Superlinear Lower Bounds for Multipass Graph Processing

Krzysztof Onak IBM T.J. Watson Research Center

Joint work with Venkat Guruswami (CMU)

Streaming Algorithms for Graphs

Model:

- Input: large stream of edges
- Goal: minimize the amount of space and processing time per edge
- Allowed: randomization and small error probability

Algorithm
$$\leftarrow$$
 (5,4) (1,2) (4,3) (2,5) (3,1) ...

Streaming Algorithms for Graphs

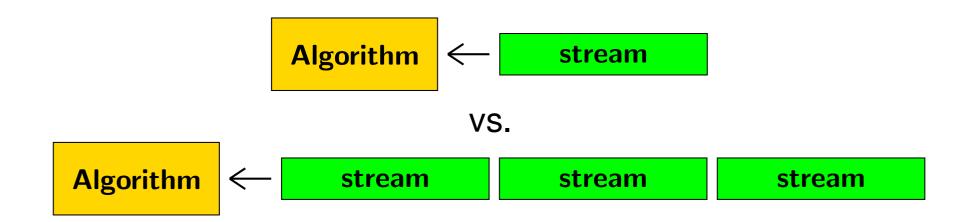
Model:

- Input: large stream of edges
- Goal: minimize the amount of space and processing time per edge
- Allowed: randomization and small error probability

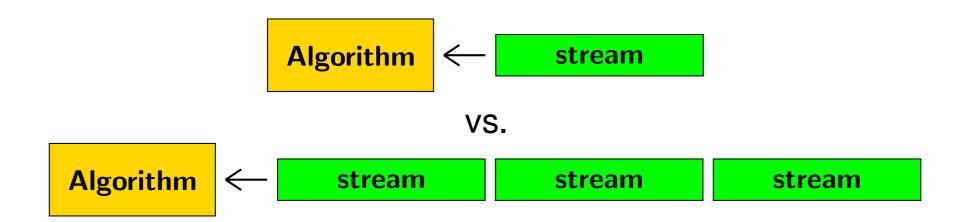
Algorithm
$$\leftarrow$$
 (5,4) (1,2) (4,3) (2,5) (3,1) ...

- Worst-case ordering of edges (as opposed to random)
 - The adversary knows the algorithm but not its random bits

One Pass vs. Multiple Passes

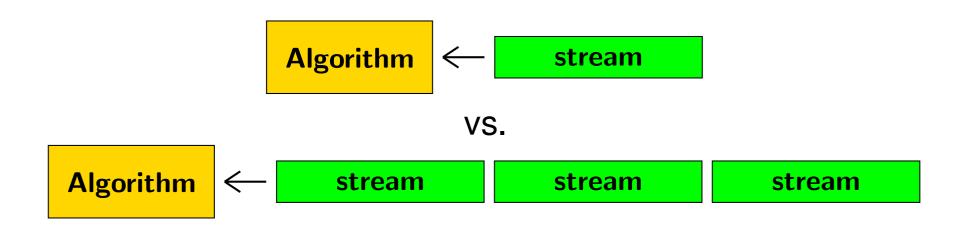


One Pass vs. Multiple Passes



Do multiple passes make sense?

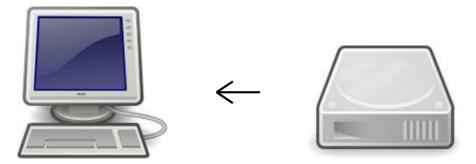
One Pass vs. Multiple Passes



Do multiple passes make sense?

YES:

- Data on a large external storage device
- Sequential access often maximizes throughput



Graph Streaming

"Sweet-spot" for graph streaming: Semi-streaming model [Muthukrishnan 2003]

- Allow $n \cdot \operatorname{poly}(\log n)$ space
- Enough space to store vertices, but not edges

Graph Streaming

"Sweet-spot" for graph streaming: Semi-streaming model [Muthukrishnan 2003]

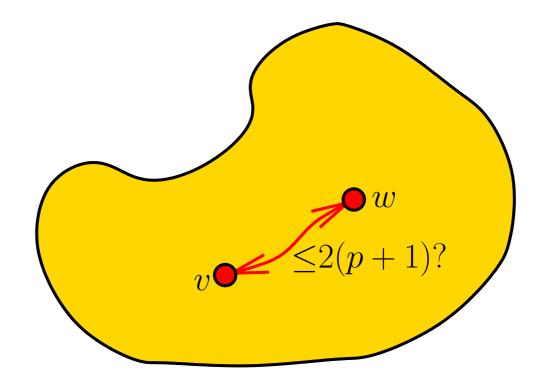
- Allow $n \cdot \operatorname{poly}(\log n)$ space
- Enough space to store vertices, but not edges

General challenge: Which graph-theoretic problems admit $n \cdot poly(\log n)$ space streaming algorithms in one or a few passes?

This Work: Rule out such algorithms for some basic graph problems

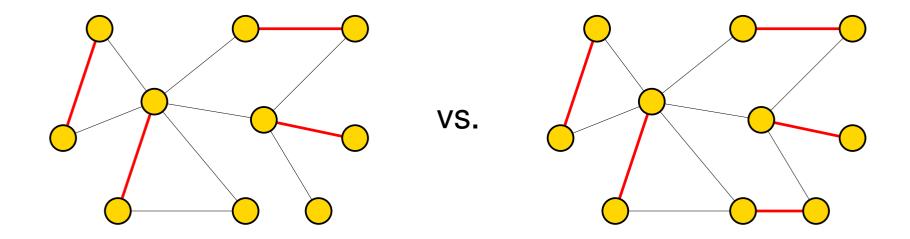
Undirected graphs:

Problem 1: Are v and w at distance at most 2(p+1)?



Undirected graphs:

- **Problem 1:** Are v and w at distance at most 2(p+1)?
- Problem 2: Is there a perfect matching?

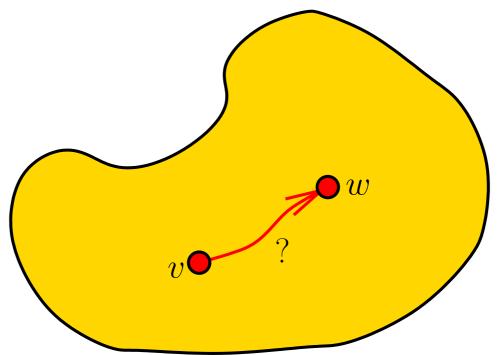


Undirected graphs:

- **Problem 1:** Are v and w at distance at most 2(p+1)?
- **Problem 2:** Is there a perfect matching?

Directed graphs:

Problem 3: Is there a directed path from v to w?



Undirected graphs:

- **Problem 1:** Are v and w at distance at most 2(p+1)?
- **Problem 2:** Is there a perfect matching?

Directed graphs:

Problem 3: Is there a directed path from v to w?

Solving these graph problems in p passes requires

$$\Omega\left(\frac{n^{1+1/(2p+2)}}{p^{20}\log^{3/2}n}\right) = \frac{n^{1+\Omega(1/p)}}{p^{O(1)}}$$

bits of space

(n = #vertices)

• Known to require $\Omega(n^2)$ bits in one pass [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]

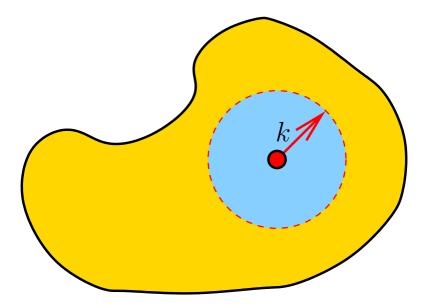
- Known to require $\Omega(n^2)$ bits in one pass [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]
- Easy to prove $\Omega(n/p)$ for p passes via set disjointness

- Known to require $\Omega(n^2)$ bits in one pass [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]
- Easy to prove $\Omega(n/p)$ for p passes via set disjointness
- We want $n^{1+\Omega(1)}$ lower bounds

- Known to require $\Omega(n^2)$ bits in one pass [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]
- Easy to prove $\Omega(n/p)$ for p passes via set disjointness
- We want $n^{1+\Omega(1)}$ lower bounds
- Main challenge: embed hard problems into the "space of edges" not just vertices

Related Results: Shortest Path(s)

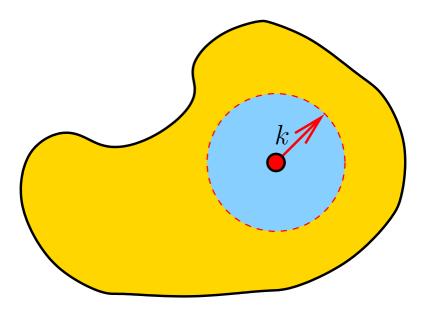
Feigenbaum, Kannan, McGregor, Suri, Zhang (2005): Computing the first k layers of BFS tree in < k/2 passes requires $\Omega(n^{1+1/k}/k^{O(1)}(\log n)^{1/k})$ space



Related Results: Shortest Path(s)

Feigenbaum, Kannan, McGregor, Suri, Zhang (2005): Computing the first k layers of BFS tree in < k/2 passes requires $\Omega(n^{1+1/k}/k^{O(1)}(\log n)^{1/k})$ space

• Can be improved to < k passes using [Guha, McGregor 2007]

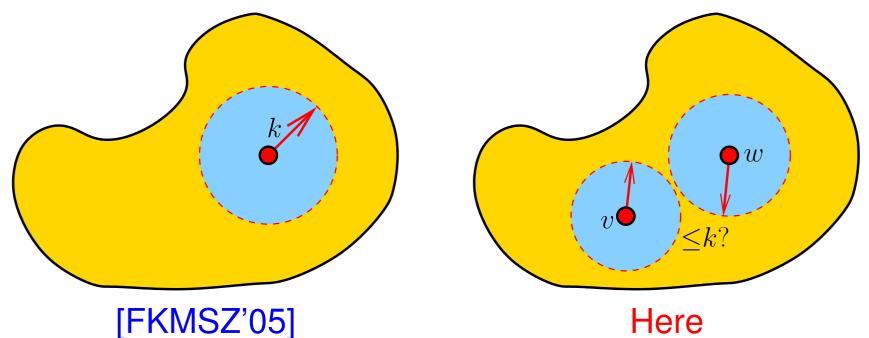


Related Results: Shortest Path(s)

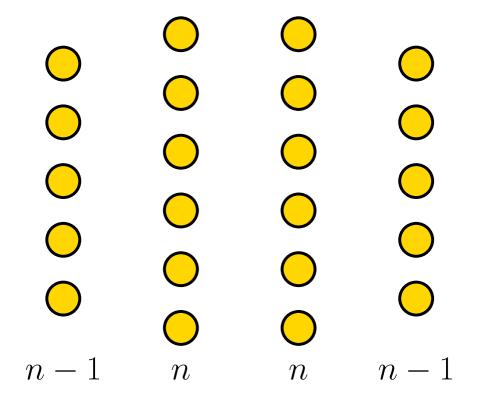
Feigenbaum, Kannan, McGregor, Suri, Zhang (2005): Computing the first k layers of BFS tree in < k/2 passes requires $\Omega(n^{1+1/k}/k^{O(1)}(\log n)^{1/k})$ space

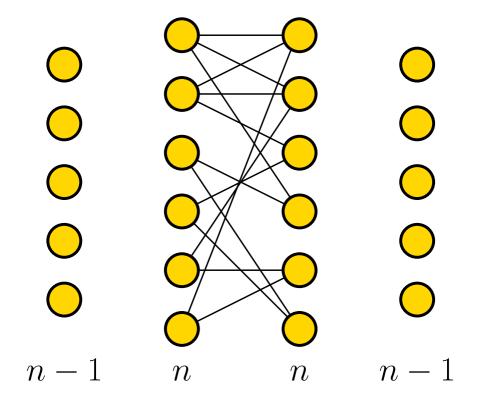
• Can be improved to < k passes using [Guha, McGregor 2007]

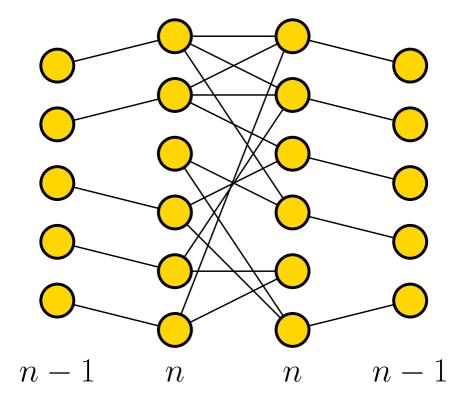
Our problem: Fewer passes suffice

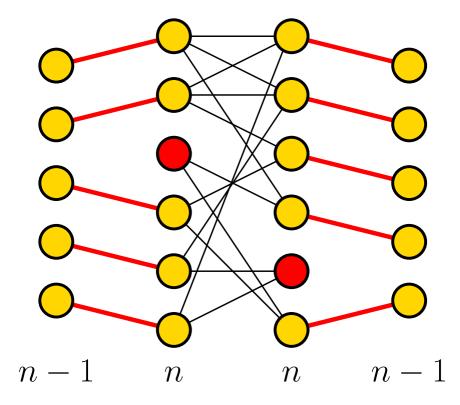


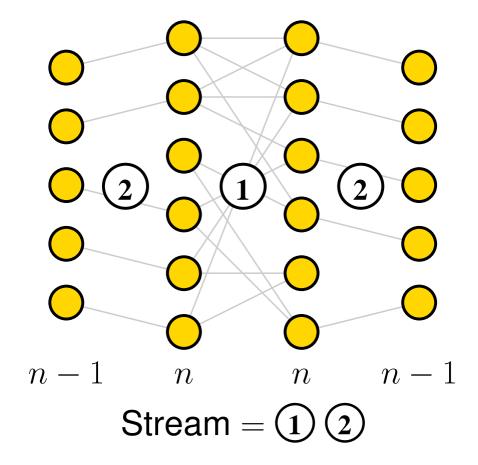
Warmup: One-Pass Lower Bound [Feigenbaum et al. 2004]

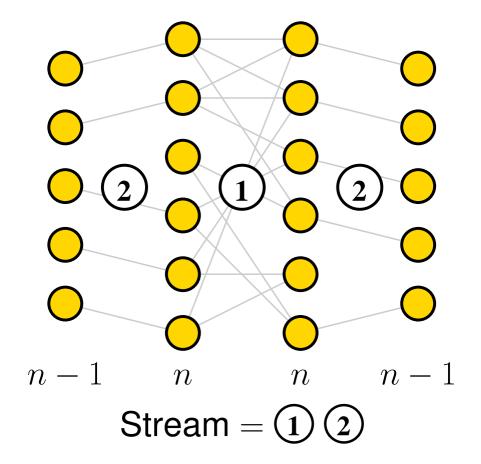












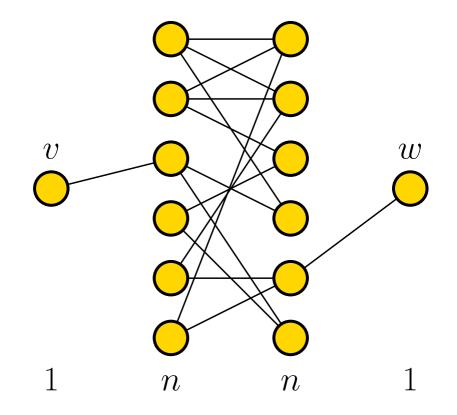
Lower bound of $\Omega(n^2)$ via indexing Alice \Rightarrow Bob $A[1 \dots n^2] \xrightarrow{x}$ Bob's task: output A[x]

Construction for Shortest Path

Approximation better then 5/3 requires $\Omega(n^2)$ space

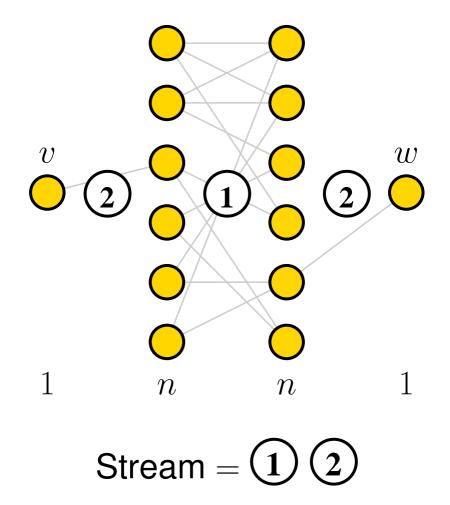
Construction for Shortest Path

Approximation better then 5/3 requires $\Omega(n^2)$ space



Construction for Shortest Path

Approximation better then 5/3 requires $\Omega(n^2)$ space



How do we order edges in the stream?

Graphs = vertices + relations between them

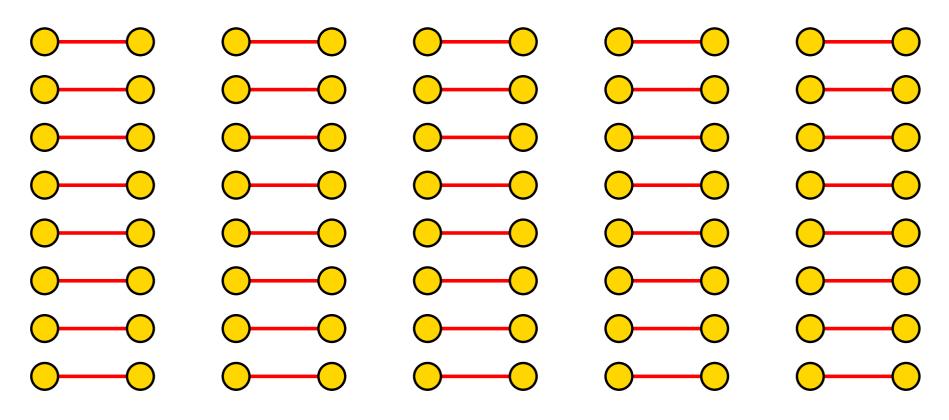
- Graphs = vertices + relations between them
- Solving most graph problems requires exploration

- Graphs = vertices + relations between them
- Solving most graph problems requires exploration
- To prove lower bounds, create obstacles for exploration

- Graphs = vertices + relations between them
- Solving most graph problems requires exploration
- To prove lower bounds, create obstacles for exploration
- One possibility: present edges in order opposite to what is suitable for exploration

Hard Instance for Multiple Passes

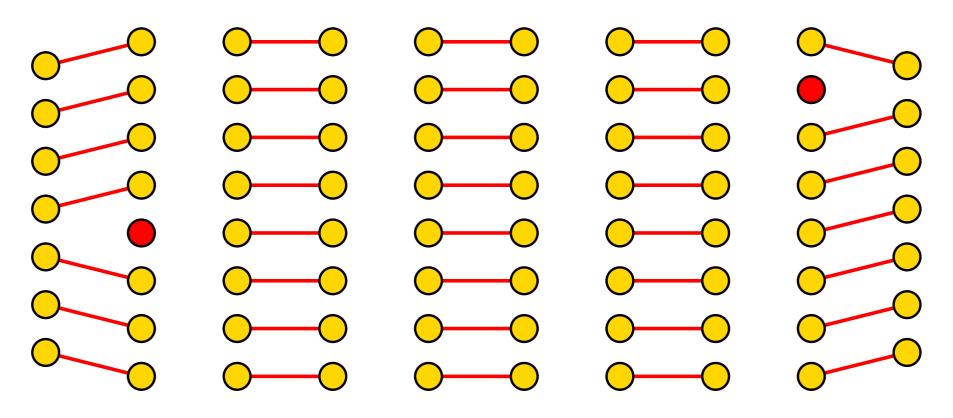
Is there a perfect matching?



 $\Theta(1)$ columns

Each column $\Theta(n)$ rows

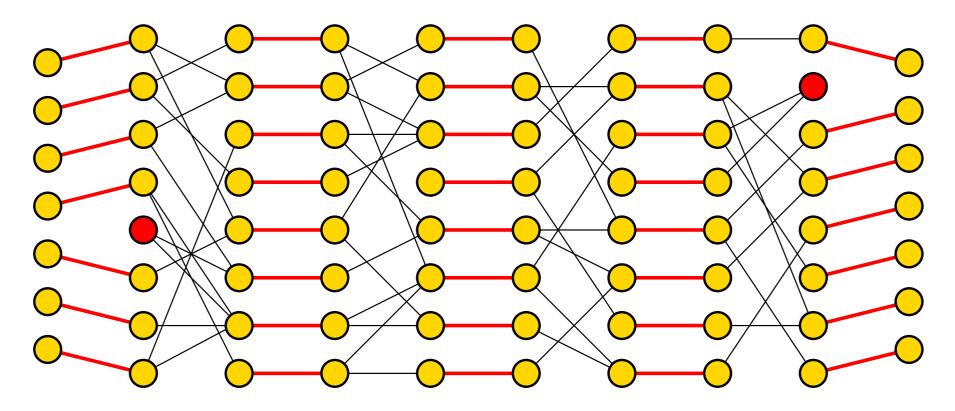
Is there a perfect matching?



 $\Theta(1)$ columns

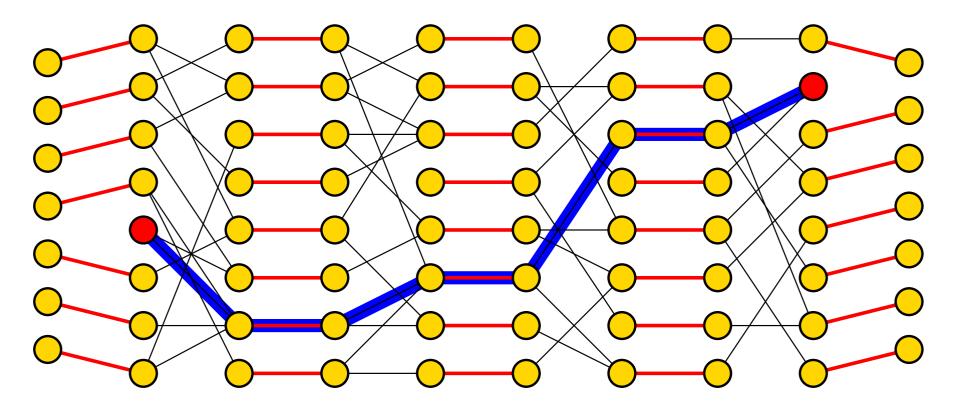
Each column $\Theta(n)$ rows

Is there a perfect matching?



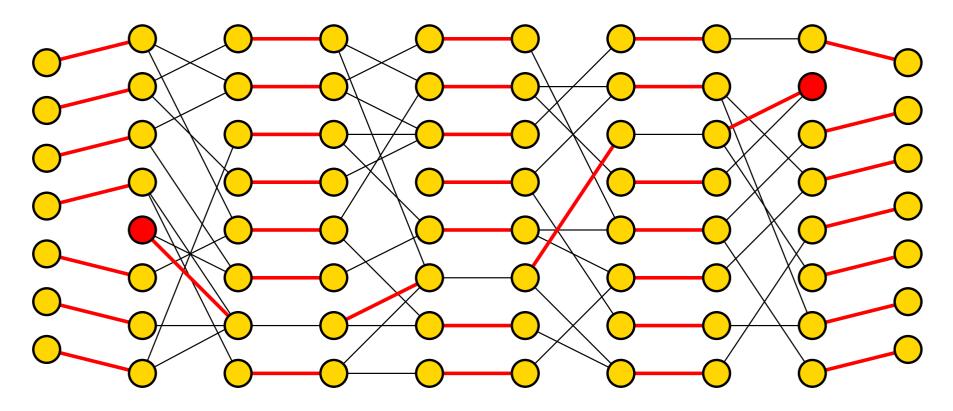
 $\Theta(1)$ columns Each column $\Theta(n)$ rows

Is there a perfect matching?



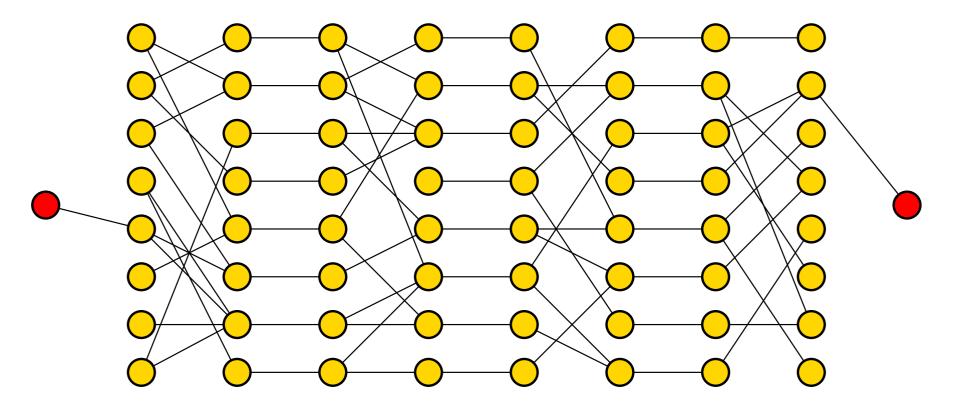
 $\Theta(1)$ columns Each column $\Theta(n)$ rows

Is there a perfect matching?



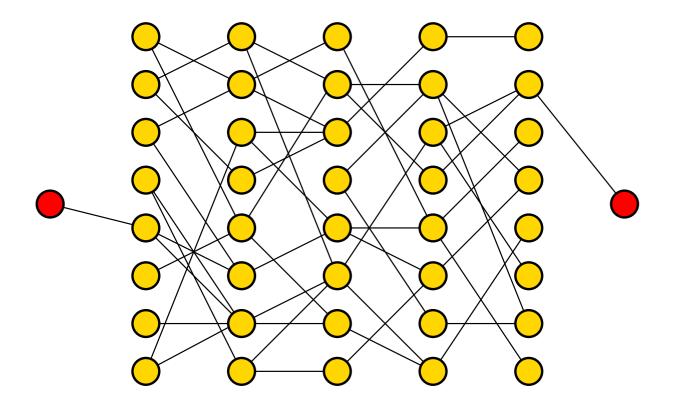
 $\Theta(1)$ columns Each column $\Theta(n)$ rows

Is there a path of length 9 between red nodes?



 $\Theta(1)$ columns Each column $\Theta(n)$ rows

Is there a path of length 6 between red nodes?



$\Theta(1)$ columns Each column $\Theta(n)$ rows

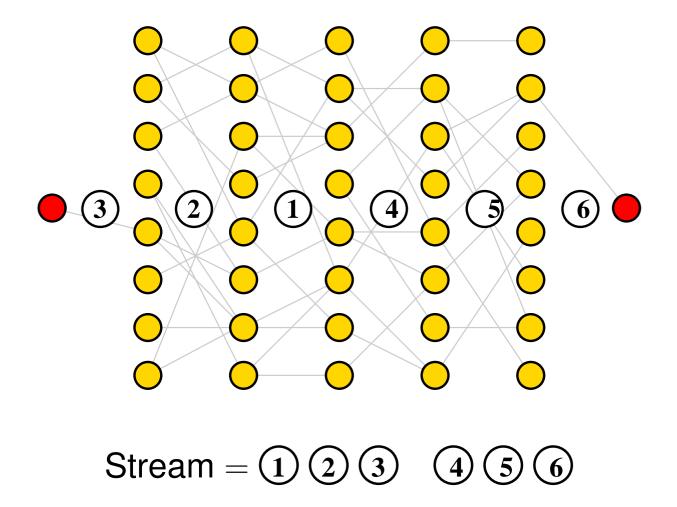
Our Stream Ordering

Is there a path of length 6 between red nodes?



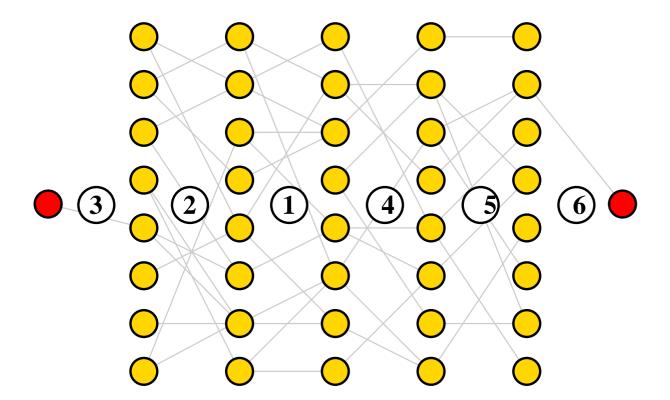
Our Stream Ordering

Is there a path of length 6 between red nodes?



Our Stream Ordering

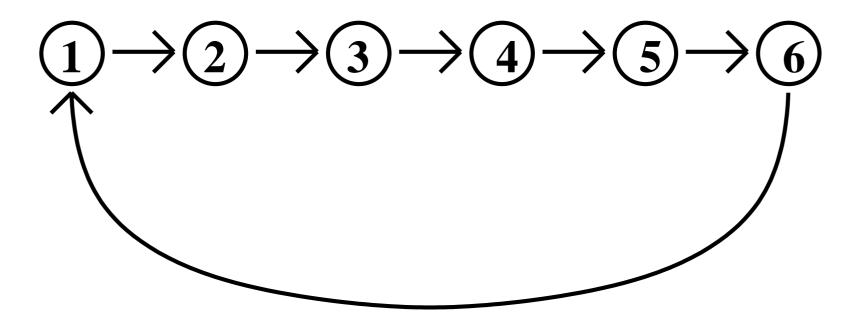
Is there a path of length 6 between red nodes?



Stream = (1) (2) (3) (4) (5) (6) (3) (2) (1) (6) (5) (4) is easy in O(n) space

Streaming and Communication Protocols

Assign each layer to one player

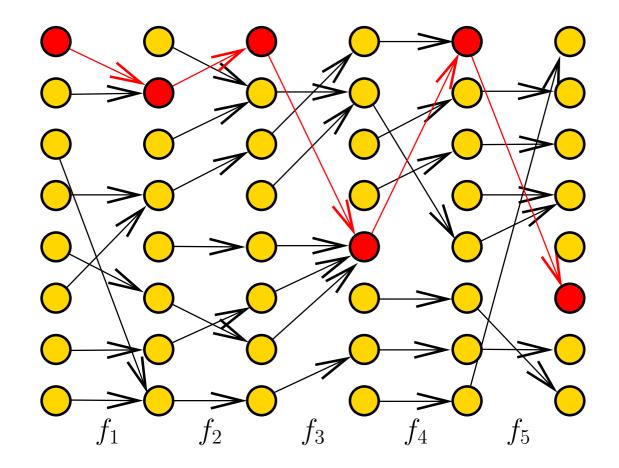


- Small-space streaming algorithm \Rightarrow efficient communication protocol
- Goal: prove communication lower bound

The Proof

Definition:

- Input: p functions $f_i: [n] \to [n]$
- **Goal:** Compute $f_p(f_{p-1}(...f_2(f_1(1))...))$



Definition:

- Input: p functions $f_i: [n] \to [n]$
- **Goal:** Compute $f_p(f_{p-1}(...f_2(f_1(1))...))$

Two-player version:

What players have:

Alice f_2, f_4, f_6, \dots

Bob f_1, f_3, f_5, \dots

Alice speaks first

Definition:

- Input: p functions $f_i: [n] \to [n]$
- **Goal:** Compute $f_p(f_{p-1}(...f_2(f_1(1))...))$

Two-player version:

What players have:

Alice f_2, f_4, f_6, \dots

Bob f_1, f_3, f_5, \dots

- Alice speaks first
- Nisan, Wigderson (1993):

Computing in less then $p = \Theta(1)$ messages of communication requires $\Omega(n)$ communication

Definition:

- Input: *p* functions $f_i : [n] \rightarrow [n]$
- **Goal:** Compute $f_p(f_{p-1}(...f_2(f_1(1))...))$

p-player version:

What players have:

Player 1Player 2...Player p-1Player p f_p f_{p-1} ... f_2 f_1

Each round: players speak in order Player 1 through Player p

Definition:

- Input: p functions $f_i: [n] \to [n]$
- **Goal: Compute** $f_p(f_{p-1}(...f_2(f_1(1))...))$

p-player version:

What players have:

Player 1Player 2...Player p-1Player p f_p f_{p-1} ... f_2 f_1

Each round: players speak in order Player 1 through Player p

Guha, McGregor (2007):

Computing in less then $p = \Theta(1)$ rounds requires $\Omega(n)$ communication

Their Problem: Compute p levels of BFS tree from v

Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

Take communication lower bound for pointer chasing

Their Problem: Compute p levels of BFS tree from \boldsymbol{v}

Sketch of their proof:

- Take communication lower bound for pointer chasing
- Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:
 - Solving k instances requires k times more communication

Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

- Take communication lower bound for pointer chasing
- Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:
 - Solving k instances requires k times more communication
- Show: Computing a level p BFS tree in graph of degree $k = n^{\Theta(1/p)}$ enables solving k instances of pointer chasing.

Their Problem: Compute p levels of BFS tree from \boldsymbol{v}

Sketch of their proof:

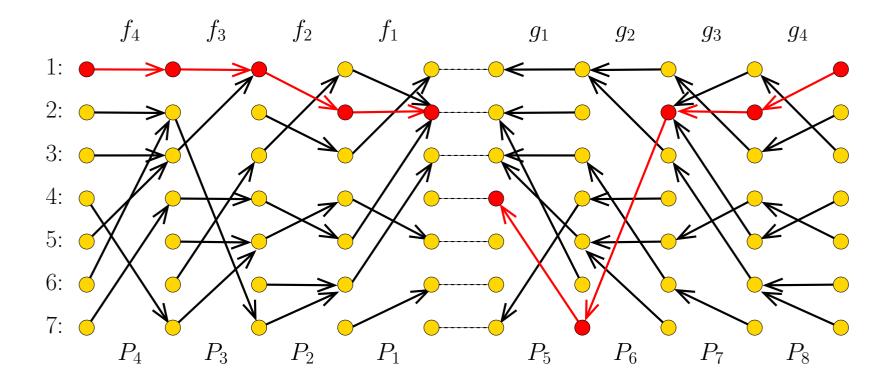
- Take communication lower bound for pointer chasing
- Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:
 - Solving k instances requires k times more communication
- Show: Computing a level p BFS tree in graph of degree $k = n^{\Theta(1/p)}$ enables solving k instances of pointer chasing.

Our problem:

- Only need to check if BFS trees intersect
- Seems hard to infer full tree from this

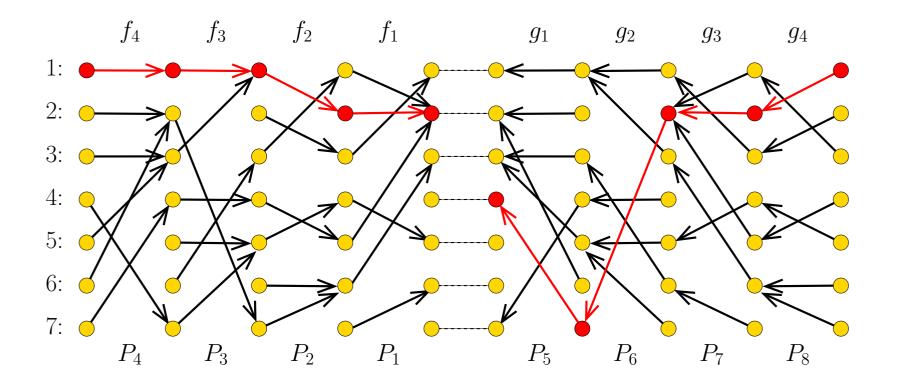
Problem BBB (Basic Building Block):

• 2p players with two instances of pointer chasing



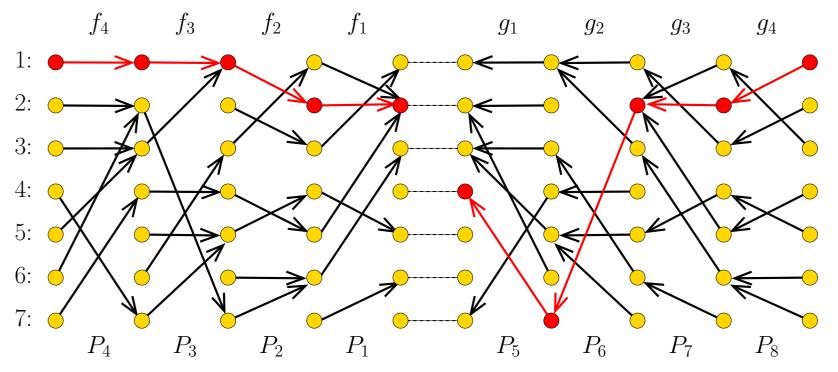
Problem BBB (Basic Building Block):

- \bullet 2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?



Problem BBB (Basic Building Block):

- **D**2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- If some function maps $\Omega(\log n)$ elements to one element, also say YES)



Problem BBB (Basic Building Block):

- **D**2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (If some function maps $\Omega(\log n)$ elements to one element, also say YES)
- Three Steps:

(μ = uniform distribution)

1. $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Problem BBB (Basic Building Block):

- \square 2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:

(μ = uniform distribution)

- 1. $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$
- 2. $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn)$ for $k \ll n$

Problem BBB (Basic Building Block):

- **D**2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:

(μ = uniform distribution)

- 1. $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$
- 2. $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn)$ for $k \ll n$
 - Implies: $\operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim \Omega(kn)$

Problem BBB (Basic Building Block):

- \checkmark 2p players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:

(μ = uniform distribution)

- 1. $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$
- 2. $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn)$ for $k \ll n$
 - Implies: $\operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim \Omega(kn)$
- 3. $CC_{1/20}(BFS \text{ tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^{k} BBB)$ for $k = n^{O(1/p)}$

 $\operatorname{CC}_{1/20}(\mathsf{BFS tree intersection}) \gtrsim \operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB})$ for $k = n^{\Theta(1/p)}$

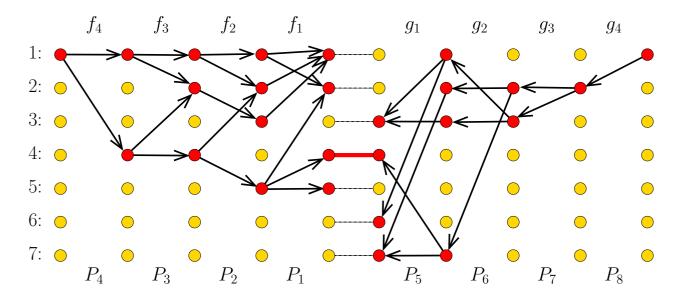
 $\operatorname{CC}_{1/20}(\mathsf{BFS tree intersection}) \gtrsim \operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^k$ BBB using protocol for BFS intersection

 $CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^k \text{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^k$ BBB using protocol for BFS intersection

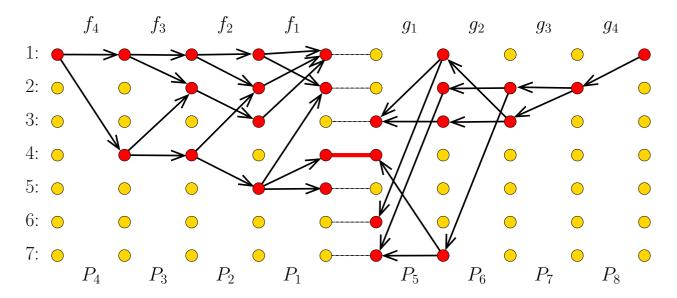
"Stack" k instances of BBB on top of each other



 $CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^{k} \text{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^{k}$ BBB using protocol for BFS intersection

● "Stack" k instances of BBB on top of each other



Gives instance of BFS tree intersection, but pointers from two different instances may intersect

 $CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^k \text{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^{k}$ BBB using protocol for BFS intersection

Randomly relabel intermediate results of functions and stack them on top of each other

 $\operatorname{CC}_{1/20}(\mathsf{BFS tree intersection}) \gtrsim \operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^{k}$ BBB using protocol for BFS intersection

- Randomly relabel intermediate results of functions and stack them on top of each other
 - If pair of pointer chasing instances gives the same element, BFS trees intersect

 $\operatorname{CC}_{1/20}(\mathsf{BFS tree intersection}) \gtrsim \operatorname{CC}_{1/10}(\bigvee_{i=1}^k \mathsf{BBB})$ for $k = n^{\Theta(1/p)}$

Want: Protocol for $\bigvee_{i=1}^{k}$ BBB using protocol for BFS intersection

- Randomly relabel intermediate results of functions and stack them on top of each other
 - If pair of pointer chasing instances gives the same element, BFS trees intersect
 - $k^p \ll n$ and random scrambling \implies If no pair gives the same element (and no $\Theta(\log n)$ -to-1 mapping), BFS trees unlikely to intersect

Statement:

 $\mathrm{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \mathrm{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

Statement:

 $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

How:

• Product distribution: information cost = $\sum_{i=1}^{k}$ information cost on instance i

Statement:

 $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

How:

- Product distribution: information cost = $\sum_{i=1}^{k}$ information cost on instance *i*
- Trivial, if all instances must be solved.
 The problem asks only for \/ (the instances)

Statement:

 $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

How:

- Product distribution: information cost = $\sum_{i=1}^{k}$ information cost on instance *i*
- Trivial, if all instances must be solved.
 The problem asks only for \/ (the instances)
- For specific instance, V(other instances) = false most of the time

Statement:

 $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

How:

- Product distribution: information cost = $\sum_{i=1}^{k}$ information cost on instance *i*
- Trivial, if all instances must be solved.
 The problem asks only for \/ (the instances)
- For specific instance, \bigvee (other instances) = false most of the time
- Fix at random other instances s.t. ∨(other instances) = false
 ⇒ protocol must solve the instance

Statement:

 $\operatorname{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \mathsf{BBB}) \gtrsim k \cdot \operatorname{IC}_{\mu, 1/n^2}(\mathsf{BBB}) \approx \Omega(kn) \text{ for } k \ll n$

How:

- Product distribution: information cost = $\sum_{i=1}^{k}$ information cost on instance *i*
- Trivial, if all instances must be solved.
 The problem asks only for \/ (the instances)
- For specific instance, V(other instances) = false most of the time
- Fix at random other instances s.t. V(other instances) = false \Rightarrow protocol must solve the instance
- Information cost won't decrease significantly on V(other instances) = true

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 21/29

Statement:

 $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 22/29

Statement:

 $\operatorname{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

What is known:

 communication complexity for pointer chasing is Ω(n) for uniform distribution [Nisan, Wigderson 1993], [Guha, McGregor 2007]

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

What is known:

 communication complexity for pointer chasing is Ω(n) for uniform distribution [Nisan, Wigderson 1993], [Guha, McGregor 2007]

Obstacles:

- 1. Need a proof for information complexity
- 2. Equality of pointer chasing instances
 - Need to account for impact of $\Theta(\log n)$ -to-1 maps

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Obstacle 1: Need a proof for information complexity

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Obstacle 1: Need a proof for information complexity

- Use [Jain, Radhakrishnan, Sen 2003]?
- Π = constant-round protocol revealing information IC with error ϵ :

There is a protocol Π' with total communication $\sim {\rm IC}\,/\delta^2$ that errs with probability $\epsilon+\delta$

i.e., "small information \Rightarrow small communication"

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Obstacle 1: Need a proof for information complexity

- Use [Jain, Radhakrishnan, Sen 2003]?
- Π = constant-round protocol revealing information IC with error ϵ :

There is a protocol Π' with total communication $\sim {\rm IC}\,/\delta^2$ that errs with probability $\epsilon+\delta$

i.e., "small information \Rightarrow small communication"

• Won't suffice for us: $\delta = o(1/n)$

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 23/29

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Use techniques of [JRS] to produce a protocol Π'
 - Π' is deterministic
 - errs with twice the probability
 - sends messages of length \leq IC $\cdot p^{O(1)}$ with probability $1 p^{-\Omega(1)}$

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 1):

- Use techniques of [JRS] to produce a protocol Π'
 - Π' is deterministic
 - errs with twice the probability
 - sends messages of length \leq IC $\cdot p^{O(1)}$ with probability $1 p^{-\Omega(1)}$

"Typically concise" protocol

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 24/29

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 1):

- \checkmark Use techniques of [JRS] to produce a protocol Π'
 - Π' is deterministic
 - errs with twice the probability
 - sends messages of length \leq IC $\cdot p^{O(1)}$ with probability $1 p^{-\Omega(1)}$

"Typically concise" protocol

• Note: prob. of long message \gg prob. of answer YES

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 24/29

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

Modify [NW] for "typically concise" protocols and equality

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Modify [NW] for "typically concise" protocols and equality
- Original argument for protocol tree:

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Modify [NW] for "typically concise" protocols and equality
- Original argument for protocol tree:
 - simulate in parallel trivial algorithm: make step forward when possible

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Modify [NW] for "typically concise" protocols and equality
- Original argument for protocol tree:
 - simulate in parallel trivial algorithm: make step forward when possible
 - $x_{\text{current}} = \text{current value in this algorithm}$

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Modify [NW] for "typically concise" protocols and equality
- Original argument for protocol tree:
 - simulate in parallel trivial algorithm: make step forward when possible
 - $x_{\text{current}} = \text{current value in this algorithm}$
 - by induction, $H(f_{next}(x_{current})) = \log n o(1)$
 - for 1 o(1) fraction of internal nodes
 - for 1 o(1) fraction of leaves with o(n) communication

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

- Modify [NW] for "typically concise" protocols and equality
- Original argument for protocol tree:
 - simulate in parallel trivial algorithm: make step forward when possible
 - $x_{\text{current}} = \text{current value in this algorithm}$
 - by induction, $H(f_{next}(x_{current})) = \log n o(1)$
 - for 1 o(1) fraction of internal nodes
 - for 1 o(1) fraction of leaves with o(n) communication
 - with this entropy, prob. of correct solution is o(1)

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 25/29

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

simulate in parallel trivial algorithm for both instances: make step forward when possible

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- simulate in parallel trivial algorithm for both instances: make step forward when possible
- $(x_{\text{current}}, y_{\text{current}}) = \text{current values in this algorithm}$

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

simulate in parallel trivial algorithm for both instances: make step forward when possible

● $(x_{\text{current}}, y_{\text{current}}) = \text{current values in this algorithm}$

- by induction, $H(f_{next}(x_{current})) = \log n o(1)$ and $H(g_{next}(y_{current})) = \log n - o(1)$
 - for 1 o(1) fraction of internal nodes
 - for 1 o(1) fraction of leaves with o(n) communication

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

simulate in parallel trivial algorithm for both instances: make step forward when possible

● $(x_{\text{current}}, y_{\text{current}}) = \text{current values in this algorithm}$

- by induction, $H(f_{next}(x_{current})) = \log n o(1)$ and $H(g_{next}(y_{current})) = \log n - o(1)$
 - for 1 o(1) fraction of internal nodes
 - for 1 o(1) fraction of leaves

with o(n) communication (impact of rare long messages small)

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Entropy of solution to each pointer chasing $\log n o(1)$
- Probability $\Omega(1/n)$ for $\frac{3}{4}n$ elements

Statement:

$\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Entropy of solution to each pointer chasing $\log n o(1)$
- **Probability** $\Omega(1/n)$ for $\frac{3}{4}n$ elements
- Distributions independent:
 - deterministic protocol
 - pointer chasing instances held by different players
 - product input distribution

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

- Entropy of solution to each pointer chasing $\log n o(1)$
- Probability $\Omega(1/n)$ for $\frac{3}{4}n$ elements
- Distributions independent:
 - deterministic protocol
 - pointer chasing instances held by different players
 - product input distribution
- must collide with probability $n/4 \cdot \Omega(1/n)^2 = \Omega(1/n)$

Statement:

 $\mathrm{IC}_{\mu,1/n^2}(\mathsf{BBB}) \approx \Omega(n)$

Our solution (part 2):

- Entropy of solution to each pointer chasing $\log n o(1)$
- Probability $\Omega(1/n)$ for $\frac{3}{4}n$ elements
- Distributions independent:
 - deterministic protocol
 - pointer chasing instances held by different players
 - product input distribution
- must collide with probability $n/4 \cdot \Omega(1/n)^2 = \Omega(1/n)$
- protocol errs with probability $\Omega(1/n)$

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 27/29

Main result:

Shortest Path, Perfect Matching, and Directed Connectivity require $\sim n^{1+\Omega(1/p)}$ space in p passes

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 28/29

Main result:

Shortest Path, Perfect Matching, and Directed Connectivity require $\sim n^{1+\Omega(1/p)}$ space in p passes

Open Questions:

- Simpler proof?
- Improve lower bounds from $\sim \Omega(n^{1+1/(2p)})$ to $\sim \Omega(n^{1+1/p})$?

Main result:

Shortest Path, Perfect Matching, and Directed Connectivity require $\sim n^{1+\Omega(1/p)}$ space in p passes

Open Questions:

- Simpler proof?
- Improve lower bounds from $\sim \Omega(n^{1+1/(2p)})$ to $\sim \Omega(n^{1+1/p})$?
- Better bounds for maximum matching?
 - Is looking for a few augmenting paths harder?
 - Can the techniques be used for approximate matchings?

Questions?

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 29/29