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Streaming Algorithms for Graphs

Model:

Input: large stream of edges

Goal: minimize the amount of space
and processing time per edge

Allowed: randomization and small error probability

(5,4) (1,2) (4,3) (2,5) (3,1) . . .Algorithm
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Streaming Algorithms for Graphs

Model:

Input: large stream of edges

Goal: minimize the amount of space
and processing time per edge

Allowed: randomization and small error probability

(5,4) (1,2) (4,3) (2,5) (3,1) . . .Algorithm

Worst-case ordering of edges (as opposed to random)

The adversary knows the algorithm
but not its random bits
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One Pass vs. Multiple Passes

Algorithm stream

vs.

stream stream streamAlgorithm
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Algorithm stream

vs.

stream stream streamAlgorithm
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One Pass vs. Multiple Passes

Algorithm stream

vs.

stream stream streamAlgorithm

Do multiple passes make sense?

YES:

Data on a large external storage device

Sequential access often maximizes throughput
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Graph Streaming

“Sweet-spot” for graph streaming: Semi-streaming model
[Muthukrishnan 2003]

Allow n · poly(log n) space

Enough space to store vertices, but not edges

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 4/29



Graph Streaming

“Sweet-spot” for graph streaming: Semi-streaming model
[Muthukrishnan 2003]

Allow n · poly(log n) space

Enough space to store vertices, but not edges

General challenge: Which graph-theoretic problems admit
n · poly(log n) space streaming algorithms in one or a few
passes?

This Work: Rule out such algorithms for some basic graph
problems
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Our Results

w

v
≤2(p + 1)?

Undirected graphs:

Problem 1: Are v and w at distance at most 2(p+ 1)?

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 5/29



Our Results

vs.

Undirected graphs:

Problem 1: Are v and w at distance at most 2(p+ 1)?

Problem 2: Is there a perfect matching?
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Undirected graphs:

Problem 1: Are v and w at distance at most 2(p+ 1)?

Problem 2: Is there a perfect matching?

Directed graphs:

Problem 3: Is there a directed path from v to w?
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Our Results

Undirected graphs:

Problem 1: Are v and w at distance at most 2(p+ 1)?

Problem 2: Is there a perfect matching?

Directed graphs:

Problem 3: Is there a directed path from v to w?

Solving these graph problems in p passes requires

Ω

(

n1+1/(2p+2)

p20 log3/2 n

)

=
n1+Ω(1/p)

pO(1)

bits of space (n = #vertices)
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Comparison to Previous Results

Known to require Ω(n2) bits in one pass
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]
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Easy to prove Ω(n/p) for p passes via set disjointness
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Known to require Ω(n2) bits in one pass
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]

Easy to prove Ω(n/p) for p passes via set disjointness

We want n1+Ω(1) lower bounds
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Comparison to Previous Results

Known to require Ω(n2) bits in one pass
[Feigenbaum, Kannan, McGregor, Suri, Zhang 2004]

Easy to prove Ω(n/p) for p passes via set disjointness

We want n1+Ω(1) lower bounds

Main challenge: embed hard problems into
the “space of edges”
not just vertices
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Related Results: Shortest Path(s)

Feigenbaum, Kannan, McGregor, Suri, Zhang (2005):

Computing the first k layers of BFS tree in <k/2 passes

requires Ω(n1+1/k/kO(1)(log n)1/k) space

k
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Computing the first k layers of BFS tree in <k/2 passes

requires Ω(n1+1/k/kO(1)(log n)1/k) space

Can be improved to < k passes using [Guha, McGregor 2007]
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Related Results: Shortest Path(s)

Feigenbaum, Kannan, McGregor, Suri, Zhang (2005):

Computing the first k layers of BFS tree in <k/2 passes

requires Ω(n1+1/k/kO(1)(log n)1/k) space

Can be improved to < k passes using [Guha, McGregor 2007]

Our problem: Fewer passes suffice

k
w

v
≤k?

[FKMSZ’05] Here
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Warmup:

One-Pass Lower Bound

[Feigenbaum et al. 2004]
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Construction for Perfect Matching

n nn − 1 n − 1
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Construction for Perfect Matching

1 22

n nn − 1 n − 1

Stream = 1 2
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Construction for Perfect Matching

1 22

n nn − 1 n − 1

Stream = 1 2

Lower bound of Ω(n2) via indexing

Alice
A[1 . . . n2]

⇒
Bob
x

Bob’s task: output A[x]
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Construction for Shortest Path

Approximation better then 5/3 requires Ω(n2) space
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Construction for Shortest Path

Approximation better then 5/3 requires Ω(n2) space

n n1 1

wv
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Construction for Shortest Path

Approximation better then 5/3 requires Ω(n2) space

1 22

n n1 1

wv

Stream = 1 2
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Stream Ordering

How do we order edges in the stream?
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Stream Ordering

How do we order edges in the stream?

Graphs = vertices + relations between them

Solving most graph problems requires exploration

To prove lower bounds, create obstacles for exploration

One possibility: present edges in order opposite
to what is suitable for exploration
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Hard Instance

for Multiple Passes
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Construction for Perfect Matching

Is there a perfect matching?

Θ(1) columns Each column Θ(n) rows
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Construction for Perfect Matching

Is there a perfect matching?

Θ(1) columns Each column Θ(n) rows
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Construction for Perfect Matching

Is there a path of length 9 between red nodes?

Θ(1) columns Each column Θ(n) rows
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Construction for Perfect Matching

Is there a path of length 6 between red nodes?

Θ(1) columns Each column Θ(n) rows
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Our Stream Ordering

Is there a path of length 6 between red nodes?

456
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Our Stream Ordering

Is there a path of length 6 between red nodes?

6123 4 5

Stream = 2 3 6541

456
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Our Stream Ordering

Is there a path of length 6 between red nodes?

6123 4 5

Stream = 2 3 6541

2 1 4563 is easy in O(n) space
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Streaming and Communication Protocols

Assign each layer to one player

654321

Small-space streaming algorithm
⇒ efficient communication protocol

Goal: prove communication lower bound
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The Proof
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Important Problem: Pointer Chasing

Definition:

Input: p functions fi : [n] → [n]

Goal: Compute fp(fp−1(. . . f2(f1(1)) . . .))

f1 f2 f3 f4 f5
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Important Problem: Pointer Chasing

Definition:

Input: p functions fi : [n] → [n]

Goal: Compute fp(fp−1(. . . f2(f1(1)) . . .))

Two-player version:

What players have:

Alice Bob
f2, f4, f6, . . . f1, f3, f5, . . .

Alice speaks first
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Important Problem: Pointer Chasing

Definition:

Input: p functions fi : [n] → [n]

Goal: Compute fp(fp−1(. . . f2(f1(1)) . . .))

Two-player version:

What players have:

Alice Bob
f2, f4, f6, . . . f1, f3, f5, . . .

Alice speaks first

Nisan, Wigderson (1993):

Computing in less then p = Θ(1) messages
of communication requires Ω(n) communication
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Important Problem: Pointer Chasing

Definition:

Input: p functions fi : [n] → [n]

Goal: Compute fp(fp−1(. . . f2(f1(1)) . . .))

p-player version:

What players have:

Player 1 Player 2 . . . Player p−1 Player p
fp fp−1 . . . f2 f1

Each round: players speak in order Player 1 through Player p
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Important Problem: Pointer Chasing

Definition:

Input: p functions fi : [n] → [n]

Goal: Compute fp(fp−1(. . . f2(f1(1)) . . .))

p-player version:

What players have:

Player 1 Player 2 . . . Player p−1 Player p
fp fp−1 . . . f2 f1

Each round: players speak in order Player 1 through Player p

Guha, McGregor (2007):

Computing in less then p = Θ(1) rounds
requires Ω(n) communication
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FKMSZ Lower Bound for BFS
Their Problem: Compute p levels of BFS tree from v
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FKMSZ Lower Bound for BFS
Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

Take communication lower bound for pointer chasing
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FKMSZ Lower Bound for BFS
Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

Take communication lower bound for pointer chasing

Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:

Solving k instances requires k times more
communication
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FKMSZ Lower Bound for BFS
Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

Take communication lower bound for pointer chasing

Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:

Solving k instances requires k times more
communication

Show: Computing a level p BFS tree in graph of degree

k = nΘ(1/p) enables solving k instances of pointer
chasing.
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FKMSZ Lower Bound for BFS
Their Problem: Compute p levels of BFS tree from v

Sketch of their proof:

Take communication lower bound for pointer chasing

Apply direct sum theorem of [Jain, Radhakrishnan, Sen (2003)]:

Solving k instances requires k times more
communication

Show: Computing a level p BFS tree in graph of degree

k = nΘ(1/p) enables solving k instances of pointer
chasing.

Our problem:

Only need to check if BFS trees intersect

Seems hard to infer full tree from this
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Proof Overview

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 19/29



Proof Overview

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:
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Problem BBB (Basic Building Block):
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Proof Overview

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Problem to solve: Is the result the same?

(If some function maps Ω(log n) elements to one
element, also say YES)
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Proof Overview
Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Problem to solve: Is the result the same?

(If some function maps Ω(log n) elements to one
element, also say YES)

Three Steps: (µ = uniform distribution)

1. ICµ,1/n2(BBB) ≈ Ω(n)
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Proof Overview
Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Problem to solve: Is the result the same?

(If some function maps Ω(log n) elements to one
element, also say YES)

Three Steps: (µ = uniform distribution)

1. ICµ,1/n2(BBB) ≈ Ω(n)

2. ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n
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Proof Overview
Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Problem to solve: Is the result the same?

(If some function maps Ω(log n) elements to one
element, also say YES)

Three Steps: (µ = uniform distribution)

1. ICµ,1/n2(BBB) ≈ Ω(n)

2. ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

Implies: CC1/10(
∨k

i=1 BBB) & Ω(kn)
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Proof Overview
Problem BBB (Basic Building Block):

2p players with two instances of pointer chasing

Problem to solve: Is the result the same?

(If some function maps Ω(log n) elements to one
element, also say YES)

Three Steps: (µ = uniform distribution)

1. ICµ,1/n2(BBB) ≈ Ω(n)

2. ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

Implies: CC1/10(
∨k

i=1 BBB) & Ω(kn)

3. CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nO(1/p)
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection

“Stack” k instances of BBB on top of each other

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection

“Stack” k instances of BBB on top of each other

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Gives instance of BFS tree intersection, but pointers
from two different instances may intersect
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection

Randomly relabel intermediate results of functions and
stack them on top of each other
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection

Randomly relabel intermediate results of functions and
stack them on top of each other

If pair of pointer chasing instances gives the same
element, BFS trees intersect
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Step 3

CC1/20(BFS tree intersection) & CC1/10(
∨k

i=1 BBB)

for k = nΘ(1/p)

Want: Protocol for
∨

k

i=1
BBB using protocol for BFS intersection

Randomly relabel intermediate results of functions and
stack them on top of each other

If pair of pointer chasing instances gives the same
element, BFS trees intersect

kp ≪ n and random scrambling =⇒ If no pair gives
the same element (and no Θ(log n)-to-1 mapping),
BFS trees unlikely to intersect
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Step 2
Statement:

ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n
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Step 2
Statement:

ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

How:

Product distribution:
information cost =

∑k
i=1 information cost on instance i
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Step 2
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∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

How:

Product distribution:
information cost =

∑k
i=1 information cost on instance i

Trivial, if all instances must be solved.
The problem asks only for

∨

(the instances)
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How:

Product distribution:
information cost =

∑k
i=1 information cost on instance i

Trivial, if all instances must be solved.
The problem asks only for

∨

(the instances)

For specific instance,
∨

(other instances) = false most of the time

Krzysztof Onak – Superlinear lower bounds for multipass graph processing – p. 21/29



Step 2
Statement:

ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

How:

Product distribution:
information cost =

∑k
i=1 information cost on instance i

Trivial, if all instances must be solved.
The problem asks only for

∨

(the instances)

For specific instance,
∨

(other instances) = false most of the time

Fix at random other instances s.t.
∨

(other instances) = false
⇒ protocol must solve the instance
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Step 2
Statement:

ICµk,1/(2n2)(
∨k

i=1 BBB) & k · ICµ,1/n2(BBB) ≈ Ω(kn) for k ≪ n

How:

Product distribution:
information cost =

∑k
i=1 information cost on instance i

Trivial, if all instances must be solved.
The problem asks only for

∨

(the instances)

For specific instance,
∨

(other instances) = false most of the time

Fix at random other instances s.t.
∨

(other instances) = false
⇒ protocol must solve the instance

Information cost won’t decrease significantly on
∨

(other instances) = true
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

What is known:

communication complexity for pointer chasing
is Ω(n) for uniform distribution
[Nisan, Wigderson 1993], [Guha, McGregor 2007]
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

What is known:

communication complexity for pointer chasing
is Ω(n) for uniform distribution
[Nisan, Wigderson 1993], [Guha, McGregor 2007]

Obstacles:

1. Need a proof for information complexity

2. Equality of pointer chasing instances

Need to account for impact of Θ(log n)-to-1 maps
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Obstacle 1: Need a proof for information complexity
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Obstacle 1: Need a proof for information complexity

Use [Jain, Radhakrishnan, Sen 2003]?

Π = constant-round protocol revealing information IC
with error ǫ:

There is a protocol Π′ with total communication ∼ IC /δ2

that errs with probability ǫ+ δ

i.e., “small information ⇒ small communication”
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Obstacle 1: Need a proof for information complexity

Use [Jain, Radhakrishnan, Sen 2003]?

Π = constant-round protocol revealing information IC
with error ǫ:

There is a protocol Π′ with total communication ∼ IC /δ2

that errs with probability ǫ+ δ

i.e., “small information ⇒ small communication”

Won’t suffice for us: δ = o(1/n)
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 1):

Use techniques of [JRS] to produce a protocol Π′

Π′ is deterministic

errs with twice the probability

sends messages of length ≤ IC ·pO(1)

with probability 1− p−Ω(1)
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with probability 1− p−Ω(1)

“Typically concise” protocol
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 1):

Use techniques of [JRS] to produce a protocol Π′

Π′ is deterministic

errs with twice the probability

sends messages of length ≤ IC ·pO(1)

with probability 1− p−Ω(1)

“Typically concise” protocol

Note: prob. of long message ≫ prob. of answer YES
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Modify [NW] for “typically concise” protocols and equality
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Modify [NW] for “typically concise” protocols and equality

Original argument for protocol tree:

simulate in parallel trivial algorithm:
make step forward when possible
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Modify [NW] for “typically concise” protocols and equality

Original argument for protocol tree:

simulate in parallel trivial algorithm:
make step forward when possible

xcurrent = current value in this algorithm
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Modify [NW] for “typically concise” protocols and equality

Original argument for protocol tree:

simulate in parallel trivial algorithm:
make step forward when possible

xcurrent = current value in this algorithm

by induction, H(fnext(xcurrent)) = log n− o(1)
for 1− o(1) fraction of internal nodes
for 1− o(1) fraction of leaves

with o(n) communication
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Modify [NW] for “typically concise” protocols and equality

Original argument for protocol tree:

simulate in parallel trivial algorithm:
make step forward when possible

xcurrent = current value in this algorithm

by induction, H(fnext(xcurrent)) = log n− o(1)
for 1− o(1) fraction of internal nodes
for 1− o(1) fraction of leaves

with o(n) communication

with this entropy, prob. of correct solution is o(1)
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

simulate in parallel trivial algorithm for both instances:
make step forward when possible
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

simulate in parallel trivial algorithm for both instances:
make step forward when possible

(xcurrent, ycurrent) = current values in this algorithm
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

simulate in parallel trivial algorithm for both instances:
make step forward when possible

(xcurrent, ycurrent) = current values in this algorithm

by induction, H(fnext(xcurrent)) = log n− o(1)
and H(gnext(ycurrent)) = log n− o(1)

for 1− o(1) fraction of internal nodes

for 1− o(1) fraction of leaves

with o(n) communication
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

simulate in parallel trivial algorithm for both instances:
make step forward when possible

(xcurrent, ycurrent) = current values in this algorithm

by induction, H(fnext(xcurrent)) = log n− o(1)
and H(gnext(ycurrent)) = log n− o(1)

for 1− o(1) fraction of internal nodes

for 1− o(1) fraction of leaves

with o(n) communication
(impact of rare long messages small)
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Entropy of solution to each pointer chasing log n− o(1)

Probability Ω(1/n) for 3
4n elements
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Entropy of solution to each pointer chasing log n− o(1)

Probability Ω(1/n) for 3
4n elements

Distributions independent:

deterministic protocol

pointer chasing instances held by different players

product input distribution
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Entropy of solution to each pointer chasing log n− o(1)

Probability Ω(1/n) for 3
4n elements

Distributions independent:

deterministic protocol

pointer chasing instances held by different players

product input distribution

must collide with probability

n/4 · Ω(1/n)2 = Ω(1/n)
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Step 1
Statement:

ICµ,1/n2(BBB) ≈ Ω(n)

Our solution (part 2):

Entropy of solution to each pointer chasing log n− o(1)

Probability Ω(1/n) for 3
4n elements

Distributions independent:

deterministic protocol

pointer chasing instances held by different players

product input distribution

must collide with probability

n/4 · Ω(1/n)2 = Ω(1/n)

protocol errs with probability Ω(1/n)
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Main result:

Shortest Path, Perfect Matching, and Directed Connectivity

require ∼n1+Ω(1/p) space in p passes
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Main result:

Shortest Path, Perfect Matching, and Directed Connectivity

require ∼n1+Ω(1/p) space in p passes

Open Questions:

Simpler proof?

Improve lower bounds from ∼Ω(n1+1/(2p)) to ∼Ω(n1+1/p)?
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Main result:

Shortest Path, Perfect Matching, and Directed Connectivity

require ∼n1+Ω(1/p) space in p passes

Open Questions:

Simpler proof?

Improve lower bounds from ∼Ω(n1+1/(2p)) to ∼Ω(n1+1/p)?

Better bounds for maximum matching?

Is looking for a few augmenting paths harder?

Can the techniques be used for approximate
matchings?
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Questions?
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