Practical Garbled Circuit Optimizations

Mike Rosulek
^{Oregon}State **NSI**

Collaborators: David Evans / Vlad Kolesnikov / Payman Mohassel / Samee Zahur

Garbling a circuit:

 \blacktriangleright Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

 \blacktriangleright Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

Garbled evaluation:

 \triangleright Only one ciphertext per gate is decryptable

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

- \triangleright Only one ciphertext per gate is decryptable
- Result of decryption $=$ value on outgoing wire

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

- \triangleright Only one ciphertext per gate is decryptable
- Result of decryption $=$ value on outgoing wire

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

- \triangleright Only one ciphertext per gate is decryptable
- Result of decryption $=$ value on outgoing wire

Garbling a circuit:

- \blacktriangleright Pick random labels W_0, W_1 on each wire
- \blacktriangleright "Encrypt" truth table of each gate
- \triangleright Garbled circuit \equiv all encrypted gates
- \triangleright Garbled encoding \equiv one label per wire

- \triangleright Only one ciphertext per gate is decryptable
- Result of decryption $=$ value on outgoing wire

garbled circuit f

 $x \nvert x$ output wire labels $x \nvert x$ garbled input x,

Private function evaluation, zero-knowledge proofs, encryption with key-dependent message security, randomized encodings, secure outsourcing, one-time programs, . . .

Private function evaluation, zero-knowledge proofs, encryption with key-dependent message security, randomized encodings, secure outsourcing, one-time programs, . . .

Garbling is a fundamental primitive [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Security properties:

Privacy: (F, X, d) reveals nothing beyond $f(x)$ Obliviousness: (F, X) reveals nothing Authenticity: given (F, X) , hard to find \widetilde{Y} that decodes $\notin \{f(x), \perp\}$

Parameters to optimize

Parameters to optimize

Average bits per garbled gate

Average bits per garbled gate

Average bits per garbled gate

Prediction: by 2026, all garbled circuits will have zero size.

 \blacktriangleright Position in this list leaks semantic value

 \blacktriangleright Position in this list leaks semantic value

 \triangleright Position in this list leaks semantic value \implies permute ciphertexts

- ▶ Position in this list leaks semantic value \implies permute ciphertexts
- \triangleright Need to **detect** [in]correct decryption

Murky beginnings N N ao86]

- \triangleright Position in this list leaks semantic value \implies permute ciphertexts
- \triangleright Need to **detect** [in]correct decryption
- \blacktriangleright (Apparently) no one knows exactly what Yao had in mind:

E_{K₀, K₁} (*M*) = $\langle E(K_0, S_0), E(K_1, S_1) \rangle$ where $S_0 \oplus S_1 = M$
IColdrain

[GoldreichMicaliWigderson87] [LindellPinkas09]

$$
\blacktriangleright \mathbb{E}_{K_0,K_1} (M) = E(K_1, E(K_0, M))
$$

- **Randomly assign (**•,•) or (\bullet, \bullet) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)

- **Randomly assign (**•,•) or (\bullet, \bullet) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- \triangleright Order the 4 ciphertexts canonically, by color of keys

- **Randomly assign (**•,•) or (\bullet, \bullet) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- \triangleright Order the 4 ciphertexts canonically, by color of keys
Permute-and-Point [BeaverMicaliRogaway90]

- **Randomly assign (**•,•) or (\bullet, \bullet) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- \triangleright Order the 4 ciphertexts canonically, by color of keys
- \blacktriangleright Evaluate by decrypting ciphertext indexed by your colors

Permute-and-Point [BeaverMicaliRogaway90]

- **Randomly assign (**•,•) or (\bullet, \bullet) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- \triangleright Order the 4 ciphertexts canonically, by color of keys
- \blacktriangleright Evaluate by decrypting ciphertext indexed by your colors

Permute-and-Point [BeaverMicaliRogaway90]

- **Randomly assign (•,•) or (•,•)** to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- \triangleright Order the 4 ciphertexts canonically, by color of keys
- \blacktriangleright Evaluate by decrypting ciphertext indexed by your colors

Can use one-time-secure symmetric encryption!

 $\mathbb{E}_{A,B}(C)$: cost to garble AES

$PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$ \sim 6s [extrapolated]
[NaorPinkasSumner99] \sim filme from Fairplay [MNPS04]: PRF = SHA256

time from Fairplay $[MNPS04]$: PRF = SHA256

2 hash \gg 1 hash

 $\mathbb{E}_{A,B}(C)$: cost to garble AES

 $\mathsf{PRF}(A, \mathsf{gateID}) \oplus \mathsf{PRF}(B, \mathsf{gateID}) \oplus C$ \sim 6s [extrapolated]
[NaorPinkasSumner99] \sim time from Fairplay [MNPS04]: PRF = SHA256

time from Fairplay $[MNPS04]$: PRF = SHA256

 $H(A||B||gateID) \oplus C$ 0.15s

[LindellPinkasSmart08] time from [sS12]; H = SHA256 time from $[SS12]$; H = SHA256

2 hash \gg 1 hash \gg 1 block cipher

 $\mathbb{E}_{A,B}(C)$: cost to garble AES

 $PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$ \sim 6s [extrapolated]

[NaorPinkasSumner99] \sim filme from Fairplay [MNPS04]: PRF = SHA256

 $AES256(A||B, gateID) \oplus C$ 0.12s [shelatShen12]

time from Fairplay $[MNPS04]$: PRF = SHA256

 $H(A||B||gateID) \oplus C$ 0.15s

[LindellPinkasSmart08] time from [sS12]; H = SHA256 time from $[SS12]$; H = SHA256

2 hash \gg 1 hash \gg 1 block cipher \gg 1 block cipher w/o key schedule

 $\mathbb{E}_{A,B}(C)$: cost to garble AES

 $AES256(A||B, gateID) \oplus C$ 0.12s [shelatShen12]

 $\overline{\text{AES}}(\text{const}, K) \oplus K \oplus C$ 0.0003s where $K = 2A \oplus 4B \oplus$ gateID [BellareHoangKeelveedhiRogaway13]

 $H(A||B||gateID) \oplus C$ 0.15s

[LindellPinkasSmart08] time from [sS12]; H = SHA256 time from $[SS12]$; H = SHA256

Scoreboard

 \triangleright What wire label will be payload of 1st ($\bullet\bullet$) ciphertext?

- \triangleright What wire label will be payload of 1st ($\bullet\bullet$) ciphertext?
- \blacktriangleright Choose that label so that 1st ciphertext is 0ⁿ

- \triangleright What wire label will be payload of 1st ($\bullet\bullet$) ciphertext?
- \blacktriangleright Choose that label so that 1st ciphertext is 0ⁿ

- \triangleright What wire label will be payload of 1st ($\bullet\bullet$) ciphertext?
- \blacktriangleright Choose that label so that 1st ciphertext is 0ⁿ
- \triangleright No need to include 1st ciphertext in garbled gate

- \triangleright What wire label will be payload of 1st ($\bullet\bullet$) ciphertext?
- Choose that label so that 1st ciphertext is 0^n
- \triangleright No need to include 1st ciphertext in garbled gate
- Evaluate as before, but imagine ciphertext 0^n if you got $\bullet \bullet$.

Scoreboard

$$
\overbrace{B, B \oplus \Delta_B}^{A, A \oplus \Delta_A} \sum, C, C \oplus \Delta_C
$$

► Wire's **offset** \equiv XOR of its two labels

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ

$$
\begin{array}{c}\nA, A \oplus \Delta \\
\hline\nB, B \oplus \Delta\n\end{array}
$$
\n
$$
\begin{array}{c}\nC \leftarrow \{0, 1\}^n \\
C, C \oplus \Delta \\
\hline\n\end{array}
$$

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ

$$
\underbrace{A}_{\text{FALSE}} \oplus \underbrace{B}_{\text{FALSE}} = \underbrace{A \oplus B}_{\text{FALSE}}
$$

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ
- ► Choose FALSE output = FALSE input ⊕ FALSE input

$$
C := A \oplus B
$$
\n
$$
B, B \oplus \Delta
$$
\n
$$
C
$$

$$
\underbrace{A}_{\text{false}} \oplus \underbrace{B \oplus \Delta}_{\text{true}} = \underbrace{A \oplus B \oplus \Delta}_{\text{true}}
$$

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ
- \triangleright Choose FALSE output = FALSE input \oplus FALSE input
- \blacktriangleright Evaluate by xorting input wire labels (no crypto)

$$
\underbrace{A \oplus \Delta}_{\text{true}} \oplus \underbrace{B}_{\text{false}} = \underbrace{A \oplus B \oplus \Delta}_{\text{true}}
$$

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ
- \triangleright Choose FALSE output = FALSE input ⊕ FALSE input
- Evaluate by xorting input wire labels (no crypto)

$$
\underbrace{A \oplus \Delta}_{\text{true}} \oplus \underbrace{B \oplus \Delta}_{\text{true}} = \underbrace{A \oplus B}_{\text{false}}
$$

- \triangleright Wire's **offset** \equiv XOR of its two labels
- ► Choose all wires to have same (secret) offset Δ
- \triangleright Choose FALSE output = FALSE input ⊕ FALSE input
- Evaluate by xorting input wire labels (no crypto)

 \triangleright Still need to garble AND gates

- \triangleright Still need to garble AND gates
- \blacktriangleright Compatible with garbled row-reduction

- \triangleright Still need to garble AND gates
- \triangleright Compatible with garbled row-reduction

- \triangleright Still need to garble AND gates
- \triangleright Compatible with garbled row-reduction
- ► Secret Δ used in key and payload of ciphertexts!

- \triangleright Still need to garble AND gates
- \triangleright Compatible with garbled row-reduction
- \triangleright Secret Δ used in key and payload of ciphertexts!
- Requires related-key + circularity assumption [ChoiKatzKumaresanZhou12]

Scoreboard

Row reduction ++ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 A_0, A_1 B_0, B_1 C_0, C_1

Row reduction ++ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n)
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n)
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n)
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n)
$$

 A_0, A_1 $\overline{B_0}$, $\overline{B_1}$ C_0, C_1

Row reduction ++ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

 A_0, A_1 B_0, B_1 C_0, C_1

Row reduction $++$ $_{[PinkasSchneiderSmart williams09]}$

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ $\bar{A}_{0}^{-1}, \bar{B}_{0}$ (0ⁿ) \leadsto learn C_{0} $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^1_{0,B_1}(0^n) \rightsquigarrow$ learn C_1 $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1}, \overline{B}_{0}(0^{n}) \rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $_{A_1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

 $(1, K_1), (3, K_3), (4, K_4)$

Row reduction $++$ $_{[PinkasSchneiderSmart williams09]}$

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ $\bar{A}_{0}^{-1}, \bar{B}_{0}$ (0ⁿ) \leadsto learn C_{0} $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^1_{0,B_1}(0^n) \rightsquigarrow$ learn C_1 $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1}, \overline{B}_{0}(0^{n}) \rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $_{A_1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

 $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$

Row reduction $++$ $_{[PinkasSchneiderSmart williams09]}$

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ $\bar{A}_0^{-1}, B_0(0^n) \rightsquigarrow$ learn C_0 $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^1_{0,B_1}(0^n) \rightsquigarrow$ learn C_1 $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1}, \overline{B}_{0}(0^{n}) \rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

 $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$

 $(2,K_2), (5,P(5)), (6,P(6))$
Row reduction $++$ $[Pinkass$ chneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

$$
\overbrace{B_0, B_1}^{A_0, A_1} \overbrace{C_0, C_1}^{C_0, C_1}
$$

- $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ $Q =$ uniq deg-2 poly thru
	- $(2,K_2), (5, P(5)), (6, P(6))$

Row reduction $++$ $[Pinkass$ chneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

$$
C_0 = P(0); C_1 = Q(0)
$$

$$
\overline{A_0, A_1}
$$

$$
\overline{B_0, B_1}
$$

$$
C_0, C_1
$$

 $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ $Q =$ uniq deg-2 poly thru

 $(2,K_2), (5, P(5)), (6, P(6))$

Row reduction $++$ $_{[PinkasschneiderSmart williams09]}$

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

Row reduction $++$ $[Pinkass$ chneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

 \blacktriangleright Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

$\text{Row reduction} +\text{F}$ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}_{0}^{-1},\overline{B}_{0}(0^{n})\rightsquigarrow$ learn C_{0} $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^{1}_{0,B_{1}}(0^{n}) \rightsquigarrow$ learn C_{1} $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1}, \overline{B}_{0}(0^{n}) \rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $_{A_1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

 $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ $Q =$ uniq deg-2 poly thru $(2, K₂), (5, P(5)), (6, P(6))$

$\text{Row reduction} +\text{F}$ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ \bar{A}_{0}^{-1}, B_{0} (0ⁿ) \leadsto learn C_{0} $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^1_{0,B_1}(0^n) \rightsquigarrow$ learn C_1 $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1},\overline{B}_{0}(0^{n})\rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

 $P =$ uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ $Q =$ uniq deg-2 poly thru $(2, K₂), (5, P(5)), (6, P(6))$

Row reduction $++$ $[Pinkass$ chneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

Row reduction $++$ $[Pinkass$ chneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

Row reduction $++$ [PinkasSchneiderSmartWilliams09]

Garbled gates with only 2 ciphertexts!

 \blacktriangleright Evaluator can know exactly one of:

 $K_1 = \mathbb{E}_{A_0}^{-1}$ $\bar{A}_0^{-1}, B_0(0^n) \rightsquigarrow$ learn C_0 $K_2 = \mathbb{E}_{A_0}^{-1}$ $\overline{A}^1_{0,B_1}(0^n) \rightsquigarrow$ learn C_1 $K_3 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1}^{-1}, \overline{B}_{0}(0^{n}) \rightsquigarrow$ learn C_{0} $K_4 = \mathbb{E}_{A_1}^{-1}$ $\overline{A}_{1,B_1}^{-1}(0^n) \rightsquigarrow$ learn C_0

Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$

Row reduction $++$ $_{[PinkasschneiderSmart williams09]}$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$
K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1
$$

\n
$$
K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

\n
$$
K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0
$$

- \blacktriangleright Evaluate by interpolating poly thru K_i , $P(5)$ and $P(6)$
- \blacktriangleright Incompatible with Free-XOR: can't ensure $C_0 \oplus C_1 = \Delta$

 $Q =$ uniq deg-2 poly thru $(2,K_2), (5, P(5)), (6, P(6))$

Scoreboard

 $A, A \oplus \Delta_1$

$$
A, A \oplus \Delta_1 \qquad \qquad A^*, A^* \oplus \Delta_2 \longrightarrow
$$

 \blacktriangleright Translate to a new wire offset

F Translate to a new wire offset (unary $a \mapsto a$ gate)

F Translate to a new wire offset (unary $a \mapsto a$ gate)

F Translate to a new wire offset (unary $a \mapsto a$ gate)

Figure 1 Translate to a new wire offset (unary $a \mapsto a$ gate)

Figure 1 Translate to a new wire offset (unary $a \mapsto a$ gate)

Figure 1 Translate to a new wire offset (unary $a \mapsto a$ gate)

F Translate to a new wire offset (unary $a \mapsto a$ gate) using 1 ciphertext

F Translate to a new wire offset (unary $a \mapsto a$ gate) using 1 ciphertext

► Adjust inputs to target offset Δ_C (1 ciphertext each)

► Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free

- ► Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- If input wire already suitable, no need to adjust

- ► Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- If input wire already suitable, no need to adjust
- \triangleright Total cost: 0, 1 or 2 depending on how many { Δ_A , Δ_B , Δ_C } distinct.

- ► Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- If input wire already suitable, no need to adjust
- \triangleright Total cost: 0, 1 or 2 depending on how many { $\Delta_A, \Delta_B, \Delta_C$ } distinct.

Combinatorial optimization problem: Choose an offset for each wire, minimizing total cost of XOR gates

- \triangleright Subj. to compatibility with 2-ciphertext row-reduction of AND gates
- \triangleright (or) Subj. to removing circularity property of free-XOR

Scoreboard

$$
\overbrace{B, B \oplus \Delta}^{A, A \oplus \Delta} C, C \oplus \Delta
$$

$$
\begin{array}{c|c}\nA & A \oplus \Delta \\
\hline\nB, B \oplus \Delta\n\end{array}\n\qquad\n\qquad\n\begin{array}{c}\nC, C \oplus \Delta \\
\hline\n\end{array}
$$

$$
\begin{array}{c|c}\nA \wedge A \oplus \Delta \\
\hline\nB, B \oplus \Delta\n\end{array}\n\qquad\n\qquad\n\begin{array}{c}\nC, C \oplus \Delta \\
\hline\n\end{array}
$$

What if garbler knows in advance the truth value on one input wire?

Fine print: permute ciphertexts with permute-and-point.

What if evaluator knows the truth value on one input wire?

What if evaluator knows the truth value on one input wire?

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows TRUE):

 \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to transfer truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has B (knows FALSE):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows TRUE):

- \Rightarrow should be able to *transfer* truth value from "a" wire to "c" wire
	- \triangleright Suffices to learn $A \oplus C$

Fine print: no need for permute-and-point here

 $a \wedge b$

$a \wedge b = (a \oplus r \oplus r) \wedge b$

 \triangleright Garbler chooses random bit r

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $= [(a \oplus r) \wedge b] \oplus [r \wedge b]$

 \triangleright Garbler chooses random bit r

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $= [(a \oplus r) \wedge b] \oplus [r \wedge b]$

- \triangleright Garbler chooses random bit r
- ► Arrange for evaluator to learn $a \oplus r$ in the clear

 $a \wedge b = (a \oplus r \oplus r) \wedge b$ $=\underbrace{[(a \oplus r) \wedge b]}_{\text{one input known to evaluator}} \oplus [r \wedge b]$

one input known to evaluator

- Garbler chooses random bit r
- ► Arrange for evaluator to learn $a \oplus r$ in the clear

 $a \wedge b = (a \oplus r \oplus r) \wedge b$ $=\left[(a\oplus r)\wedge b\right]\oplus \underbrace{[r\wedge b]}_{\text{one input known to}}$

one input known to garbler

- Garbler chooses random bit r
- ► Arrange for evaluator to learn $a \oplus r$ in the clear

$$
a \wedge b = (a \oplus r \oplus r) \wedge b
$$

=
$$
[(a \oplus r) \wedge b] \oplus [r \wedge b]
$$

one input known to garbler

- \triangleright Garbler chooses random bit r
- **►** Arrange for evaluator to learn $a \oplus r$ in the clear
- \triangleright Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

$a \wedge b = (a \oplus r \oplus r) \wedge b$ $=\left[(a\oplus r)\wedge b\right]\oplus \underbrace{[r\wedge b]}_{\text{one input known to}}$

one input known to garbler

- \triangleright Garbler chooses random bit r
	- $\rightarrow r =$ color bit of FALSE wire label A
- ► Arrange for evaluator to learn $a \oplus r$ in the clear
	- $\rightarrow a \oplus r =$ color bit of wire label evaluator gets (A or $A \oplus \Delta$)
- \triangleright Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

Scoreboard

Scoreboard

Optimality

Every practical garbling scheme is combination of:

- \triangleright Calls to symmetric primitive (can be modeled as random oracle)
- \blacktriangleright $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Optimality

Every practical garbling scheme is combination of:

- \triangleright Calls to symmetric primitive (can be modeled as random oracle)
- \blacktriangleright $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Theorem ([ZahurRosulekEvans15])

Garbling a single Δ ND gate requires 2 ciphertexts (2 λ bits), if garbling scheme is "linear" in this sense.

Optimality

Every practical garbling scheme is combination of:

- \triangleright Calls to symmetric primitive (can be modeled as random oracle)
- \blacktriangleright $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Theorem ([ZahurRosulekEvans15])

Garbling a single AND gate requires 2 ciphertexts (2λ bits), if garbling scheme is "linear" in this sense.

Half-gates construction is size-optimal among schemes that:

- . . . use "known techniques"
- ... work gate-by-gate in {xor, AND, NOT} basis

Ways forward?

Consider larger "chunks" of circuit, beyond {xor, AND, NOT} basis?
Ways forward?

Consider larger "chunks" of circuit, beyond {xor, AND, NOT} basis?

² Discover some clever non-linear approach to garbling?

Ways forward?

Consider larger "chunks" of circuit, beyond {xor, AND, NOT} basis?

2: Discover some clever non-linear approach to garbling?

3: Wait for break-even point for asymptotically superior methods?

Ways forward?

Consider larger "chunks" of circuit, beyond {xor, AND, NOT} basis?

2: Discover some clever non-linear approach to garbling?

3: Wait for break-even point for asymptotically superior methods?

 \bullet Use weaker security when situation calls for it.

" $\exists w : R(x, w) = 1$ "

" $\exists w : R(x, w) = 1$ "

" $\exists w : R(x, w) = 1$ "

Prover knows entire input to garbled circuit!

Privacy-free garbling [FrederiksenNielsenOrlandi15]

For this ZK protocol, garbled circuit does not require privacy property

- \triangleright Only authenticity is needed
- \triangleright Garbled circuits can be significantly smaller in this case

Privacy-free garbling [FrederiksenNielsenOrlandi15]

For this ZK protocol, garbled circuit does not require privacy property

- \triangleright Only authenticity is needed
- \triangleright Garbled circuits can be significantly smaller in this case

A success story!

- Reduction in size by $10x$
- Reduction in computation by $10000x$

the end!

