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The Beckner-Bonami-Gross inequality Propoganda

Applications

Quote from [BT]:

First introduced into theoretical computer science by the celebrated
work of Kahn, Kalai, and Linial [15], the Hypercontractive Inequality
has seen utility in a surprisingly wide variety of areas, spanning
distributed computing, random graphs, k-SAT, social choice,
inapproximability, learning theory, metric spaces, statistical physics,
convex relaxation hierarchies, etc. [2, 6, 22, 8, 9, 10, 11, 5, 18, 17,
21, 13, 19, 1]. In almost every one of these results there are no known
alternate proofs that do not require the use of hypercontractivity.
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The Beckner-Bonami-Gross inequality The Fourier-Walsh basis

The Fourier-Walsh Basis

Consider the coordinates Xi of a vector X as functions on {−1, 1}n

For every I ⊆ {1, . . . , n} define

XI :=
∏
i∈I

Xi

This set, of 2n monomials, forms an orthonormal basis of the space of
real functions on {−1, 1}n.

Every real function on {−1, 1}n has a unique expansion

f =
∑

f̂ (I )XI
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The Beckner-Bonami-Gross inequality Definitions of the operator

The tensor definition of the operator

Let ε ∈ [0, 1].

Let f : {−1, 1} → R, f (X ) = aX + b.

Define Tε(f )(X ) := εaX + b.

Then Tε := T⊗nε is a linear operator acting on real functions on
{−1, 1}n
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The Beckner-Bonami-Gross inequality Definitions of the operator

The spectral definition of the operator

Let ε ∈ [0, 1]. Define

TεXi = εXi

TεXI =
∏
{i∈I}

TεXi = ε|I |XI

Tεf =
∑

f̂ (I )ε|I |XI
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The Beckner-Bonami-Gross inequality Definitions of the operator

The operator as a noise/averaging operator

Let ε ∈ [0, 1]. Let X be chosen from any distribution on {−1, 1}n.

Let Y be such that for every 1 ≤ i ≤ n, the coordinate Yi is chosen
independently so that PR[Yi = Xi ] = 1+ε

2 , or, in other words,
E [XiYi ] = ε.

X and Y are called an ε-correlated pair.

Define for any f and fixed X

Tε(f )(X ) = E [f (Y )],

where X and Y are ε correlated.
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The Beckner-Bonami-Gross inequality The inequality, and the dual version

The inequality and its dual

Bonami[68,70],Gross[75],Beckner[75]

Let f : {−1, 1}n → R, and ε ∈ [0, 1]. Then

|Tεf |2 ≤ |f |1+ε2

Dual version

Let f : {−1, 1}n → R be a polynomial of degree m, and q ≥ 2. Then

|f |q ≤
(√

q − 1
)m
|f |2
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An entropy proof of the dual (w/ Rödl)

Theorems

F, Rödl, 2001

We might have written in the introduction: ”Bonami and others proved a
similar result in the seventies, however our result is more recent, and less
general” (...but it uses entropy.)
Theorem: Let f : {−1, 1}n be a polynomial of degree m. Then

|f |4 ≤ (
4
√

28)m|f |2

Blais, Tan, 2013

Let f : {−1, 1}n be a polynomial of degree m, and q an even positive
integer. Then

|f |q ≤
(√

q − 1
)m
|f |2

Note that this is the optimal constant.
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Theorems
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An entropy proof of the dual (w/ Rödl)

Let f =
∑

f̂ (I )XI , where every XI is monomial of degree m,
XI =

∏
i∈I Xi . Then

|f |22 = E (f 2) =
∑

f̂ (I )2

and
|f |44 = E (f 4) =

∑
I∆J∆K∆L=∅

f̂ (I )f̂ (J)f̂ (K )f̂ (L).
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An entropy proof of the dual (w/ Rödl)

Plan of proof

Let I∆J∆K∆L = ∅. Fix a partition P of {1, . . . , n} with parts
corresponding to the Venn diagram of (I,J ,K,L) and prove that( ∑

I∆J∆K∆L=∅

f̂ (I )f̂ (J)f̂ (K )f̂ (L)

)2

≤

(∑
I

f̂ (I )2

)(∑
J

f̂ (J)2

)(∑
K

f̂ (K )2

)(∑
L

f̂ (L)2

)
where all sums are only over quadruples of sets, that are consistent
with P.

To this end invoke a fractional version of Shearer’s lemma.

Show that the above expressions for a random partition reflect |f |4
and |f |2 fairly well. (This already introduces a loss of a multiplicative
constant).
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An entropy proof of the dual (w/ Rödl)

Theorems

Shearer’s Lemma[’86]

Let t be a positive integer. Let E ⊆ P(V ) , and let F1 . . .Fr ⊆ V such
that every vertex in V belongs to at least t of the sets Fi . Let
Ei = {e ∩ Fi : e ∈ E}. Then

|E |t ≤
∏
|Ei |.

Fractional version [F, 2004]

Let ei := e ∩ Fi . Let every edge ei ∈ Ei be endowed with a nonnegative
weight wi (ei ). Then(∑

e∈E

r∏
i=1

wi (ei )

)t

≤
∏
i

∑
ei∈Ei

wi (ei )
t .

So.
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An entropy proof of the dual (w/ Rödl)

Shearer → Beckner

Fractional Shearer (∑
e∈E

r∏
i=1

wi (ei )

)t

≤
∏
i

∑
ei∈Ei

wi (ei )
t .

Comparison of norms( ∑
I∆J∆K∆L=∅

f̂ (I )f̂ (J)f̂ (K )f̂ (L)

)2

≤

(∑
I

f̂ (I )2

)(∑
J

f̂ (J)2

)(∑
K

f̂ (K )2

)(∑
L

f̂ (L)2

)
.
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An information theoretic proof of the primal version

Theorems

The Boolean case

Let ε ∈ (0, 1), and let X ,Y ⊆ {0, 1}n be nonempty. Let X be uniformly
distributed on {0, 1}n, and let Y be such that for each 1 ≤ i ≤ n
independently Pr [Xi = Yi ] = 1+ε

2 . Then

E [1X (X )1Y(Y )] ≤ (µ(X )µ(Y))
1

1+ε ,

with equality iff X = Y = {0, 1}n

The general case

Let ε ∈ (0, 1),and X ,Y ∈ {0, 1}n as above, and let f , g : {0, 1}n → R≥0 .
Then

E [f (X )g(Y )] ≤ |f |1+ε|g |1+ε.
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An information theoretic proof of the primal version

The Boolean case

We want to prove

E [1X (X )1Y(Y )] ≤ (µ(X )µ(Y))
1

1+ε .

This easily translates to

log

(∑
X∈X

∑
Y∈Y

(1 + ε)a(X ,Y )(1− ε)d(X ,Y )

)∗
≤

1

1 + ε
(2εn + log(|X |) + log(|Y|))

*Where a stands for ”agree” and d for ”disagree”.
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An information theoretic proof of the primal version

The Boolean case

Letting s ≤ r be positive integers so that 1+ε
2 = r

s+r and 1−ε
2 = s

r+s this
gives

log

(∑
X∈X

∑
Y∈Y

ra(X ,Y )sd(X ,Y )

)
≤

n(log(r + s)− s/r) +
r + s

2r
(log(|X |) + log(|Y|))
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An information theoretic proof of the primal version

The Boolean case

H(Zi |Past) ≤ (log(r + s)− s/r) +
r + s

2r
(H(Xi |Past) + H(Yi |Past)).

Using H(Zi ) = H(Xi ,Yi ) + H(Zi |Xi ,Yi ) this is equivalent to

r + s

2r
(H(Xi ) + H(Yi ))− H(Xi ,Yi )− (Pr [Xi = Yi ]) log r

−(Pr [Xi 6= Yi ]) log s + log(r + s)− s

r
≥ 0

Note this is invariant if s and r are multiplied by a positive constant, so
set r = 1, s = δ , 0 ≤ δ ≤ 1.
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An information theoretic proof of the primal version

The Boolean case

So now we have an elementary calculus problem. Let

(
a b
c d

)
be a

distribution of (X ,Y ) on {0, 1}2. Prove

Fδ

(
a b
c d

)
:= (1 + δ) [H(X ) + H(Y )]− H(X ,Y )

−(Pr [X 6= Y ]) log δ + log(1 + δ)− δ ≥ 0

Show

(
a b
c d

)
=

( δ
2+2δ

1
2+2δ

1
2+2δ

δ
2+2δ

)
is a unique minimum.
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An information theoretic proof of the primal version

The Boolean case

Using Lagrange multipliers, a necessary condition for a local extramum is

δ

a
[(a + b)(a + c)](1+δ)/2 = (1)

1

b
[(a + b)(b + d)](1+δ)/2 = (2)

1

c
[(a + c)(c + d)](1+δ)/2 = (3)

δ

d
[(c + d)(b + d)](1+δ)/2 . (4)

Ehud Friedgut (WIS) Entropy and hypercontractivity April 30, 2015 22 / 29



An information theoretic proof of the primal version

The Boolean case

Using Lagrange multipliers, a necessary condition for a local extramum is

δ

a
[(a + b)(a + c)](1+δ)/2 = (1)

1

b
[(a + b)(b + d)](1+δ)/2 = (2)

1

c
[(a + c)(c + d)](1+δ)/2 = (3)

δ

d
[(c + d)(b + d)](1+δ)/2 . (4)

Ehud Friedgut (WIS) Entropy and hypercontractivity April 30, 2015 22 / 29



An information theoretic proof of the primal version

The Boolean case

This implies (without much effort...) a = d and ad = δ2bc.

All that is
missing is b = c . Sadly, for some values of δ there are other local minima.
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An information theoretic proof of the primal version

The Boolean case

However...

we haven’t really used the facts that

H(Zi |Xi = 0,Yi = 1) = H(Zi |Xi = 1,Yi = 0)

and
H(Zi |Xi = 1,Yi = 1) = H(Zi |Xi = 0,Yi = 0).

So instead of using

H(Zi ) = H(Xi ,Yi ) + H(Zi |Xi ,Yi )

we let W indicate whether Xi = Yi or not, and use

H(Zi ) = H(W ) + H(Zi |W ).
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An information theoretic proof of the primal version

The Boolean case

This leads to a slightly different expression, with the Lagrange multipliers
now yielding a + d = δ(b + c).

Together with our previous information
(a = d , ad = δ2bc), this shows that the unique minimum on the interior
of the region in question is ( δ

2+2δ
1

2+2δ
1

2+2δ
δ

2+2δ

)
as required.
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An information theoretic proof of the primal version

The not-necessarily-Boolean case

How about non-Boolean functions?

now we have to prove that for
non-negative (w.l.o.g. positive integer-valued) f , g

log

(∑
X∈X

∑
Y∈Y

ra(X ,Y )sd(X ,Y )f (X )g(Y )

)
≤

n(log(r + s)− s/r)+

r + s

2r

log

 ∑
X∈0,1n

f (X )
2r
r+s

+ log

 ∑
Y∈0,1n

f (Y )
2r
r+s

 .

Ehud Friedgut (WIS) Entropy and hypercontractivity April 30, 2015 26 / 29



An information theoretic proof of the primal version

The not-necessarily-Boolean case

How about non-Boolean functions? now we have to prove that for
non-negative (w.l.o.g. positive integer-valued) f , g

log

(∑
X∈X

∑
Y∈Y

ra(X ,Y )sd(X ,Y )f (X )g(Y )

)
≤

n(log(r + s)− s/r)+

r + s

2r

log

 ∑
X∈0,1n

f (X )
2r
r+s

+ log

 ∑
Y∈0,1n

f (Y )
2r
r+s

 .

Ehud Friedgut (WIS) Entropy and hypercontractivity April 30, 2015 26 / 29



An information theoretic proof of the primal version

The not-necessarily-Boolean case

log

(∑
X∈X

∑
Y∈Y

ra(X ,Y )sd(X ,Y )f (X )g(Y )

)
≤

n(log(r + s)− s/r)+

r + s

2r

log

 ∑
X∈0,1n

f (X )
2r
r+s

+ log

 ∑
Y∈0,1n

f (Y )
2r
r+s

 .

”Enhance” (Z ,X ,Y ) of before to (Z ,X ,Y , a, b), where (a, b) is uniform
on {1, . . . , f (X )} × {1, . . . , g(Y )}.
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An information theoretic proof of the primal version

Punchline

H(Z , a, b) = H(Z ) + H((a, b)|Z ) =

H(Z ) + E [log(f (X )) + log(g(Y ))]

Note that H(X ) + E [log(f (X ))] ≤
∑

X log(f (X )) and hence

r + s

2r
(H(X ) + H(Y )) + E [log(f (X )) + log(g(Y ))]

≤ r + s

2r

log

 ∑
X∈0,1n

f (X )
2r
r+s

+ log

 ∑
Y∈0,1n

f (Y )
2r
r+s

 .

which is what we needed.
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An information theoretic proof of the primal version

Thank you for your attention!
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