Recovering Short Generators of Principal Ideals in Cyclotomic Rings

Ronald Cramer, Léo Ducas, Chris Peikert, Oded Regev

9 July 2015 Simons Institute Workshop on Math of Modern Crypto

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14] share this KeyGen:

- sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)
- pk Output a "bad" \mathbb{Z} -basis B (e.g., the HNF) of the ideal gR

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14] share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "bad" \mathbb{Z} -basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14] share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "bad" \mathbb{Z} -basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (**PIP**):

★ Given a \mathbb{Z} -basis **B** of a principal ideal \mathcal{I} , recover *some* generator h (i.e., $\mathcal{I} = hR$)

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14] share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "bad" \mathbb{Z} -basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

- **1** Principal Ideal Problem (**PIP**):
 - ★ Given a \mathbb{Z} -basis **B** of a principal ideal \mathcal{I} , recover *some* generator h (i.e., $\mathcal{I} = hR$)
- 2 Short Generator Problem (SGP):
 - ★ Given an *arbitrary* generator h of I, recover the *short* generator g (up to trivial equivalences)

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14] share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "bad" \mathbb{Z} -basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (**PIP**):

- ★ Given a \mathbb{Z} -basis **B** of a principal ideal \mathcal{I} , recover *some* generator h (i.e., $\mathcal{I} = hR$)
- 2 Short Generator Problem (SGP):
 - ★ Given an *arbitrary* generator h of I, recover the *short* generator g (up to trivial equivalences)

Not obvious a priori that g is even uniquely defined. But any short enough element in \mathcal{I} suffices to break system.

- 1 Principal Ideal Problem (find some generator *h*)
 - ★ Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].

- **1** Principal Ideal Problem (find some generator *h*)
 - * Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].

2 Short Generator Problem (find the short generator g)

* In general, essentially **CVP** on the *log-unit* lattice of ring

- 1 Principal Ideal Problem (find some generator *h*)
 - * Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].
- **2** Short Generator Problem (find the short generator g)
 - * In general, essentially **CVP** on the *log-unit* lattice of ring
 - * ... but is actually a **BDD** problem in the cryptographic setting.

- 1 Principal Ideal Problem (find some generator *h*)
 - * Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].
- **2** Short Generator Problem (find the short generator g)
 - * In general, essentially CVP on the *log-unit* lattice of ring
 - * ... but is actually a **BDD** problem in the cryptographic setting.
 - !! Claimed to be *easy* in power-of-2 cyclotomics [CGS14], and experimentally confirmed for relevant dimensions [She14, Sch15].

- 1 Principal Ideal Problem (find some generator *h*)
 - ★ Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].
- **2** Short Generator Problem (find the short generator g)
 - * In general, essentially **CVP** on the *log-unit* lattice of ring
 - * ... but is actually a **BDD** problem in the cryptographic setting.
 - Claimed to be *easy* in power-of-2 cyclotomics [CGS14], and experimentally confirmed for relevant dimensions [She14, Sch15].
 But no convincing explanation why it works.

- 1 Principal Ideal Problem (find some generator *h*)
 - * Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [BF14, Bia14].
 - * Major progress toward poly-time *quantum* algorithm [EHKS14, BS15, CGS14].
- **2** Short Generator Problem (find the short generator *g*)
 - * In general, essentially CVP on the *log-unit* lattice of ring
 - * ... but is actually a **BDD** problem in the cryptographic setting.
 - Claimed to be *easy* in power-of-2 cyclotomics [CGS14], and experimentally confirmed for relevant dimensions [She14, Sch15].
 But no convincing explanation why it works.

This Work: Main Theorem

In cryptographic setting, SGP can be solved in *classical polynomial time*, for any prime-power cyclotomic number ring $R = \mathbb{Z}[\zeta_{p^k}]$.

X The referenced works are classically weakened, and quantumly broken*.

- X The referenced works are classically weakened, and quantumly broken*.
- ✓ Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

 $SG-PI-SVP \le PI-SVP \le I-SVP \le R-SIS/LWE \le crypto$

- X The referenced works are classically weakened, and quantumly broken*.
- ✓ Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

 $SG-PI-SVP \le PI-SVP \le I-SVP \le R-SIS/LWE \le crypto$

- Attack crucially relies on ideal having "exceptionally short" generator.
 - ★ Such ideals are extremely rare: for almost all principal ideals, the shortest generator is *vastly longer* than the shortest vector.

- X The referenced works are classically weakened, and quantumly broken*.
- ✓ Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

SG-PI-SVP \leq PI-SVP \leq I-SVP \leq R-SIS/LWE \leq crypto

- Attack crucially relies on ideal having "exceptionally short" generator.
 - * Such ideals are extremely rare: for almost all principal ideals, the shortest generator is *vastly longer* than the shortest vector.

- Devising hard distributions of lattice problems is very tricky: exploitable structure abounds!
- **2** Worst-case hardness protects us from weak instances.

1 Introduction

2 Log-Unit Lattice

3 Attack and Proof Outline

(Logarithmic) Embedding

Let $K \cong \mathbb{Q}[X]/f(X)$ be a number field of degree n and let $\sigma_i \colon K \mapsto \mathbb{C}$ be its n complex embeddings. The *canonical embedding* is

$$\sigma \colon K \to \mathbb{C}^n$$
$$x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).$$

The *logarithmic embedding* is

Log:
$$K \setminus \{0\} \to \mathbb{R}^n$$

 $x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|).$

It is a group homomorphism from $(K\setminus\{0\},\times)$ to $(\mathbb{R}^n,+).$

Example: Power-of-2 Cyclotomics

•
$$K \cong \mathbb{Q}[X]/(X^n+1)$$
 for $n = 2^k$.

•
$$\sigma_i(X) = \omega^{2i-1}$$
, where $\omega = \exp(\pi \sqrt{-1}/n)$.

•
$$Log(X^j) = \vec{0}$$
 and $Log(1 - X) =$ [whiteboard]

x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a - b√2

• x-axis: $\sigma_1(a+b\sqrt{2}) = a+b\sqrt{2}$

• y-axis:
$$\sigma_2(a+b\sqrt{2})=a-b\sqrt{2}$$

component-wise multiplication

- *x*-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise multiplication
- Symmetries induced by
 - ***** mult. by $-1,\sqrt{2}$

x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a - b√2

component-wise multiplication

Symmetries induced by

- \star mult. by $-1,\sqrt{2}$

"Orthogonal" elements
Units (algebraic norm 1)
"Isonorms"

Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$

 $\Lambda = \{\bullet\} \cap \setminus$ is a rank-1 lattice of \mathbb{R}^2 , orthogonal to (1,1)

Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$

Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$

Unit Group and the Log-Unit Lattice

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Unit Group and the Log-Unit Lattice

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$. Dirichlet's Unit Theorem:

- \blacktriangleright the kernel of ${\rm Log}$ is the cyclic group of roots of unity in R, and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to $\vec{1}$ (where K has r real embeddings and 2c complex embeddings)

Unit Group and the Log-Unit Lattice

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$. Dirichlet's Unit Theorem:

- \blacktriangleright the kernel of ${\rm Log}$ is the cyclic group of roots of unity in R, and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to $\vec{1}$ (where K has r real embeddings and 2c complex embeddings)

Short Generators via CVP

Elements $g,h\in R$ generate the same ideal if and only if $g=h\cdot u$ for some unit $u\in R^{\times},$ i.e.,

$$\operatorname{Log} g = \operatorname{Log} h + \operatorname{Log} u \in \operatorname{Log} h + \Lambda.$$

In particular, g is a "smallest" generator iff $\operatorname{Log} g$ is a "shortest" element of $\operatorname{Log} h + \Lambda.$

Round-Off Decoding

The simplest algorithm to solve CVP/BDD:

$\operatorname{ROUND}({\bf B}, {\bf t})$ for ${\bf B}$ a basis of Λ

```
• Return \mathbf{B} \cdot \operatorname{frac}(\mathbf{B}^{-1} \cdot \mathbf{t}).
```

Used as a decoding algorithm, its correctness is characterized by the error ${\bf e}$ and the *dual basis* ${\bf B}^{\vee}={\bf B}^{-T}.$

Fact

Suppose $\mathbf{h} = \mathbf{u} + \mathbf{g}$ for some $\mathbf{u} \in \Lambda$. If $\langle \mathbf{b}_j^{\vee}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$ for all j, then

 $\operatorname{Round}(\mathbf{B},\mathbf{h})=\mathbf{g}.$

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

★ For $K = \mathbb{Q}(\zeta_m)$, $m = p^k$, a canonical (almost¹-)basis is given by

$$\mathbf{b}_j = \operatorname{Log} \frac{1-\zeta^j}{1-\zeta}, \quad 2 \leq j < m/2, \ j \text{ coprime with } m.$$

¹it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

$$\mathbf{b}_j = \operatorname{Log} \frac{1-\zeta^j}{1-\zeta}, \quad 2 \leq j < m/2, \ j \ \text{coprime with} \ m.$$

2 Prove that the basis **B** is "good," i.e., all $\|\mathbf{b}_{i}^{\vee}\|$ are small.

¹it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

$$\mathbf{b}_j = \mathrm{Log}\, rac{1-\zeta^j}{1-\zeta}, \quad 2\leq j < m/2, \; j \; \mathrm{coprime \; with } \; m.$$

2 Prove that the basis **B** is "good," i.e., all $\|\mathbf{b}_{j}^{\vee}\|$ are small.

3 Prove that $\mathbf{g} = \operatorname{Log} g$ is sufficiently small when g generated as in cryptosystem, so that $\langle \mathbf{b}_j^{\vee}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$.

¹it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

 $\star\,$ For $K=\mathbb{Q}(\zeta_m),\,m=p^k,$ a canonical (almost^1-)basis is given by

$$\mathbf{b}_j = \mathrm{Log}\, rac{1-\zeta^j}{1-\zeta}, \quad 2\leq j < m/2, \; j \; \mathrm{coprime \; with } \; m.$$

- **2** Prove that the basis **B** is "good," i.e., all $\|\mathbf{b}_{j}^{\vee}\|$ are small.
- **3** Prove that $\mathbf{g} = \operatorname{Log} g$ is sufficiently small when g generated as in cryptosystem, so that $\langle \mathbf{b}_j^{\vee}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$.

Technical Contributions

Show ||b_j[∨]|| = Õ(1/√m) using Gauss sums and Dirichlet L-series.
 Bound ⟨b_j[∨], g⟩ using theory of subexponential random variables.

¹it only generates a sublattice of finite index h^+ , which is conjectured to be small

(Easy?) Extend to non-prime-power cyclotomics.

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K.

Enough to find a "good enough" basis of Log O[×]_K (or a dense enough sublattice).

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K.

Enough to find a "good enough" basis of Log O[×]_K (or a dense enough sublattice).

(Hard.) Asymptotically bound h^+ for cyclotomics.

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K.

Enough to find a "good enough" basis of Log O[×]_K (or a dense enough sublattice).

(Hard.) Asymptotically bound h^+ for cyclotomics.

Thanks!

References I

J.-F. Biasse and C. Fieker.

Subexponential class group and unit group computation in large degree number fields. *LMS Journal of Computation and Mathematics*, 17:385–403, 1 2014.

Jean-François Biasse.

Subexponential time relations in the class group of large degree number fields. *Adv. Math. Commun.*, 8(4):407–425, 2014.

J.-F. Biasse and F. Song.

A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields.

http://www.lix.polytechnique.fr/Labo/Jean-Francois.Biasse/, 2015. In preparation.

Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop, 2014. Available at http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_ and_Attacks/S07_Groves_Annex.pdf.

Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm for computing the unit group of an arbitrary degree number field. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, pages 293–302. ACM, 2014.

References II

Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In *EUROCRYPT*, pages 1–17, 2013.

Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multilinear maps from ideal lattices. In Advances in Cryptology-EUROCRYPT 2014, pages 239–256. Springer, 2014.

John Schank. LOGCVP, Pari implementation of CVP in $\log \mathbb{Z}[\zeta_{2^n}]^*$. https://github.com/jschanck-si/logcvp, 2015.

Dan Shepherd, December 2014. Personal communication.

Nigel P. Smart and Frederik Vercauteren.

Fully homomorphic encryption with relatively small key and ciphertext sizes. In *Public Key Cryptography*, pages 420–443, 2010.