi-nn+m, ..., Gn-fh+m, )
forq < [0,q0) and ry, .. ., ry < x "small”
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Adding Sharp Levels

Using multiplicative mask [GGH13,CLT13]
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Adding Sharp Levels

Using multiplicative mask [GGH13,CLT13]

Let z < [0, xo) be a random (invertible) multiplicative mask
Encoding of m € Zg, X - - X Zg4, at level j:

CRTq,pl ..... pn(q/v n-g = Ly - o e s In - 9n + mn)
ZJ

[M];, = ¢/Z mod xp =
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Adding Sharp Levels

Using multiplicative mask [GGH13,CLT13]

Let z < [0, xo) be a random (invertible) multiplicative mask
Encoding of m € Zg, X - -+ X Zg4, at level j:

; CRT E my, ..., Fo- gn + my
[m]j:C/ZJ mod x = e C e ! 9o+ m,)

. mod X
zZJ
Operations over Z,:
Addition [m]; + [™];  ~[m+ /)
Multiplication [m], x [, = [m- /],
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Main Ingredient: Testing for Zero
Using the “shortness” of the noise [GGH13,CLT13]
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Main Ingredient: Testing for Zero
Using the “shortness” of the noise [GGH13,CLT13]

How to test whether two degree-k encodings are equal?

[k ~ [k (ie. M =8 < [M— £, ~ [0
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[M]k ~ [« (e, M =48 < [m— L], ~ [0]
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Main Ingredient: Testing for Zero
Using the “shortness” of the noise [GGH13,CLT13]

How to test whether two degree-k encodings are equal?

—

[M]k ~ [« (e, M =48 < [m— L], ~ [0]

What is an encoding of m = 0?

CRTq,m ..... pn(q/: fl1-91,..., rp - gn)
Zk

0]« =

Idea of [GGH13]: multiply by an element which will cancel zX and when the r;'s
are small (r;g; < p;), yield something small compared to xo. CrypToCxpemT< ™

8/ 30




Simplifications for Zero-Testing
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Simplifications for Zero-Testing

[0]x = Zgiﬂ' -(p; /2" mod p)) - p; + (H p;) - q" mod xo

where p; =[], pj
CRYPTOEXPERTS d°
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Simplifications for Zero-Testing

[6]k = ng ~1/z" mod Pi) HDJ q" mod xo

where pi =[], pj

The random value g” makes difficult to obtain something small... except if we
are working modulo [] p;
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Simplifications for Zero-Testing

[0]x = ng -(p; /2" mod p)) - p; + (H p;) - ¢" mod xo

where p; =[], pj

The random value g” makes difficult to obtain something small... except if we
are working modulo ] p;

In the following xo = [ p;, and
CRTP1 _____ pn(f1‘91+m1 ..... rn-gn+mn)

mod X

S
CRYPTOCXPERTS"

[M]; = ¢/Z mod xo =
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/ero-Testing Procedure

Multiply by the public element (where h; < p;)

pe= - (g72" mod p) - ! mod x
i
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/ero-Testing Procedure

Multiply by the public element (where h; < p;)

Pz =Y hi- (972" mod p;) - p; mod xo

CRTm ..... p,,(rl 1 +mq, ..., rn - 9n = mn)

[M]x = ¢/z" mod x =

therefore
[M]k - pze = Z(f/ +m;gi ) - hi - pf mod xq

i
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/ero-Testing Procedure

Multiply by the public element (where h; < p))

Dy = Z hi - (g *z" mod p;) - pi mod xp

CRT gL+ My ‘
[m]k — C/Zk mOd Xo = Pi,... pn(rl gl + ms i gn + mn)

therefore
(M) - pz = Z(f/’ 4 m,-gfl) - h; - pi mod xo
/
We have (we prove equivalence whp when many p.;'s are given)

Mm=0 = |[M]k-pzx mod x| < Xo
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Hardness Assumptions

GDDH: Given (k + 1) elements [A3]; and [n7], determine
whether m’ ~ [T .
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Hardness Assumptions

GDDH: Given (k + 1) elements [r3]; and [m]x, determine
whether m' ~ T[4 .

At the heart of the multipartite key echange protocol
Assumed to be hard (no reduction to Approx.-GCD)

Asymptotic parameters obtained from numerous attacks
orthogonal lattice attack on encodings
GCD attack on zero-testing
hidden subset sum attack on zero-testing
attacks on the inverse zero-testing matrix
brute-force on the noises, ...
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But... Zeroizing Attack
Eurocrypt 2015 best paper [CHLRS15]

Cryptanalysis of the Multilinear Map over the Integers

Jung Hee Cheon', Kyoohyung Han!, Changmin Lee!, Hansol Ryu', Damien Stehlé?

A 1 Seoul National University (SNU), Republic of Korea
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France.

Abstract. We describe a polynomial-time cryptanalysis of the (approximate) multilinear map
of Coron, Lepoint and Tibouchi (CLT). The attack relies on an adaptation of the so-called
zeroizing attack against the Garg, Gentry and Halevi (GGH) candidate multilinear map. Zeroiz-
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The Zeroizing Attack on CLT13

Exploiting the (bi)linearity of the zero-testing
procedure

S
CRYPTOCXPERTS"
13/ 30



The Zeroizing Attack on CLT13

Exploiting the (bi)linearity of the zero-testing
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[0l - poe =225 (hi- pf) € Z
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The Zeroizing Attack on CLT13

Exploiting the (bi)linearity of the zero-testing
procedure

[6]k72 : [511 [Cli- P = Z,-f/ : [A?i - Gi-(hi-p})eZ
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The Zeroizing Attack on CLT13

Exploiting the (bi)linearity of the zero-testing

procedure

[O]k—z - [Bl1 - [€]1 - e =321 bi-&-(hi-p) e

13/ 30
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The Zeroizing Attack on CLT13

Inversion over Q

Let's do it with many [0]«—o. [€]: and two targets [b];, [6']x
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The Zeroizing Attack on CLT13

Inversion over Q

Let's do it with many [0]«—o. [€]: and two targets [b];, [6']x

14 / 30
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The Zeroizing Attack on CLT13

Inversion over Q

Let's do it with many [0]«—o. [€]: and two targets [b];, [6']x

o ‘ o ‘
fi :[A) - (hi *): Ci X (&,)—1 1 : (riil)
i\ P, b (hi - p});
0 ‘
0,
7, ! . } r; -1
: . bi/b (i)
S O CRYPTOEXPERTS g°
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The Zeroizing Attack on CLT13

Computing eigenvalues

*********

Consider the target encodings r O

[b]: = CRT,(b)/z, [b]s = CRT,(b})/z . bi/B

Bo
CRYPTOCXPERTS"
15 / 30



The Zeroizing Attack on CLT13

Computing eigenvalues

*********

Consider the target encodings r O

[Bl, = CRT,,(b)/z. [F], = CRT,(B)/z . b/,

Compute the eigenvalues B;/8! = b,/ b,
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The Zeroizing Attack on CLT13

Computing eigenvalues

*********

i \

Consider the target encodings O ;

B X B X o0 S ()

Bl = CRT, (b)/z. (Bl = CRT, (B)/z L
Compute the eigenvalues B;/8! = b,/ b,
We have that

pi | (i - [Py — Bi - [b']1)
CRYPTOGXPERTS
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The Zeroizing Attack on CLT13

Computing eigenvalues

*********

Consider the target encodings JDD i
N = I P T

[Bl, = CRT,(B)/z. [B]y = CRT,(B)/z L
Compute the eigenvalues B;/8! = b,/ b,
WEREVERUET

pi | (B; - [Bl: = B: - [B'T,)
Compute
pi = gcd(B; - [b: — B; - [B1, %) o
CRYPTOEXPERTS
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Generalizing the Zeroizing Attack on CLT13
Zeroizing without low-level zeroes [CGHLMMRST15]
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Generalizing the Zeroizing Attack on CLT13
Zeroizing without low-level zeroes [CGHLMMRST15]

Breaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box

Don't need [0]x_ - [B]: - [€]1 but [Fx_s - [B]: - [€]: ~ [0]«
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Generalizing the Zeroizing Attack on CLT13
Zeroizing without low-level zeroes [CGHLMMRST15]

Breaks early tentative fixes [BWZ14,GGHZ14] using zero-testing as a black-box
Don't need [0]_ - [Bly - [€]1 but []x_2 - [B] - [€]s = [O]«

Can be diagonal per block. Instead of computing eigenvalues use
characteristic polynomial.

|

‘ !
7 % I 6
:bi . ] ﬁ I

|

|
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Thwarting Cheon et al. Attack?
Can we remove this linearity? [CLT15]

Iirsl Iwas airaill Iwas
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Thwarting Cheon et al. Attack?
Can we remove this linearity? [CLT15]

The encodings look like DGHV ciphertexts
Even without the randomness g, their form should not be an issue

In [CoronL.Tibouchi15], we revisit the zero-testing procedure itself

In a nutshell:
» the zero-testing is done modulo a new prime modulus N;
> Xp iS no longer public.
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Inherent randomness in current encodings
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Inherent randomness in current encodings

Current form of encodings

[Pk = CRT,(m; + g,-r,-)/zk mod X
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Inherent randomness in current encodings

Current form of encodings

[r_ﬁ]k = CRTpf(m/ = 9//’,‘)/Zk mod X
[ = Z(m,—g;l +rimodp)-u+a-x overZ

with u; = (gip! ~*z=% mod p;)p:.
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Inherent randomness in current encodings

Current form of encodings

[r_ﬁ]k = CRTpf(m/ = gjr/)/zk mod X
[l =Y (mig; +rimod pi) - uj+a-x overZ

with u; = (gip; 'z~ mod p;)p;.

The element a is highly non-linear in the r;'s
The element a is different from the random ¢’ we had before when adapting
DGHV (M = 0 « ais small)

18 / 30
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New Zero-Test Parameter

Pick a random, large prime N > x,. We want to generate a new zero-test
value a,; such that

[[M]k - azx mod Nl < N <= m=0

Bo
CRYPTOCXPERTS"
19 / 30



New Zero-Test Parameter

Pick a random, large prime N > x,. We want to generate a new zero-test
value a,; such that

[[M]k - azx mod Nl < N <= m=0
In particular, we have

[M]k - oze mod N

= Z:(m,-g,-_1 + rimod p;) - (Ui - 0z) +a- Xo - @z mod N
i
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New Zero-Test Parameter

Pick a random, large prime N > x,. We want to generate a new zero-test
value a,; such that

[[M]k - azx mod Nl < N <= m=0
In particular, we have

[M]k - oze mod N

= Z:(m,-g,-_1 + rimod p;) - (Ui - 0z) +a- Xo - @z mod N
i

so we want |a: - u; mod N| < N and |a: - xo mod N| < N CRYPTOCXPerTS S

19 / 30



How To Generate a7

Given N, the generation of a,; € Zy such that for all /,
|xoa,: mod N| are small is not obvious.

u;oy mod N| and
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How To Generate a7

Given N, the generation of a,; € Zy such that for all /,
|xoa,: mod N| are small is not obvious.

u;oy mod N| and

The problem amounts to finding a relatively short vector in a lattice

1 vy - u, Xxo
N
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How To Generate a7

Given N, the generation of a,; € Zy such that for all /,
|xoa,: mod N| are small is not obvious.

u;oy mod N| and

The problem amounts to finding a relatively short vector in a lattice

1 v - u, X
N

N
N

Use LLL? (we can tolerate an exponential approx. factor over SVP), but typically

5 =]
n>10 CRYPTOEXPERTE "
20 / 30



How To Generate a,;?
Using the structure of the u;'s
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Using the structure of the u;'s

Remember that N > xo and u; = (g;pf ' z¥ mod p;)p;
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How To Generate a,;?
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Remember that N > xp and u; = (g:p;~'z* mod p;)p;

First note that pj‘lu,- mod N is small for all / #
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How To Generate a7
Using the structure of the u;'s

Remember that N > xo and u; = (g;pf ' z¥ mod p;)p;

First note that pj‘lu,- mod N is small for all i # J
Only p;*u; mod N is not a priori small

Bo
CRYPTOCXPERTS"
21/ 30



How To Generate a,;?
Using the structure of the u;'s

Remember that N > xp and u; = (g:p;~'z* mod p;)p;

First note that pj‘lu,- mod N is small for all i # J
Only pfluj mod N is not a priori small

Let us find a; such that a; - p;*u; mod N is small
As before it amounts to finding a short vector in

[N/B] p; 'ty
N
CRYPTOEXPERTS d°
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How To Generate a7
Using the structure of the u;'s

(UV/BW DJ-/\llUj)
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How To Generate a,;?
Using the structure of the u;'s

<UV/BW DJ-/\llUj>

We chose B such that LLL finds a short vector
(- [N/B].B)
where |oy| < /B and B, = ;- p; 'u; mod N| < N/, /p;.
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How To Generate a7
Using the structure of the u;'s

N
We chose B such that LLL finds a short vector

(aj- [N/B].B;)
where |oy| < /B and |6; = a; - ptu; mod N| < N/ /.

(UV/BW pjluj)

New zero-testing element:

ax =Y hi-oy-p;t mod N
J CRYPTOGXPERTS ™"
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How To Generate a7
Using the structure of the u;'s

New zero-testing element (sizes to keep inmind N =~ xy - p;, o = /P)):

Qz =Y hi-o-p;t mod N
j
When applied on an encoding [m]x:
[M]k - otze mod N

= Z(m,g,‘l + r; mod p;) - (Uj - 0z) +a- Xo - zr mod N
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How To Generate a7
Using the structure of the u;'s

New zero-testing element (sizes to keep inmind N =~ xy - p;, o = /P)):

Oy = Zhj-aj-pj_l mod N
J

When applied on an encoding [m]x:

[M] - oze mod N
= Z(m,—g,‘l + r; mod p;) - (hiB;i + Z hjoe; - uif py)
i i

+a-Xxgp- o, mod N )
CRYPTOGXPERTS ™"
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An Important Caveat
Cannot work directly modulo xg
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An Important Caveat
Cannot work directly modulo xg

Xo Cannot be made public, contrary to [CLT13]
However, define vo = xp - a,+ mod N, and

([0]x - cze mod N) mod vy

Zr, hﬁ,+ZhaJ ui/pj) + a- vo € Z) mod vg
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Cannot work directly modulo xg

Xo Cannot be made public, contrary to [CLT13]
However, define vo = xg - o, mod N, and

([0]x - e mod N) mod vy

Zr, h,B,+Z/7aJ ui/pj) + a- vo € Z) mod vg
JFI

— Zr, (hiBi +Zhoej ui/pj) mod vy

JF#I

We can apply Cheon et al. attack modulo vg CRrYPTOCXPERTS
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A Ladder of encodings
Making xo secret is somewhat inconvenient:

when we add or multiply encodings, we cannot reduce them modulo xg
anymore to keep them of the same size
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An Important Caveat
A Ladder of encodings

Making xo secret is somewhat inconvenient:
when we add or multiply encodings, we cannot reduce them modulo xg
anymore to keep them of the same size

Solution (taken from [DGHV10]): publish a ladder of encodings of 0 of
increasing size

» encodings _ .
X,(J) = (CRT,.(rg;)/Z' mod xo) + q; - Xo
with g; - [0,2") fori =1, ..., log(xo)

» do the operation over Z, and remove X,.(j) for decreasing i's
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Concrete Attempt
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Concrete Attempt

Consider u = [0]x_2 - [B]1 - [¢]1
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Concrete Attempt

Consider u = [0]x—z - [b]1 - [C]x
Apply the ladder to reduce its size to the size of xp:

u =u + Z S/X,-(k)
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Concrete Attempt

Consider u = [0]x—z - [b]1 - [C]x
Apply the ladder to reduce its size to the size of xp:

Write u’ over Z:

io i+ S Ixik) e Ui—a°Xo

:\
I
7
=
o
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Concrete Attempt

Consider u = [0]x—z - [b]1 - [C]x
Apply the ladder to reduce its size to the size of xp:

Write u’ over Z:

U/:Z(ri'Bi'6i+5/'rX,/,k)‘Ui_a‘XO
i
All si's and a come up in the way of Cheon et al. attack

Bo
CRYPTOCXPERTS"
26 / 30



Proof-of-concept Implementation

https://github.com/tlepoint/new-multilinear-maps

\Instantiation\ A \KH

n

‘ ] ‘A ‘p‘fy:n-'r)‘ppsize‘
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Small 5216| 540 [1679| 23 (52| 0.9-10° | 27 MB
Medium 62|61 2085 [1989| 45 |62|4.14 - 10175 MB
Large 72|61 8250 |2306| 90 |72]19.0-10°| 1.2 GB
Extra 80|61/25305(2619]159|85|66.3 - 10°| 6.1 GB
| Setup [Publish|KeyGen|
59s [ 0.10s | 0.17s
36s | 033s| 1.065s
583s|205s| 6.17s
4528 s| 7.8s | 239s o
CRYPTOCGXPERTS"


https://github.com/tlepoint/new-multilinear-maps
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Conclusion

The CLT scheme has many interesting features:
composite order maps,
assumed hardness of GDDH but also of DLIN & SubM
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Concrete targets to attack in practice if desired
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Conclusion

The CLT scheme has many interesting features:
composite order maps,
assumed hardness of GDDH but also of DLIN & SubM

Concrete targets to attack in practice if desired
Same efficiency as original CLT13
Open problems for CLT15:

» Analyze the reparation
» Improve the efficiency
» Adapt the technique to [GGH13]?
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Thank You

Questions & Discussion
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Discussion

1. Design
» public encoding space / inversion

2. Attacks

3. Assumptions

» what sort of assumptions can be made?
» base multilinear maps on well-known problems

4. Applications

» something that look different from obfuscation
» what can you do with a small number of levels?

» relation between 2-multilinear maps / pairings in applications
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