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Problems and LPs
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An approximation problem 𝑷 (max or min problem):

𝑆: set of feasible solutions

𝐹: set of considered objective functions (for simplicity: nonnegative)

𝐹∗: approximation guarantees, 𝑓∗ ∈ ℝ for each 𝑓 ∈ 𝐹

satisfying

max
𝑠∈𝑆

𝑓 𝑠 ≤ 𝑓∗ (max problem) or min
𝑠∈𝑆

𝑓 𝑠 ≥ 𝑓∗ (min problem) 

Example (exact min Vertex Cover): Given a graph 𝐺

𝑆: all vertex covers of graph 𝐺 (i.e., subsets of nodes covering all edges)

𝐹: all nonnegative weight vectors on vertices

𝐹∗: define 𝑓∗ ≔ min
𝑠∈𝑆

𝑓(𝑠)

Approximation Problems



LPs capturing Approximation Problems
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An LP formulation of an approximation problem 𝑷 = 𝑺, 𝑭, 𝑭∗ is a linear program 
𝐴𝑥 ≤ 𝑏 with 𝑥 ∈ ℝ𝑑 and realizations: 

a) Feasible solutions: for every 𝑠 ∈ 𝑆 we have xs ∈ ℝ𝑑 with

𝐴𝑥𝑠 ≤ 𝑏 for all 𝑠 ∈ 𝑆, (relaxation 𝑐𝑜𝑛𝑣(𝑥𝑠 ∣ 𝑠 ∈ 𝑆))

b) Objective functions: for every 𝑓 ∈ 𝐹 we have an affine 𝑤𝑓: ℝ𝑑 → ℝ with

𝑤𝑓 𝑥𝑠 = 𝑓 𝑠 for all 𝑠 ∈ 𝑆, (linearization that is exact on 𝑆)

c) Achieving approximation: for every 𝑓 ∈ 𝐹
 𝑓 = max 𝑤𝑓 𝑥 𝐴𝑥 ≤ 𝑏 ≤ 𝑓∗

(𝛋, 𝛕)-approximation:  𝑓 ≤ 𝜅 whenever max
𝑠∈𝑆

𝑓 𝑠 ≤ 𝜏 for 𝑓 ∈ 𝐹

Model of [Chan, Lee, Raghavendra, Steurer 13] and [Braun, P., Zink 14]



Formulation complexity. generalization of extension complexity
• Independent of P vs. NP

• Independent of a specific polyhedral representation 

• = Minimum extension complexity over all possible linear encodings

• Do not lift given representation but construct the optimal LP from factorization

• In fact: LP is trivial. Construct optimal encoding from factorization

• Restricted notion of nonnegative matrix factorization to support approximations
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Approximation 
Problem
𝑺, 𝑭, 𝑭∗

Slack matrix of 
problem

𝑀(𝑓, 𝑠) = 𝑓∗ − 𝑓(𝑠)

LP factorization
𝑀 = 𝑇 ⋅ 𝑈 + 𝜇 ⋅ 𝟏

(restr. NMF)

Optimal LP. 𝑥 ≥ 0 with encodings

feasible solutions: 𝑥𝑠 ≔ 𝑈𝑠 objective functions: 𝑤𝑓(𝑥) ≔ 𝑓∗ − 𝜇 𝑓 − 𝑇𝑓 ⋅ 𝑥

Factorization theorem. Let 𝑃 = 𝑆, 𝐹, 𝐹∗ be a problem and 𝑀 slack matrix of 𝑃
fc 𝑃 = 𝑟𝑎𝑛𝑘𝐿𝑃(𝑀)

Formulation Complexity
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Optimal LPs

𝑥 ≥ 0

𝑐𝑜𝑛𝑣{𝑥𝑠 ∣ 𝑠 ∈ 𝑆}

𝑤𝑓1(𝑥) = 𝑓1
∗ − 𝜇 𝑓1 − 𝑇𝑓1𝑥

𝑤𝑓2(𝑥) = 𝑓2
∗ − 𝜇 𝑓2 − 𝑇𝑓2𝑥

non-optimal
for all foptimal

for some f
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Information Theory + LPs



Information Theory: Summary

Entropy. 𝐻 𝑋 ≔  𝑥∈Ω𝑃 𝑋 ⋅ log
1

𝑃 𝑋

Joint Entropy. 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

Mutual Information. 𝐼 𝑋; 𝑌 ≔ 𝐻 𝑋 − 𝐻[𝑋|𝑌],

(how much information about 𝑋 is leaked by observing 𝑌)

Chain Rule. 𝐼 𝑋, 𝑌 ; 𝑍 = 𝐼 𝑋; 𝑍 + 𝐼 𝑌; 𝑍 𝑋

Direct Sum Property. 𝑍 = (𝑍1, … , 𝑍𝑛) be a mutually independent

𝐼 𝑋; 𝑍 ≥  

𝑖∈ 𝑛

𝐼 𝑋; 𝑍𝑖

Hellinger Distance. Π1, Π2 distributions

ℎ2 Π1, Π2 = 1 −  

𝜋

𝑃 Π1 = 𝜋 ⋅ 𝑃[Π2 = 𝜋]
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NMF and Information Theory

NMF and distributions. Let 𝐹, 𝑆 ∼ 𝑀/ 𝑀
1

and 𝑀 =  𝜋 𝑓𝜋𝑠𝜋
𝑇 with 𝑓𝜋, 𝑠𝜋 ≥ 0.

NMF => writing complicated distribution as mix of product distributions  
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Common information. 𝑀 nonnegative matrix, 𝑍 conditional [Wyner, 1975]
𝐶 𝑀 | 𝑍 ≔ inf

Π:NMF of M
Π⊥𝑍∣𝐹,𝑆

𝐼 𝐹, 𝑆; Π | 𝑍 .

Lower bounding 𝐫𝐤+(𝑴). 𝑀 nonnegative matrix
𝐶 𝑀 | 𝑍 ≤ inf

Π:NMF of 𝑀
Π⊥𝑍∣𝐹,𝑆

𝐻 Π | 𝑍 ≤ log 𝑟𝑘+ 𝑀



1 1

1 0

NMF and Information Theory
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Cut-and-Paste (for NMF). 𝑀 nonnegative matrix, Π𝑎,𝑏 ≔ Π|𝐴 = 𝑎, 𝐵 = 𝑏

𝑀 𝑓1, 𝑠1 ⋅ 𝑀 𝑓2, 𝑠2 1 − ℎ2 Π𝑓1,𝑠1; Π𝑓2,𝑠2

= 𝑀 𝑓1, 𝑠2 ⋅ 𝑀 𝑓2, 𝑠1 1 − ℎ2 Π𝑓1,𝑠2; Π𝑓2,𝑠1

0 = 1 ⋅ 1 − ℎ2 Π𝑓1,𝑠2; Π𝑓2,𝑠1 ⇔ ℎ2 Π𝑓1,𝑠2; Π𝑓2,𝑠1 = 1

(𝑓1, 𝑠2) and (𝑓2, 𝑠1) cannot be in the same rank-1 factor.

=> Information-theoretic 
fooling set method



General strategy. Let 𝑀 be a slack matrix. Bound 𝐼 𝐹, 𝑆; Π | 𝑍 for all possible Π:

1. Identify a conditional 𝑍 decomposing 𝐼 𝐹, 𝑆; Π | 𝑍 via direct sum theorem:

𝐼 𝐹, 𝑆; Π | 𝑍 ≥  

𝑖=1,…,𝑙

𝐼 𝐹𝑖 , 𝑆𝑖; Π | 𝑍 ≥ 𝑙 ⋅ min
𝑖

𝐼 𝐹𝑖 , 𝑆𝑖; Π | 𝑍

where for each 𝑖 we have a smaller sub-problem.

2. Lower bound 𝐼 𝐹𝑖 , 𝑆𝑖; Π | 𝑍 via polyhedral/inf-theoretic argument:
𝐼 𝐹𝑖 , 𝑆𝑖; Π | 𝑍 ≥ 𝐶

This then suffices:

 fc P = rk+ 𝑀 ≥ 2𝑙⋅𝐶

Nice side effect. We automatically get inapproximability results (due to continuity).

Today: Only indication of these steps. 
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NMF and Information Theory
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Correlation Polytope
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The correlation polytope

Functions. For any 𝑏 ∈ 0,1 𝑛

𝑓𝑏 𝑥 ≔ 1 − 𝑥𝑇𝑏 2

Solutions. For any 𝑥 ∈ 0,1 𝑛

𝑠𝑥 ≔ 𝑥

Associated Slack Matrix. 𝑀𝑛 𝑥, 𝑏 ≔ 1 − 𝑥𝑇𝑏 2

=> Contains UDISJ matrix as submatrix

Polyhedral equivalent is correlation polytope 

COR 𝑛 ≔ conv 𝑥𝑥𝑇 𝑥 ∈ 0,1 𝑛}
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The correlation polytope

UDISJ submatrix as probability distribution.  For some 𝑐 > 0

𝑃 𝐴 = 𝑎, 𝐵 = 𝑏 =  
𝑐

𝑐(1 − 𝜀)
if 𝑎 ∩ 𝑏 = ∅
if 𝑎 ∩ 𝑏 = 1

Decomposing conditional. 

1. C = (𝐶1, … , 𝐶𝑛) independent fair coins

2. New RVs 𝐷 = (𝐷1, … , 𝐷𝑛) with 𝐷𝑖 =  
𝐴𝑖

𝐵𝑖

if 𝐶𝑖 = 0
if 𝐶𝑖 = 1

=> Conditioning on 𝐷 = 0, 𝐶 ensures { 𝐴𝑖 , 𝐵𝑖 ∶ 𝑖 ∈ [𝑛]} are independent 

With this conditional (for minimal Π):

log 𝑟𝑘+ 𝑀 ≥ 𝐼 𝐴, 𝐵; Π 𝐷 = 0, 𝐶] ≥  

𝑖∈[𝑛]

𝐼 𝐴𝑖 , 𝐵𝑖; Π 𝐷 = 0, 𝐶] ≥ 𝜀/8 ⋅ 𝑛



15

The case 𝑛 = 1

Consider the term:

𝐼 𝐴1, 𝐵1; Π 𝐷 = 0, 𝐶] =
𝐼 𝐴1, 𝐵1; Π 𝐴1 = 0] + 𝐼 𝐴1, 𝐵1; Π 𝐵1 = 0]

2

With Π𝑎,𝑏 ≔ Π | 𝐴 = 𝑎, 𝐵 = 𝑏 we have (Lemma by Bar-Yossef et al.)

𝐼 𝐴1, 𝐵1; Π 𝐴1 = 0] ≥ 𝒉𝟐(𝚷𝟎𝟎; 𝚷𝟎𝟏)
𝐼 𝐴1, 𝐵1; Π 𝐵1 = 0] ≥ 𝒉𝟐(𝚷𝟎𝟎; 𝚷𝟏𝟎)

Not a smart idea though: ℎ2 Π00; Π01 = 0 possible as 00, 01 can be in the same 
rank-1 factor. (Similarly for ℎ2 Π00; Π10 = 0)
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Simultaneous estimation via CS and 𝚫-inequality

𝐼 𝐴1, 𝐵1; Π 𝐴1 = 0] + 𝐼 𝐴1, 𝐵1; Π 𝐵1 = 0]

2
≥

ℎ2 Π00; Π01 + ℎ2 Π00; Π10

2

≥
(ℎ Π00; Π01 + ℎ Π00; Π10 )2

4
(Cauchy−Schwarz Inequality)

≥
ℎ2 Π10; Π01

4
(𝜟−Inequality)

1 1

1 1 − 𝜀

Apply Cut-and-Paste.

ℎ2 Π10; Π01 ≥ 1 −
𝑀 0,0 ⋅ 𝑀 1,1

𝑀 0,1 ⋅ 𝑀 1,0
≥ 1 − 1 − 𝜀 ≥

𝜀

2
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Average case hardness for COR(n)

Theorem. Any LP approximating COR(𝑛) within a factor 𝑛1−𝜀 is of size 2
𝜀

8
𝑛.

Note: same result was obtained earlier by [Braverman, Moitra 13] (see talk)

However, common information captures all types of average case hardness:

Perturbation 𝐋𝐨𝐠 𝐫𝐤+ ≥ Remarks

UDISJ
6−3 log 3

4
𝑛 (optimal estimation)

Shifts of UDISJ
1

8𝜌
𝑛 (𝜌 − 1)-shift

Sets of fixed size
𝑛

4
+ 𝑂(𝑛1−𝜀)

1

8𝜌
𝑛 − 𝑂(𝑛1−𝜀))

Random 2 1−𝛼 𝑛 × 2 1−𝛽 𝑛 (
1

8𝜌
− 𝛼 − 𝛽) 𝑛 In expectation

Adversarial 1 − 𝛼 2𝑛 × 1 − 𝛽 2𝑛
1

8𝜌
− 𝛼 − 𝛽 𝑛 − log3 Removal of fraction per size
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The matching problem – a much more complicated case

Via a generalization of Razborov’s technique:

Theorem. [Rothvoss 14] Any LP formulation of the matching polytope is of 
exponential size.

This is very special and important:

1. Matching can be solved in polynomial time

2. Yet any LP capturing it is of exponential size

=> Separates the power of P from polynomial size LPs

With common information: ruling out the existence of FPTAS-type LP formulations

Theorem. [Braun, P. 14] For some 𝜀 > 0 any LP approximating the Matching 
Polytope within a factor 1 +

𝜀

𝑛
is of exponential size.



Thank you!
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