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Short Generators of Ideals in Cryptography

A few recent lattice-related cryptoschemes [SV10, GGH13, LSS14, CGS14]
share this KeyGen:

sk Choose a “short” g in some ring R (e.g., R = Z[X]/(Xn + 1))

pk Output a “bad” Z-basis B (e.g., the HNF) of the ideal gR

Key recovery in two steps:

1 Principal Ideal Problem (PIP):
F Given a Z-basis B of a principal ideal I, recover some generator h

(i.e., I = hR)

2 Short Generator Problem (SGP):
F Given an arbitrary generator h of I, recover the short generator g

(up to trivial equivalences)

Not obvious a priori that g is even uniquely defined. But any short enough
element in I suffices to break system.
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Cost of the Two Steps

1 Principal Ideal Problem (find some generator h)

F Subexponential 2Õ(n2/3)-time classical algorithm [BF14, Bia14].

F Major progress toward poly-time quantum
algorithm [EHKS14, BS15, CGS14].

2 Short Generator Problem (find the short generator g)
F In general, essentially CVP on the log-unit lattice of ring . . .

F . . . but is actually a BDD problem in the cryptographic setting.

!! Claimed to be easy in power-of-2 cyclotomics [CGS14],
and experimentally confirmed for relevant dimensions [She14, Sch15].

But no convincing explanation why it works.

This Work: Main Theorem

In cryptographic setting, SGP can be solved in classical polynomial time, for
any prime-power cyclotomic number ring R = Z[ζpk ].
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F Subexponential 2Õ(n2/3)-time classical algorithm [BF14, Bia14].

F Major progress toward poly-time quantum
algorithm [EHKS14, BS15, CGS14].

2 Short Generator Problem (find the short generator g)
F In general, essentially CVP on the log-unit lattice of ring . . .

F . . . but is actually a BDD problem in the cryptographic setting.

!! Claimed to be easy in power-of-2 cyclotomics [CGS14],
and experimentally confirmed for relevant dimensions [She14, Sch15].

But no convincing explanation why it works.

This Work: Main Theorem

In cryptographic setting, SGP can be solved in classical polynomial time, for
any prime-power cyclotomic number ring R = Z[ζpk ].

3 / 15



Cost of the Two Steps

1 Principal Ideal Problem (find some generator h)
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What Does This Mean for Ring-Based Crypto?

7 The referenced works are classically weakened, and quantumly broken∗.

4 Most ring-based crypto is unaffected, because its security is
lower-bounded by harder/more general problems:

SG-PI-SVP ≤ PI-SVP ≤ I-SVP ≤ R-SIS/LWE ≤ crypto

I Attack crucially relies on ideal having “exceptionally short” generator.

F Such ideals are extremely rare: for almost all principal ideals, the
shortest generator is vastly longer than the shortest vector.

1 Devising hard distributions of lattice problems is very tricky:
exploitable structure abounds!

2 Worst-case hardness protects us from weak instances.
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Agenda

1 Introduction

2 Log-Unit Lattice

3 Attack and Proof Outline
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(Logarithmic) Embedding

Let K ∼= Q[X]/f(X) be a number field of degree n and let σi : K 7→ C be
its n complex embeddings. The canonical embedding is

σ : K → Cn

x 7→ (σ1(x), . . . , σn(x)).

The logarithmic embedding is

Log : K \ {0} → Rn

x 7→ (log |σ1(x)|, . . . , log |σn(x)|).

It is a group homomorphism from (K \ {0},×) to (Rn,+).

Example: Power-of-2 Cyclotomics

I K ∼= Q[X]/(Xn + 1) for n = 2k.

I σi(X) = ω2i−1, where ω = exp(π
√
−1/n).

I Log(Xj) = ~0 and Log(1−X) = [whiteboard]

6 / 15



Example: Embedding σ(Z[
√

2]) ⊂ R2

1
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I x-axis: σ1(a+ b
√
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√
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I y-axis: σ2(a+ b
√

2) = a− b
√
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I component-wise multiplication

I Symmetries induced by
F mult. by −1,
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2

F conjugation
√

2 7→ −
√

2

� “Orthogonal” elements

� Units (algebraic norm 1)

� “Isonorms”
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Example: Logarithmic Embedding LogZ[
√

2]

Λ ={•} ∩ � is a rank-1 lattice of R2, orthogonal to (1, 1)

1

1

8 / 15



Example: Logarithmic Embedding LogZ[
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Example: Logarithmic Embedding LogZ[
√

2]

Some {•} ∩ � may be empty (e.g., no elements of norm 3)

1

1
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Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet’s Unit Theorem:

I the kernel of Log is the cyclic group of roots of unity in R, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to ~1

(where K has r real embeddings and 2c complex embeddings)

Short Generators via CVP

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

In particular, g is a “smallest” generator iff Log g is a “shortest” element of
Log h+ Λ.
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Decoding Λ = LogZ[
√

2]×

Decoding mod Λ into various fundamental domains.

1

1
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Round-Off Decoding

The simplest algorithm to solve CVP/BDD:

Round(B, t) for B a basis of Λ

I Return B · frac(B−1 · t).

Used as a decoding algorithm, its correctness is characterized by the error e
and the dual basis B∨ = B−T .

Fact

Suppose h = u + g for some u ∈ Λ. If 〈b∨j ,g〉 ∈ [−1
2 ,

1
2) for all j, then

Round(B,h) = g.
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Recovering the Short Generator: Proof Outline

1 Construct a basis B of the log-unit lattice Λ = LogR×.
F For K = Q(ζm), m = pk, a canonical (almost1-)basis is given by

bj = Log
1− ζj

1− ζ
, 2 ≤ j < m/2, j coprime with m.

2 Prove that the basis B is “good,” i.e., all ‖b∨j ‖ are small.

3 Prove that g = Log g is sufficiently small when g generated as in
cryptosystem, so that 〈b∨j ,g〉 ∈ [−1

2 ,
1
2).

Technical Contributions

2 Show ‖b∨j ‖ = Õ(1/
√
m) using Gauss sums and Dirichlet L-series.

3 Bound 〈b∨j ,g〉 using theory of subexponential random variables.

1it only generates a sublattice of finite index h+, which is conjectured to be small
12 / 15
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Open Problems

(Easy?) Extend to non-prime-power cyclotomics.

(Not hard?) Extend to “nice” non-cyclotomic families of number fields K.

I Enough to find a “good enough” basis of LogO×K
(or a dense enough sublattice).

(Hard.) Asymptotically bound h+ for cyclotomics.

Thanks!
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