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For any X , Y, R, and � > 0,
Theorem: (folk)

Proof: Learn the channel via training symbols.

How large must n be? (as a function of |X | and |Y |)
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Definition:
{(Xn,Yn)}�n=1 supports universal
communication if for all � > 0 and all {Rn}�n=1

• cf. universal lossless compression
• Orlitsky et al. 
• Boucheron et al. 
• Shamir  
• Szpankowski and Weinberger
• ...
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|Xn| · |Yn| = # of parameters in the channel
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• Similarly to #2, capacity of mixture 
channel is 
• Decoder must learn locations of the     

to hit this rate

• Can learn locations for some rows ...
• ... but not for all of them.
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{(Xn,Yn)}�n=1 support communication
at capacity if for all � > 0 and all {Rn}�n=1

Theorem (Gao and Wagner ’13):                  
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