

Information Theory + Polyhedral Combinatorics

Sebastian Pokutta

Georgia Institute of Technology ISyE, ARC

Information Theory in Complexity Theory and Combinatorics Simons Institute *Berkeley, April 2015*

Joint work Gábor Braun

Problems and LPs

Approximation Problems

An **approximation problem** P (max or min problem):

: set of feasible solutions

 $F:$ set of considered objective functions (for simplicity: nonnegative)

 F^* : approximation guarantees, $f^* \in \mathbb{R}$ for each $f \in F$

satisfying

max s∈S $f(s) \leq f^*$ (max problem) or min s∈S $f(s) \geq f^*$ (min problem)

Example (exact min Vertex Cover): Given a graph G

S: all vertex covers of graph G (i.e., subsets of nodes covering all edges)

 $F:$ all nonnegative weight vectors on vertices

 F^* : define $f^* \coloneqq \min_{x \in F}$ s∈S $f(s)$

LPs capturing Approximation Problems

Model of [Chan, Lee, Raghavendra, Steurer 13] and [Braun, P., Zink 14]

An LP formulation of an approximation problem $P = (S, F, F^*)$ is a linear program $Ax \leq b$ with $x \in \mathbb{R}^d$ and *realizations*:

a) *Feasible solutions:* for every $s \in S$ we have $x^s \in \mathbb{R}^d$ with

 $Ax^{s} \leq b$ for all $s \in S$, (relaxation $conv(x^{s} \mid s \in S)$)

b) *Objective functions:* for every $f \in F$ we have an $\frac{\partial f}{\partial x^f}$ $\frac{1}{m}$ $\mathbb{R}^d \to \mathbb{R}$ with $w^f(x^s) = f(s)$ for all $s \in S$, (linearization that is exact on S)

c) *Achieving approximation:* for every $f \in F$ $\hat{f} = \max \{ w^f(x) | Ax \le b \} \le f^*$

 (κ, τ) -approximation: $\hat{f} \leq \kappa$ whenever max s∈S $f(s)\leq \tau$ for $f\in F$

Formulation Complexity

Factorization theorem. Let $P = (S, F, F^*)$ be a problem and M slack matrix of P $fc(P) = rank_{LP}(M)$

Optimal LP. $x \geq 0$ with encodings feasible solutions: $x^s \coloneqq U_s$ objective functions: $w^f(x) \coloneqq f^* - \mu(f) - T_f \cdot x$

Formulation complexity. generalization of extension complexity

- Independent of P vs. NP
- Independent of a specific polyhedral representation
- = Minimum extension complexity over all possible linear encodings
- Do not lift given representation but *construct* the optimal LP from factorization
- In fact: LP is trivial. Construct optimal encoding from factorization
- Restricted notion of nonnegative matrix factorization to support approximations

Optimal LPs

Information Theory + LPs

Information Theory: Summary

Entropy. $H[X] \coloneqq \sum_{x \in \Omega} P[X] \cdot \log \frac{1}{P[X]}$

Joint Entropy. $H[X, Y] = H[X] + H[Y|X]$

Mutual Information. $I[X; Y] \coloneqq H[X] - H[X|Y]$,

(how much information about is leaked by observing)

Chain Rule. $I[(X, Y); Z] = I[X; Z] + I[Y; Z|X]$

Direct Sum Property. $Z = (Z_1, ..., Z_n)$ be a mutually independent $I[X; Z] \geq \sum$ i∈[n $I[X;Z_i]$

Hellinger Distance. Π_1 , Π_2 distributions

$$
h^{2}(\Pi_{1}, \Pi_{2}) = 1 - \sum_{\pi} \sqrt{P[\Pi_{1} = \pi] \cdot P[\Pi_{2} = \pi]}
$$

NMF and Information Theory

NMF and distributions. Let $(F, S) \sim M / ||M||_1$ and $M = \sum_{\pi} f_{\pi} s_{\pi}^T$ with $f_{\pi}, s_{\pi} \geq 0$.

NMF => writing complicated distribution as mix of product distributions

Common information. *M* nonnegative matrix, *Z* conditional
$$
C[M \mid Z] := \inf_{\Pi: NMF \text{ of } M} I[F, S; \Pi \mid Z].
$$
 [Wyner, 1975]

Lower bounding $\text{rk}_+(M)$ **. M nonnegative matrix** $C[M | Z] \leq \inf$ $\inf_{\Pi: \text{NMF of } M} H[\Pi \mid Z] \leq \log rk_+(M)$ Π *⊥Z*| F , S

NMF and Information Theory

Cut-and-Paste (for NMF). *M* nonnegative matrix,
$$
\Pi_{a,b} := \Pi | A = a, B = b
$$

\n
$$
\sqrt{M(f_1, s_1) \cdot M(f_2, s_2)} \left(1 - h^2(\Pi_{f_1, s_1}; \Pi_{f_2, s_2})\right)
$$
\n
$$
= \sqrt{M(f_1, s_2) \cdot M(f_2, s_1)} \left(1 - h^2(\Pi_{f_1, s_2}; \Pi_{f_2, s_1})\right)
$$

=> Information-theoretic fooling set method

$$
0 = 1 \cdot \left(1 - h^2(\Pi_{f_1, S_2}; \Pi_{f_2, S_1})\right) \Leftrightarrow h^2(\Pi_{f_1, S_2}; \Pi_{f_2, S_1}) = 1
$$

 (f_1, s_2) and (f_2, s_1) cannot be in the same rank-1 factor.

NMF and Information Theory

General strategy. Let M be a slack matrix. Bound $I[F, S; \Pi | Z]$ for all possible Π :

1. Identify a conditional Z decomposing $I[F, S; \Pi | Z]$ via direct sum theorem:

$$
I[F, S; \Pi | Z] \ge \sum_{i=1,\dots,l} I[F_i, S_i; \Pi | Z] \ge l \cdot \min_i I[F_i, S_i; \Pi | Z]
$$

where for each i we have a smaller sub-problem.

2. Lower bound $I[F_i, S_i; \Pi | Z]$ via polyhedral/inf-theoretic argument: $I[F_i, S_i; \Pi | Z] \geq C$

This then suffices:

$$
\Rightarrow \operatorname{fc}(P) = \operatorname{rk}_+(M) \ge 2^{l \cdot C}
$$

Nice side effect. We automatically get inapproximability results (due to continuity).

Today: Only indication of these steps.

Correlation Polytope

The correlation polytope

Functions. For any
$$
b \in \{0,1\}^n
$$

$$
f_b(x) := (1 - x^T b)^2
$$

Solutions. For any $x \in \{0,1\}^n$

$$
s_x\coloneqq x
$$

Associated **Slack Matrix.**

$$
M_n(x,b) := (1 - x^T b)^2
$$

=> Contains UDISJ matrix as submatrix

Polyhedral equivalent is **correlation polytope**

$$
COR(n) \coloneqq \text{conv}\{xx^T \mid x \in \{0,1\}^n\}
$$

The correlation polytope

UDISJ submatrix as **probability distribution.** For some $c > 0$

$$
P[A = a, B = b] = \begin{cases} c & \text{if } a \cap b = \emptyset \\ c(1 - \varepsilon) & \text{if } |a \cap b| = 1 \end{cases}
$$

Decomposing **conditional.**

- 1. $C = (C_1, ..., C_n)$ independent fair coins
- 2. New RVs $D = (D_1, ..., D_n)$ with $D_i = \{$ A_i B_i if $C_i = 0$ if $C_i = 1$

=> Conditioning on $D = 0$, C ensures $\{(A_i, B_i) : i \in [n]\}$ are independent

With this conditional (for minimal Π):

$$
\log rk_+(M) \ge I[A, B; \Pi \mid D = 0, C] \ge \sum_{i \in [n]} I[A_i, B_i; \Pi \mid D = 0, C] \ge \varepsilon/8 \cdot n
$$

The case $n=1$

Consider the term:

$$
I[A_1, B_1; \Pi | D = 0, C] = \frac{I[A_1, B_1; \Pi | A_1 = 0] + I[A_1, B_1; \Pi | B_1 = 0]}{2}
$$

With $\Pi_{a,b} \coloneqq \Pi \mid A = a, B = b$ we have (Lemma by Bar-Yossef et al.)

$$
I[A_1, B_1; \Pi \mid A_1 = 0] \ge h^2(\Pi_{00}; \Pi_{01})
$$

$$
I[A_1, B_1; \Pi \mid B_1 = 0] \ge h^2(\Pi_{00}; \Pi_{10})
$$

Not a smart idea though: $h^2(\Pi_{00}; \Pi_{01}) = 0$ possible as 00, 01 can be in the same rank-1 factor. (Similarly for $h^2(\tilde{\Pi}_{00}; \tilde{\Pi}_{10}) = 0$)

Simultaneous estimation via CS and Δ -inequality

$$
\frac{I[A_1, B_1; \Pi | A_1 = 0] + I[A_1, B_1; \Pi | B_1 = 0]}{2} \ge \frac{h^2(\Pi_{00}; \Pi_{01}) + h^2(\Pi_{00}; \Pi_{10})}{2}
$$

\n
$$
\ge \frac{(h(\Pi_{00}; \Pi_{01}) + h(\Pi_{00}; \Pi_{10}))^2}{4}
$$
 (Cauchy-Schwarz Inequality)
\n
$$
\ge \frac{h^2(\Pi_{10}; \Pi_{01})}{4}
$$
 (A–Inequality)

 $\frac{1}{\ }$ $1 \quad |1-\varepsilon$ Apply **Cut-and-Paste.** $h^2(\Pi_{10}; \Pi_{01}) \geq 1$ – $M(0,0)\cdot M(1,1)$ $M(0,1)\cdot M(1,0)$ $\geq 1 - \sqrt{1 - \varepsilon} \geq$ $\mathcal{E}_{\mathcal{E}}$ 2

Average case hardness for COR(n)

Theorem. Any LP approximating $COR(n)$ within a factor $n^{1-\varepsilon}$ is of size 2 ϵ $\frac{\epsilon}{8}n$.

Note: same result was obtained earlier by [Braverman, Moitra 13] (see talk) However, common information captures all types of average case hardness:

The matching problem – a much more complicated case

Via a generalization of Razborov's technique:

Theorem. [Rothvoss 14] Any LP formulation of the matching polytope is of exponential size.

This is very special and important:

- 1. Matching can be solved in polynomial time
- 2. Yet any LP capturing it is of exponential size
- => Separates the power of P from polynomial size LPs

With common information: ruling out the existence of FPTAS-type LP formulations

Theorem. [Braun, P. 14] For some $\varepsilon > 0$ any LP approximating the Matching Polytope within a factor $1 + \frac{\varepsilon}{n}$ $\frac{c}{n}$ is of exponential size.

Thank you!

