Interactive compression to entropy

Shay Moran (Technion)

based on work with

Balthazar Bauer (ENS) and Amir Yehudayoff (Technion)

KO KKOK KEK KEK LE I KORO

Compression

Compression is about identifying the essential parts of objects of interest (and discarding the rest).

Compressing is often an evidence of understanding

Occam's razor - "Simpler is better". Einstein's razor - "Make things as simple as possible, but not simpler".

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Here we focus on compression of conversations.

A conversation that is easy to compress

Alice: hi. Bob: hi. Alice: how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: great. how are you? Bob: great. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. bye. Alice: bye.

Model

Communication complexity [Yao '79].

There are 2 players: Alice and Bob. Alice gets input x and Bob gets input y .

They communicate according to a *protocol* π : Alice says m_1 , Bob says m_2 , Alice says m_3 , ...

KORK ERKER ADE YOUR

The transcript is denoted by M_{π} .

Roughly, we want shorten the conversation as much as possible while keeping its content.

There are several ways to measure information [Shannon, ... ,(Bar-Yossef)-Jayram-Kumar-Sivakumar, Chakrabarti-Shi-Wirth-Yao, Barak-Braverman-Chen-Rao, ... , Bauer-M-Yehudayoff, ...].

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Information complexities: external and internal information

The input (X, Y) is drawn from a known distribution μ .

The external information of π is

$$
I_{\mu}^{\text{ext}}=I(M_{\pi}:XY)
$$

Number of bits an external observer learns on the input from the transcript

The internal information of π is

$$
I_\mu^{int} = I(M_\pi : Y|X) + I(M_\pi : X|Y)
$$

Number of bits that Alice learns on input from the transcript $+$ Number of bits that Bob learns on input from the transcript

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Information complexities: external and internal entropies

The input (X, Y) is drawn from a known distribution μ .

The external entropy of π is

$$
H_{\mu}^{\text{ext}}=H(M_{\pi})
$$

Number of bits required to describe the transcript to an external observer

The internal entropy of π is

$$
H_\mu^{int}=H(M_\pi|X)+H(M_\pi|Y)
$$

Number of bits required to describe the transcript to Alice $+$ Number of bits required to describe the transcript to Bob

KORK (FRAGE) EL POLO

Information versus entropy

$$
H_{\mu}^{\text{ext}} \ge I_{\mu}^{\text{ext}} \text{ and } H_{\mu}^{\text{int}} \ge I_{\mu}^{\text{int}}.
$$

Both are lower bounds on communication.

Information satisfies direct sum.

[Braverman-Rao] $Internal information = Amortized communication$.

 $H_\mu^{\text{ext}}=I_\mu^{\text{ext}}$ and $H_\mu^{\text{int}}=I_\mu^{\text{int}}$ for protocols without private randomness.

In this talk all protocols are deterministic

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A protocol σ is an external ϵ -error simulation of π if there exists a dictionary D such that the distribution of (x, y, M_π) is ϵ -close in statistical distance to that of $(x, y, D(M_{\sigma}))$.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

An external observer can infer M_{π} from M_{σ} .

A protocol σ is an internal ϵ -error simulation of π if there exists private dictionaries D_{Alice} , D_{Bob} , such that the distribution of (x, y, M_π) is ϵ -close in statistical distance to that of $(x, y, D_{Alice}(M_{\sigma}, x))$ and $(x, y, D_{Bob}(M_{\sigma}, y))$.

KORKAR KERKER EL VOLO

Alice and Bob can infer M_{π} from M_{σ} . This is not necessarily true for an external observer!

Lower bounds

If σ is an external 0-error simulation of π then

$$
\mathsf{CC}_{\mu}(\sigma) \geq H_{\mu}^{\text{ext}}(\pi).
$$

If σ is an internal 0-error simulation of π then

 $CC_{\mu}(\sigma) \geq H_{\mu}^{\text{int}}(\pi).$

Are these lower bounds tight?

External compression: Upper bounds

Huffman code: If in π just Alice speaks

 $\forall \mu \exists$ external 0-error simulation σ : $\mathsf{CC}_{\mu}(\sigma) \leq H^{\text{ext}}_{\mu}(\pi) + 1.$

[Dietzfelbinger-Wunderlich]

 $\forall \pi, \mu \exists$ external 0-error simulation σ : $\mathsf{CC}_{\mu}(\sigma) \leq 2.18 H_{\mu}^{\text{ext}}(\pi) + 2.$

The 2.18 factor can be improved [Kushilevitz - private communication]

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Internal compression: Upper bounds

[Barak-Braverman-Chen-Rao[∗] ,

Brody-Buhrman-Koucky-Loff-Speelman-Vereshchagin, Pankratov]

 $\forall \pi, \mu, \epsilon > 0$ \exists interrnal ϵ -error simulation σ : $\mathsf{CC}_{\mu}(\sigma) \leq O_{\epsilon}\big(H^{\mathsf{int}}_{\mu}(\pi) \log \mathsf{CC}_{\mu}(\pi)\big).$

[Bauer-M-Yehudayoff]

 $\forall \pi, \mu, \epsilon > 0$ \exists interrnal ϵ -error simulation σ : $\mathsf{CC}_\mu(\sigma) \leq O_\epsilon\big((H_\mu^{\text{int}}(\pi))^2\log\log\mathsf{CC}_\mu(\pi)\big).$

A corollary: There is a private coin protocol with information $O(k)$ and communication 2^{2^k} such that every public coin simulation of it with information $O(k)$ has an exponential loss in communication [Ganor-Kol-Raz].

External simulation [Dietzfelbinger-Wunderlich]

[Dietzfelbinger-Wunderlich]

 $\forall \pi, \mu \exists$ external 0-error simulation σ : $\mathsf{CC}_{\mu}(\sigma) \leq 2.18 H_{\mu}^{\mathsf{ext}}(\pi) + 2.$

Proof:

Let π be a deterministic protocol.

We want to construct a protocol σ which simulates π with 0-error and $\mathit{CC}_{\mu}(\sigma) = O(H_{\mu}^{\text{ext}}(\pi)).$

KORKAR KERKER EL VOLO

Idea: Communicate 2 bits and convey 0.5 bits of information.

Meaningful vertices

Let π be a protocol and μ a distribution on inputs.

For every vertex v in π the set

 $R_v = \{(x, y) : v$ is an ancestor of $M_\pi(x, y)$

is a rectangle.

v is meaningful if either

- $-1/3 < \mu(R_v) < 2/3$, or
- v is a leaf and $\mu(R_v) > 2/3$.

Lemma: For all μ, π there exists a meaningful vertex!

4 D > 4 P + 4 B + 4 B + B + 9 Q O

External simulation [Dietzfelbinger-Wunderlich]

Description of σ on input (x, y) :

- \blacktriangleright Let v be a meaningful vertex. Alice and Bob communicate 2 bits to determine if $(x, y) \in R_{v}$ and update μ accordingly.
- \triangleright Either v was a leaf and the simulation is over or they learned 0.5 bits of information (since v is "meaningful").

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

An external compression: Summary

[Dietzfelbinger-Wunderlich]

 $\forall \pi, \mu \exists$ external 0-error simulation σ : $\mathsf{CC}_{\mu}(\sigma) \leq 2.18 H_{\mu}^{\text{ext}}(\pi) + 2.$

Idea: Communicate 2 bits and convey 0.5 bits of information.

Can something similar work for internal entropy?

What is a meaningful vertex in this case?

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Internal compression - meaningful vertices

Let (x, y) be an input and let v be a vertex in T_{π} .

 $-\mu_{x}(R_{y}) = \mu(R_{y} \mid X = x)$ Alice's perspective $-\mu_{\nu}(R_{\nu}) = \mu(R_{\nu} | Y = \gamma)$ Bob's perspective

Alice has a meaningful vertex v_a with respect to μ_x . Bob has a meaningful vertex v_b with respect to μ_v .

KORKAR KERKER EL VOLO

Internal compression

Alice has a meaningful vertex v_a . Bob has a meaningful vertex v_b .

If both knew v_a or $v_b \implies$ communicate 2 bits to learn 0.5 bits.

Problem: Alice doesn't know v_b , Bob doesn't know v_a

KORK ERKER ADE YOUR

Internal compression

Problem: Alice doesn't know v_b , Bob doesn't know v_a Observation: Enough that they agree on a vertex v such that - v is an ancestor of v_a , and - v is not an ancestor of v_b .

Can be done with $O_\epsilon(H_\mu^\text{int}(\pi)$ log log $\mathsf{CC}_\mu(\pi))$ communication:

- [Feige,Peleg, Raghavan, Upfal] protocol for finding the first difference,

- A variant of sampling from [Braverman-Ra[o\]](#page-18-0). A server we have a server

Summary

Defined a couple of meanings for "compressing a conversation."

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- Optimal external compression [Dietzfelbinger-Wunderlich].
- Efficient internal compression [Bauer-M-Yehudayoff].

We still do not have a full understanding.