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Garbling a circuit:

I Pick random labelsW0,W1 on each wire

I “Encrypt” truth table of each gate

I Garbled circuit ≡ all encrypted gates

I Garbled encoding ≡ one label per wire

Garbled evaluation:

I Only one ciphertext per

gate is decryptable

I Result of decryption =

value on outgoing wire
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Applications: 2PC and more
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Private function evaluation, zero-knowledge proofs, encryption with

key-dependent message security, randomized encodings, secure

outsourcing, one-time programs, . . .

Garbling is a fundamental primitive [BellareHoangRogaway12]
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Syntax [BellareHoangRogaway12]
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x f (x )

Security properties:

Privacy: (F ,X ,d ) reveals nothing beyond f (x )

Obliviousness: (F ,X ) reveals nothing

Authenticity: given (F ,X ), hard to find Ỹ that decodes < {f (x ),⊥}
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Average bits per garbled gate

1λ

2λ

3λ

4λ

5λ

1986 1990 1999 2008 2009 2014 2015

[BeaverMicaliRogaway]

[NaorPinkasSumner]

[KolesnikovSchneider]

[PinkasSchneiderSmartWilliams]

[KolesnikovMohasselRosulek]

[ZahurRosulekEvans]

[Yao,GoldreichMicaliWigderson]

DES

AES

SHA1

SHA256

Prediction: by 2026, all garbled circuits will have zero size.
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Murky beginnings [Yao86]

A0,A1

B0,B1

C0,C1

EA0,B0 (C0)
EA0,B1 (C1)
EA1,B0 (C0)
EA1,B1 (C0)

I Position in this list leaks semantic value

=⇒ permute ciphertexts

I Need to detect [in]correct decryption
I (Apparently) no one knows exactly what Yao had in mind:

I EK0,K1
(M) = 〈E (K0,S0),E (K1,S1)〉 where S0 ⊕ S1 = M

[GoldreichMicaliWigderson87]

I EK0,K1
(M) = E (K1,E (K0,M)) [LindellPinkas09]
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Permute-and-Point [BeaverMicaliRogaway90]
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I Randomly assign (•,•) or (•,•)
to each pair of wire labels

I Include color in the wire label

(e.g., as last bit)

I Order the 4 ciphertexts

canonically, by color of keys

I Evaluate by decrypting

ciphertext indexed by your

colors

Can use one-time-secure symmetric encryption!
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Computational cost of garbling

2 hash� 1 hash � 1 block cipher � 1 block cipher w/o key schedule

EA,B (C): cost to garble AES

PRF(A,gateID) ⊕ PRF(B,gateID) ⊕ C ∼6s [extrapolated]

[NaorPinkasSumner99] time from Fairplay [MNPS04]: PRF = SHA256

H(A‖B‖gateID) ⊕ C 0.15s

[LindellPinkasSmart08] time from [sS12]; H = SHA256

AES256(A‖B,gateID) ⊕ C 0.12s

[shelatShen12]

AES(const,K ) ⊕ K ⊕ C 0.0003s

where K = 2A ⊕ 4B ⊕ gateID
[BellareHoangKeelveedhiRogaway13]
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Scoreboard

size (×λ) garble cost eval cost assumption

Classical large? 8 5 PKE

P&P 4 4/8 1/2 hash/PRF



Garbled Row Reduction [NaorPinkasSumner99]
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I What wire label will be payload of 1st (••) ciphertext?

I Choose that label so that 1st ciphertext is 0
n

I No need to include 1st ciphertext in garbled gate

I Evaluate as before, but imagine ciphertext 0
n
if you got ••.
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Scoreboard

size (×λ) garble cost eval cost assumption

Classical large? 8 5 PKE

P&P 4 4/8 1/2 hash/PRF

GRR3 3 4/8 1/2 hash/PRF



Free XOR [KolesnikovSchneider08]

A0,A1

B0,B1

C0,C1

C ← {0,1}n

A︸︷︷︸
false

⊕ B︸︷︷︸
false

= A ⊕ B︸      ︷︷      ︸
false

I Wire’s o�set ≡ XOR of its two labels

I Choose all wires to have same (secret) o�set ∆

I Choose false output = false input ⊕ false input

I Evaluate by xoring input wire labels (no crypto)
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I Evaluate by xoring input wire labels (no crypto)
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Freedom at a cost. . .

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C ← {0,1}n

EA ,B (C )
EA ,B⊕∆ (C ⊕ ∆)
EA⊕∆,B (C )
EA⊕∆,B⊕∆ (C )

I Still need to garble and gates

I Compatible with garbled row-reduction

I Secret ∆ used in key and payload of ciphertexts!

I Requires related-key + circularity assumption [ChoiKatzKumaresanZhou12]
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Scoreboard

size (×λ) garble cost eval cost assumption

XOR AND XOR AND XOR AND

Classical large? 8 5 PKE

P&P 4 4 4/8 4/8 1/2 1/2 PRF/hash

GRR3 3 3 4/8 4/8 1/2 1/2 PRF/hash

Free XOR 0 3 0 4 0 1 circ. hash



Row reduction ++ [PinkasSchneiderSmartWilliams09]
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−1
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n)
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K2 = E
−1
A0,B1 (0

n)
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K3 = E
−1
A1,B0 (0

n)
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K4 = E
−1
A1,B1 (0

n)
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I Evaluate by interpolating poly thru

Ki , P (5) and P (6)
I Incompatible with Free-XOR: can’t

ensure C0 ⊕ C1 = ∆

A0,A1

B0,B1

C0,C1

C0 = P (0);C1 = Q (0)

P (5)
P (6)P (0)

Q (0) (1, K
1
)

(2, K
2
)

(3, K
3
)

(4, K
4
)

P (5)

P (6)

P = uniq deg-2 poly thru

(1,K1), (3,K3), (4,K4)

Q = uniq deg-2 poly thru

(2,K2), (5,P (5)), (6,P (6))
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Scoreboard

size (×λ) garble cost eval cost assumption

XOR AND XOR AND XOR AND

Classical large? 8 5 PKE

P&P 4 4 4/8 4/8 1/2 1/2 hash/PRF

GRR3 3 3 4/8 4/8 1/2 1/2 PRF/hash

Free XOR 0 3 0 4 0 1 circ. hash

GRR2 2 2 4/8 4/8 1/2 1/2 PRF/hash
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B,B ⊕ ∆B

C,C ⊕ ∆C

∆A → ∆C

∆B → ∆C

I Adjust inputs to target o�set ∆C (1 ciphertext each)

, then XOR is free

I If input wire already suitable, no need to adjust

I Total cost: 0, 1 or 2 depending on how many {∆A,∆B,∆C } distinct.

Combinatorial optimization problem: Choose an o�set for each wire,

minimizing total cost of XOR gates

I Subj. to compatibility with 2-ciphertext row-reduction of AND gates

I (or) Subj. to removing circularity property of free-XOR
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free

A,A ⊕ ∆A

B,B ⊕ ∆C

C,C ⊕ ∆C
∆A → ∆C

∆B → ∆C

I Adjust inputs to target o�set ∆C (1 ciphertext each), then XOR is free

I If input wire already suitable, no need to adjust

I Total cost: 0, 1 or 2 depending on how many {∆A,∆B,∆C } distinct.
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Scoreboard

size (×λ) garble cost eval cost assumption

XOR AND XOR AND XOR AND

Classical large? 8 5 PKE

P&P 4 4 4/8 4/8 1/2 1/2 hash/PRF

GRR3 3 3 4/8 4/8 1/2 1/2 PRF/hash

Free XOR 0 3 0 4 0 1 circ. hash

GRR2 2 2 4/8 4/8 1/2 1/2 PRF/hash

FleXOR {0,1,2} 2 {0,1,2} 4 {0,1,2} 1 circ. hash



Half Gates [ZahurRosulekEvans15]

What if garbler knows in advance the truth value on one input wire?

A,A ⊕ ∆

B,B ⊕ ∆

C,C ⊕ ∆

C ← {0,1}n

if a = 0:

unary gate b 7→ 0

if a = 1:

unary gate b 7→ b

EB (C )
EB⊕∆ (C ⊕ a∆)

Fine print: permute ciphertexts with permute-and-point.
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value from “a” wire to “c” wire

I Su�ices to learn A ⊕ C

Fine print: no need for permute-and-point here
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⇒ should be able to transfer truth
value from “a” wire to “c” wire

I Su�ices to learn A ⊕ C

Fine print: no need for permute-and-point here



Two halves make a whole!

a ∧ b

= (a ⊕ r ⊕ r ) ∧ b
= [(a ⊕ r ) ∧ b] ⊕ [r ∧ b]= [(a ⊕ r ) ∧ b]︸         ︷︷         ︸
one input known to evaluator

⊕[r ∧ b]= [(a ⊕ r ) ∧ b] ⊕ [r ∧ b]︸ ︷︷ ︸
one input known to garbler

I Garbler chooses random bit r

I r = color bit of false wire label A

I Arrange for evaluator to learn a ⊕ r in the clear

I a ⊕ r = color bit of wire label evaluator gets (A or A ⊕ ∆)

I Total cost = 2 “half gates” + 1 XOR gate = 2 ciphertexts
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Scoreboard

size (×λ) garble cost eval cost assumption

XOR AND XOR AND XOR AND

Classical large? 8 5 PKE

P&P 4 4 4/8 4/8 1/2 1/2 hash/PRF

GRR3 3 3 4/8 4/8 1/2 1/2 PRF/hash

Free XOR 0 3 0 4 0 1 circ. hash

GRR2 2 2 4/8 4/8 1/2 1/2 PRF/hash

FleXOR {0,1,2} 2 {0,1,2} 4 {0,1,2} 1 circ. symm

HalfGates 0 2 0 4 0 2 circ. hash

[XYZ26]? 0 < 2? ? ? ? ? ?
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Optimality

Every practical garbling scheme is combination of:

I Calls to symmetric primitive (can be modeled as random oracle)

I GF (2λ )-linear operations (xor, polynomial interpolation)

�eorem ([ZahurRosulekEvans15])
Garbling a single and gate requires 2 ciphertexts (2λ bits), if garbling scheme
is “linear” in this sense.

Half-gates construction is size-optimal among schemes that:

. . . use “known techniques”

. . . work gate-by-gate in {xor,and,not} basis
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Ways forward?

1:Consider larger “chunks” of circuit, beyond {xor,and,not} basis?

2:Discover some clever non-linear approach to garbling?

3:Wait for break-even point for asymptotically superior methods?

4:Use weaker security when situation calls for it.
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ZK via garbled circuits [JawurekKerschbaumOrlandi13]

x ,w x

“∃w : R(x ,w ) = 1 ”

garbled R(x , ·)

OT

input

wire labels

w

garbled w

commit(garbled output)
contains true wire label

⇒ prover knows valid w
open garbled circuit

correct GC⇒ garbled

output leaks nothing

about w open garbled output

Prover knows entire input to garbled circuit!
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Privacy-free garbling [FrederiksenNielsenOrlandi15]

For this ZK protocol, garbled circuit does not require privacy property

I Only authenticity is needed

I Garbled circuits can be significantly smaller in this case

size (×λ) garble cost eval cost assumption

XOR AND XOR AND XOR AND

Classical large? 8 5 PKE

P&P 4 4 4/8 4/8 1/2 1/2 hash/PRF

GRR3 3 3 4/8 4/8 1/2 1/2 hash/PRF

Free XOR 0 3 0 4 0 1 circ. hash

GRR2 2 2 4/8 4/8 1/2 1/2 hash/PRF

FleXOR {0,1,2} 2 {0,1,2} 4 {0,1,2} 1 circ. hash

HalfGates 0 2 0 4 0 2 circ. hash

PrivFree * 0 1 0 2 0 1 circ. hash
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A success story!

1λ

2λ

3λ

4λ

5λ

1986 1990 1999 2008 2009 2014 2015

DES

AES

SHA1

SHA256

I Reduction in size by 10x

I Reduction in computation by 10000x



the end!


