Recovering Short Generators of Principal Ideals in Cyclotomic Rings

Ronald Cramer, Léo Ducas, Chris Peikert , Oded Regev

9 July 2015 Simons Institute Workshop on Math of Modern Crypto

A few recent lattice-related cryptoschemes [\[SV10,](#page-42-0) [GGH13,](#page-42-1) [LSS14,](#page-42-2) [CGS14\]](#page-41-0) share this KeyGen:

- sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)
- pk Output a "bad" $\mathbb Z$ -basis B (e.g., the HNF) of the ideal gR

A few recent lattice-related cryptoschemes [\[SV10,](#page-42-0) [GGH13,](#page-42-1) [LSS14,](#page-42-2) [CGS14\]](#page-41-0) share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "bad" $\mathbb Z$ -basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

A few recent lattice-related cryptoschemes [\[SV10,](#page-42-0) [GGH13,](#page-42-1) [LSS14,](#page-42-2) [CGS14\]](#page-41-0) share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "*bad*" Z-basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (PIP):

 \star Given a Z-basis B of a principal ideal *I*, recover some generator h (i.e., $\mathcal{I} = hR$)

A few recent lattice-related cryptoschemes [\[SV10,](#page-42-0) [GGH13,](#page-42-1) [LSS14,](#page-42-2) [CGS14\]](#page-41-0) share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "*bad*" Z-basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (PIP):

- \star Given a Z-basis $\bf B$ of a principal ideal ${\cal I}$, recover some generator h (i.e., $\mathcal{I} = hR$)
- **2** Short Generator Problem (SGP):
	- \star Given an *arbitrary* generator h of I, recover the short generator q (up to trivial equivalences)

A few recent lattice-related cryptoschemes [\[SV10,](#page-42-0) [GGH13,](#page-42-1) [LSS14,](#page-42-2) [CGS14\]](#page-41-0) share this KeyGen:

sk Choose a "short" g in some ring R (e.g., $R = \mathbb{Z}[X]/(X^n + 1)$)

pk Output a "*bad*" Z-basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (PIP):

- \star Given a Z-basis B of a principal ideal *I*, recover some generator h (i.e., $\mathcal{I} = hR$)
- **2** Short Generator Problem (SGP):
	- \star Given an *arbitrary* generator h of I, recover the short generator q (up to trivial equivalences)

Not obvious a priori that q is even uniquely defined. But any short enough element in I suffices to break system.

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).

2 Short Generator Problem (find the short generator g)

 \star In general, essentially CVP on the *log-unit* lattice of ring ...

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).
- **2** Short Generator Problem (find the short generator q)
	- \star In general, essentially CVP on the *log-unit* lattice of ring ...
	- \star ... but is actually a **BDD** problem in the cryptographic setting.

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).

2 Short Generator Problem (find the short generator q)

- \star In general, essentially CVP on the *log-unit* lattice of ring ...
- \star ... but is actually a **BDD** problem in the cryptographic setting.
- !! Claimed to be easy in power-of-2 cyclotomics [\[CGS14\]](#page-41-0), and experimentally confirmed for relevant dimensions [\[She14,](#page-42-3) [Sch15\]](#page-42-4).

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).

2 Short Generator Problem (find the short generator q)

- \star In general, essentially CVP on the *log-unit* lattice of ring ...
- \star ... but is actually a **BDD** problem in the cryptographic setting.
- !! Claimed to be easy in power-of-2 cyclotomics [\[CGS14\]](#page-41-0), and experimentally confirmed for relevant dimensions [\[She14,](#page-42-3) [Sch15\]](#page-42-4). But no convincing explanation why it works.

- **1** Principal Ideal Problem (find some generator h)
	- \star Subexponential $2^{\tilde{O}(n^{2/3})}$ -time classical algorithm [\[BF14,](#page-41-1) [Bia14\]](#page-41-2).
	- \star Major progress toward poly-time quantum algorithm [\[EHKS14,](#page-41-3) [BS15,](#page-41-4) [CGS14\]](#page-41-0).

2 Short Generator Problem (find the short generator g)

- \star In general, essentially CVP on the *log-unit* lattice of ring ...
- \star ... but is actually a **BDD** problem in the cryptographic setting.
- !! Claimed to be easy in power-of-2 cyclotomics [\[CGS14\]](#page-41-0), and experimentally confirmed for relevant dimensions [\[She14,](#page-42-3) [Sch15\]](#page-42-4). But no convincing explanation why it works.

This Work: Main Theorem

In cryptographic setting, SGP can be solved in classical polynomial time, for any prime-power cyclotomic number ring $R=\mathbb{Z}[\zeta_{p^k}].$

✗ The referenced works are classically weakened, and quantumly broken[∗] .

- ✗ The referenced works are classically weakened, and quantumly broken[∗] .
- \vee Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

 $SG-PI-SVP < PI-SVP < I-SVP < R-SIS/LWE < cy$

- ✗ The referenced works are classically weakened, and quantumly broken[∗] .
- \vee Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

 $SG-PI-SVP < PI-SVP < I-SVP < R-SIS/LWE < cy$

- Attack crucially relies on ideal having "exceptionally short" generator.
	- \star Such ideals are extremely rare: for almost all principal ideals, the shortest generator is vastly longer than the shortest vector.

- ✗ The referenced works are classically weakened, and quantumly broken[∗] .
- \vee Most ring-based crypto is unaffected, because its security is lower-bounded by harder/more general problems:

 $SG-PI-SVP < PI-SVP < I-SVP < R-SIS/LWE < cy$

- ▶ Attack crucially relies on ideal having "exceptionally short" generator.
	- \star Such ideals are extremely rare: for almost all principal ideals, the shortest generator is vastly longer than the shortest vector.

- **1** Devising hard distributions of lattice problems is very tricky: exploitable structure abounds!
- **2** Worst-case hardness protects us from weak instances.

O [Introduction](#page-1-0)

² [Log-Unit Lattice](#page-17-0)

3 [Attack and Proof Outline](#page-33-0)

(Logarithmic) Embedding

Let $K \cong \mathbb{Q}[X]/f(X)$ be a number field of degree n and let $\sigma_i \colon K \mapsto \mathbb{C}$ be its n complex embeddings. The *canonical embedding* is

$$
\sigma: K \to \mathbb{C}^n
$$

$$
x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).
$$

The logarithmic embedding is

$$
\text{Log}: K \setminus \{0\} \to \mathbb{R}^n
$$

$$
x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|).
$$

It is a group homomorphism from $(K \setminus \{0\}, \times)$ to $(\mathbb{R}^n, +)$.

Example: Power-of-2 Cyclotomics

$$
\blacktriangleright K \cong \mathbb{Q}[X]/(X^n + 1) \text{ for } n = 2^k.
$$

$$
\blacktriangleright \sigma_i(X) = \omega^{2i-1}, \text{ where } \omega = \exp(\pi \sqrt{-1}/n).
$$

$$
\blacktriangleright \text{ Log}(X^j) = \vec{0} \text{ and } \text{Log}(1 - X) = [\text{whiteboard}]
$$

2 a-x is:
$$
\sigma_1(a+b\sqrt{2}) = a+b\sqrt{2}
$$

\n3 a-x is: $\sigma_2(a+b\sqrt{2}) = a-b\sqrt{2}$

D x-axis: $\sigma_1(a+b\sqrt{a})$ $2) = a + b$ √ $\sqrt{2}$ = $a + b\sqrt{2}$

$$
\blacktriangleright \ y\text{-axis: } \sigma_2(a+b\sqrt{2}) = a - b\sqrt{2}
$$

component-wise multiplication

D x-axis: $\sigma_1(a+b\sqrt{a})$ $2) = a + b$ √ 2 ^I ^y-axis: ^σ2(^a ⁺ ^b √ $2) = a - b$ √ 2

 \blacktriangleright component-wise multiplication

Symmetries induced by

$$
\star \text{ mult. by } -1, \sqrt{2}
$$

★ mult. by
$$
-1, \sqrt{2}
$$

\n★ conjugation $\sqrt{2} \mapsto -\sqrt{2}$

D x-axis: $\sigma_1(a+b\sqrt{a})$ $2) = a + b$ √ 2 ^I ^y-axis: ^σ2(^a ⁺ ^b √ $2) = a - b$ √ 2

component-wise multiplication

 \triangleright Symmetries induced by √

- ***** mult. by -1 , 2
- \star muit. by $-1, \sqrt{2}$
 \star conjugation $\sqrt{2} \mapsto -\sqrt{2}$

 "Orthogonal" elements \blacksquare Units (algebraic norm 1) "Isonorms"

Example: Logarithmic Embedding $\text{Log } \mathbb{Z}$ √ 2]

 $\Lambda=$ $\{\bullet\}\,\cap\,\diagdown$ is a rank-1 lattice of $\mathbb{R}^{2}.$ orthogonal to $(1,1)$

Example: Logarithmic Embedding $\text{Log } \mathbb{Z}$ √ 2]

Example: Logarithmic Embedding $\text{Log } \mathbb{Z}$ √ 2]

Unit Group and the Log-Unit Lattice

Let R^\times denote the mult. group of units of R , and $\Lambda = \operatorname{Log} R^\times \subset \mathbb{R}^n$.

Unit Group and the Log-Unit Lattice

Let R^\times denote the mult. group of units of R , and $\Lambda = \operatorname{Log} R^\times \subset \mathbb{R}^n$. Dirichlet's Unit Theorem:

- If the kernel of Log is the cyclic group of roots of unity in R, and
- \blacktriangleright $\Lambda\subset\mathbb{R}^n$ is a lattice of rank $r+c-1$, orthogonal to $\vec{1}$ (where K has r real embeddings and $2c$ complex embeddings)

Unit Group and the Log-Unit Lattice

Let R^\times denote the mult. group of units of R , and $\Lambda = \operatorname{Log} R^\times \subset \mathbb{R}^n$. Dirichlet's Unit Theorem:

- If the kernel of Log is the cyclic group of roots of unity in R, and
- \blacktriangleright $\Lambda\subset\mathbb{R}^n$ is a lattice of rank $r+c-1$, orthogonal to $\vec{1}$ (where K has r real embeddings and $2c$ complex embeddings)

Short Generators via CVP

Elements $q, h \in R$ generate the same ideal if and only if $q = h \cdot u$ for some unit $u \in R^{\times}$, i.e.,

$$
\operatorname{Log} g = \operatorname{Log} h + \operatorname{Log} u \in \operatorname{Log} h + \Lambda.
$$

In particular, g is a "smallest" generator iff $\text{Log } q$ is a "shortest" element of $\log h + \Lambda$.

Round-Off Decoding

The simplest algorithm to solve CVP/BDD:

$\text{Round}(B, t)$ for B a basis of Λ

```
▶ Return \mathbf{B} \cdot \text{frac}(\mathbf{B}^{-1} \cdot \mathbf{t}).
```
Used as a decoding algorithm, its correctness is characterized by the error e and the *dual basis* $\mathbf{B}^\vee = \mathbf{B}^{-T}.$

Fact

Suppose $\mathbf{h} = \mathbf{u} + \mathbf{g}$ for some $\mathbf{u} \in \Lambda$. If $\langle \mathbf{b}_j^\vee, \mathbf{g} \rangle \in [-\frac{1}{2}]$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2})$ for all j , then

 $\text{Round}(\mathbf{B}, \mathbf{h}) = \mathbf{g}.$

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

 \star For $K=\mathbb{Q}(\zeta_m)$, $m=p^k$, a canonical (almost 1 -)basis is given by

$$
\mathbf{b}_j = \mathrm{Log}\, \frac{1-\zeta^j}{1-\zeta}, \quad 2\leq j < m/2, \; j \; \text{coprime with} \; m.
$$

 1 it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

 \star For $K=\mathbb{Q}(\zeta_m)$, $m=p^k$, a canonical (almost 1 -)basis is given by

$$
\mathbf{b}_j = \text{Log} \, \frac{1 - \zeta^j}{1 - \zeta}, \quad 2 \le j < m/2, \, j \text{ coprime with } m.
$$

 $\, {\bf 2} \,$ Prove that the basis ${\bf B}$ is "good," i.e., all $\| {\bf b}_j^\vee \|$ are small.

 1 it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

 \star For $K=\mathbb{Q}(\zeta_m)$, $m=p^k$, a canonical (almost 1 -)basis is given by

$$
\mathbf{b}_j = \text{Log} \, \frac{1 - \zeta^j}{1 - \zeta}, \quad 2 \le j < m/2, \, j \text{ coprime with } m.
$$

 $\, {\bf 2} \,$ Prove that the basis ${\bf B}$ is "good," i.e., all $\| {\bf b}_j^\vee \|$ are small.

3 Prove that $\mathbf{g} = \text{Log } g$ is sufficiently small when g generated as in cryptosystem, so that $\langle \mathbf{b}_j^\vee , \mathbf{g} \rangle \in [-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2})$.

 1 it only generates a sublattice of finite index h^+ , which is conjectured to be small

1 Construct a basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

 \star For $K=\mathbb{Q}(\zeta_m)$, $m=p^k$, a canonical (almost 1 -)basis is given by

$$
\mathbf{b}_j = \text{Log} \, \frac{1 - \zeta^j}{1 - \zeta}, \quad 2 \le j < m/2, \, j \text{ coprime with } m.
$$

 $\, {\bf 2} \,$ Prove that the basis ${\bf B}$ is "good," i.e., all $\| {\bf b}_j^\vee \|$ are small.

3 Prove that $\mathbf{g} = \text{Log } g$ is sufficiently small when g generated as in cryptosystem, so that $\langle \mathbf{b}_j^\vee , \mathbf{g} \rangle \in [-\frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2})$.

Technical Contributions

[2](#page-33-1) Show $\| \mathbf{b}_j^\vee \| = \tilde{O}(1/\sqrt{m})$ using Gauss sums and Dirichlet L -series. \mathbf{B} Bound $\langle \mathbf{b}_j^\vee, \mathbf{g} \rangle$ using theory of subexponential random variables.

 1 it only generates a sublattice of finite index h^+ , which is conjectured to be small

(Easy?) Extend to non-prime-power cyclotomics.

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K .

Enough to find a "good enough" basis of $\text{Log } \mathcal{O}_K^{\times}$ K (or a dense enough sublattice).

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K .

Enough to find a "good enough" basis of $\text{Log } \mathcal{O}_K^{\times}$ K (or a dense enough sublattice).

(Hard.) Asymptotically bound h^+ for cyclotomics.

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to "nice" non-cyclotomic families of number fields K .

Enough to find a "good enough" basis of $\text{Log } \mathcal{O}_K^{\times}$ K (or a dense enough sublattice).

(Hard.) Asymptotically bound h^+ for cyclotomics.

Thanks!

References I

J.-F. Biasse and C. Fieker.

Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics, 17:385–403, 1 2014.

Jean-François Biasse.

Subexponential time relations in the class group of large degree number fields. Adv. Math. Commun., 8(4):407–425, 2014.

J.-F. Biasse and F. Song.

A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields.

<http://www.lix.polytechnique.fr/Labo/Jean-Francois.Biasse/>, 2015. In preparation.

Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop, 2014. Available at [http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_](http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf) [and_Attacks/S07_Groves_Annex.pdf](http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf).

Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm for computing the unit group of an arbitrary degree number field. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 293–302. ACM, 2014.

References II

Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In EUROCRYPT, pages 1–17, 2013.

Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multilinear maps from ideal lattices. In Advances in Cryptology–EUROCRYPT 2014, pages 239–256. Springer, 2014.

John Schank. LogCVP , Pari implementation of CVP in $\log \mathbb{Z}[\zeta_{2^n}]^*$. <https://github.com/jschanck-si/logcvp>, 2015.

Dan Shepherd, December 2014. Personal communication.

Nigel P. Smart and Frederik Vercauteren.

Fully homomorphic encryption with relatively small key and ciphertext sizes. In Public Key Cryptography, pages 420–443, 2010.