Fast Approximations of the Pattern Maximum LikelihoodEstimate

Pascal O. Vontobel Department of Information EngineeringThe Chinese University of Hong Kong

Talk at Simons Institute, UC Berkeley, CA, March 20, ²⁰¹⁵

Fast Approximations of the Pattern Maximum Likelihood

Estimate

Pascal O. Vontobel Department of Information EngineeringThe Chinese University of Hong Kong

Talk at Simons Institute, UC Berkeley, CA, March 20, ²⁰¹⁵

Overview

PML distribution: Pattern Maximum Likelihood distribution

- Definition of the PML distribution
- Gibbs free energy approach to the PML distribution
- Bethe/Sinkhorn approximation to the PML distribution
- Valiant–Valiant estimate of distribution histogram
- Connections
- Conclusions / Outlook

Pattern maximum likelihood estimate

Memoryless source with finite alphabet ${\cal X}$ and distribution $\boldsymbol{\pi}.$

E.g.,
$$
\mathcal{X} = \{a, b, c, d, e, f\}.
$$

Memoryless source with finite alphabet ${\cal X}$ and distribution $\boldsymbol{\pi}.$ \bullet

E.g.,
$$
\mathcal{X} = \{a, b, c, d, e, f\}.
$$

Consider a length- n sequence ${\bf x}$ produced by this source.

$$
E.g., \t x = c c a d c d e a
$$

Memoryless source with finite alphabet ${\cal X}$ and distribution $\boldsymbol{\pi}.$

E.g.,
$$
\mathcal{X} = \{a, b, c, d, e, f\}.
$$

Consider a length- n sequence ${\bf x}$ produced by this source.

$$
E.g., \t x = c c a d c d e a
$$

ML estimate of distribution $\boldsymbol{\pi}$ given sequence \mathbf{x} :

$$
\hat{\pi}_x \triangleq \frac{|\{\ell \,|\, x_\ell = x\}|}{n}, \quad x \in \mathcal{X}.
$$

Estimates Based on $\boldsymbol{\pi}$

Estimates Based on $\boldsymbol{\pi}$

Entropy estimate: \bullet

$$
\widehat{H(X)} = -\sum_x \hat{\pi}_x \log(\hat{\pi}_x)
$$

Support estimate:

...

 $\begin{array}{c} \bullet \\ \bullet \end{array}$

$$
|\widehat{\text{supp}(\pi)}| = \left\{ x \ : \ \hat{\pi}_x > 0 \right\}
$$

Sorted Distribution

Sorted Distribution

Sorted Distribution

Sorted distribution $\mathbf p$: non-increasingly sorted version of $\boldsymbol\pi.$

Estimates Based on $\mathbf p$

Estimates Based on $\mathbf p$

Entropy estimate:

$$
\widehat{H(X)} = -\sum_{i} \hat{p}_i \log(\hat{p}_i)
$$

Support estimate:

...

 \bullet

$$
|\widehat{\text{supp}(\pi)}| = \big\{ i \,:\, \hat{p}_i > 0 \big\}
$$

For estimating $\overline{\mathbf{p}}$ based on $\overline{\mathbf{x}}$:

The pattern $\boldsymbol{\psi}$ of ${\bf x}$ is a sufficient statistic.

For estimating $\overline{\mathbf{p}}$ based on $\overline{\mathbf{x}}$:

The pattern $\boldsymbol{\psi}$ of ${\bf x}$ is a sufficient statistic.

Consider a finite-length sequence ${\bf x}$ produced by the source.

E.g., ^x= $= c c a d c d d e a$

For estimating $\overline{\mathbf{p}}$ based on $\overline{\mathbf{x}}$:

The pattern $\boldsymbol{\psi}$ of ${\bf x}$ is a sufficient statistic.

Consider a finite-length sequence ${\bf x}$ produced by the source.

$$
E.g., \t x = c c a d c d e a
$$

Pattern ψ :

Replaces the symbols in ${\bf x}$ by their order of first appearance.

Here, ψ $= 1 1 2 3 1 3 3 4 2$

Permutation $\sigma: \; \{1,\ldots,6\} \; \rightarrow \; \{1,\ldots,6\}.$

Permutation matrix \mathbf{M}_σ .

Pattern maximum likelihood (PML) distribution (Orlitsky *et al.*):

Given $\boldsymbol{\psi}$, what is the most likely \mathbf{p} ?

Pattern maximum likelihood (PML) distribution (Orlitsky *et al.*):

$$
\mathbf{p}^{\mathrm{PML}}(\boldsymbol{\psi}) \triangleq \arg \max_{\mathbf{p}} P(\boldsymbol{\psi} \mid \mathbf{p}).
$$

The above probability can be expressed as follows:

$$
P(\boldsymbol{\psi} \mid \mathbf{p}) = \sum_{\sigma} p_1^{\mu_{\sigma(1)}} p_2^{\mu_{\sigma(2)}} \cdots p_k^{\mu_{\sigma(k)}}.
$$

The above probability can be expressed as follows:

$$
P(\boldsymbol{\psi} \mid \mathbf{p}) = \sum_{\sigma} p_1^{\mu_{\sigma(1)}} p_2^{\mu_{\sigma(2)}} \cdots p_k^{\mu_{\sigma(k)}}.
$$

This probability can be expressed as follows:

$$
P(\psi | \mathbf{p}) \propto \text{perm}(\boldsymbol{\theta}(\mathbf{p}, \psi)),
$$

with

$$
\boldsymbol{\theta}(\mathbf{p}, \boldsymbol{\psi}) \triangleq \begin{pmatrix} p_1^{\mu_1} & p_1^{\mu_2} & \cdots & p_1^{\mu_k} \\ p_2^{\mu_1} & p_2^{\mu_2} & \cdots & p_2^{\mu_k} \\ \vdots & \vdots & & \vdots \\ p_k^{\mu_1} & p_k^{\mu_2} & \cdots & p_k^{\mu_k} \end{pmatrix}
$$

 \mathcal{L}

where $\bm{\mu}$ \triangleq $\bm{\mu}(\bm{\psi})$ are the multiplicities of the integers in the pattern.

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

 \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ $\mathbf p$.

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

$$
\mathbf{p}^* = \arg \max_{\mathbf{p}} \text{ perm}(\boldsymbol{\theta}(\mathbf{p})).
$$

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

> \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ p.

⇒ This problem appears intractable for practically relevant problem sizes.

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

> \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ p.

 \Rightarrow One needs to come up with approximate optimization algorithms:

 \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ p.

- ⇒ One needs to come up with approximate optimization algorithms:
	- Monte Carlo Markov chain (MCMC) based approaches.

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

> \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ p.

- ⇒ One needs to come up with approximate optimization algorithms:
	- Monte Carlo Markov chain (MCMC) based approaches.
	- **Surrogate function based approaches.**

Finding the PML distribution means finding the pmf $\overline{\mathbf{p}}$ that maximizes

> \mathbf{p}^* $\mathbf{v}^* = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)$ p.

- ⇒ One needs to come up with approximate optimization algorithms:
	- Monte Carlo Markov chain (MCMC) based approaches.
	- **Surrogate function based approaches.**

...
Estimating the Permanent of ^a Matrix

10000 experiments with matrices of size 10 \times 10 and structure $\boldsymbol{\theta}(\mathbf{p}).$

Log of true permanent

of true permanent

DO-

Estimating the Permanent of ^a Matrix

Sinkhorn permanent based LB/UB give

^a deterministic polynomial-time algorithm to approximate the permanent of ^a non-negative matrix up to a multiplicative factor of e^n .

[Linial, Samorodnitsky, Wigderson, 2000]

Bethe permanent based LB/UB give

^a deterministic polynomial-time algorithm to approximate the permanent of ^a non-negative matrix up to a multiplicative factor of 2^n (conjecture: $\sqrt{2}^n$). [Gurvits, Samorodnitsky, 2014]

Gibbs free energy approachto PML distribution

$$
\mathbf{p}^{\mathrm{PML}} = \arg\max_{\mathbf{p}}\,\mathrm{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

We replace $\operatorname{perm}\big(\bm{\theta}(\mathbf{p})\big)$ by the solution of an optimization problem:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp(-F_{\text{Gibbs}}(\gamma; \boldsymbol{\theta})).
$$

We replace $\operatorname{perm}\big(\bm{\theta}(\mathbf{p})\big)$ by the solution of an optimization problem:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp\big(-F_{\text{Gibbs}}(\gamma;\boldsymbol{\theta})\big).
$$

Gibbs free energy

We replace $\operatorname{perm}\big(\bm{\theta}(\mathbf{p})\big)$ by the solution of an optimization problem:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp\big(-F_{\text{Gibbs}}(\gamma;\boldsymbol{\theta})\big).
$$

Gibbs free energy

Combined:

$$
\mathbf{p}^{\mathrm{PML}} = \arg \max_{\mathbf{p}} \max_{\gamma} \exp \Big(-F_{\mathrm{Gibbs}}(\gamma; \theta(\mathbf{p})) \Big).
$$

$$
\gamma_{\rm Gibbs}^*=\sum_{\sigma}P(\sigma|{\bf p},\boldsymbol{\psi})\cdot{\bf M}_{\sigma}
$$

We replace $\operatorname{perm}\big(\bm{\theta}(\mathbf{p})\big)$ by the solution of an optimization problem:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp\big(-F_{\text{Gibbs}}(\gamma;\boldsymbol{\theta})\big).
$$

Gibbs free energy

Combined:

$$
\mathbf{p}^{\mathrm{PML}} = \arg \max_{\mathbf{p}} \max_{\gamma} \exp \Big(-F_{\mathrm{Gibbs}}(\gamma; \theta(\mathbf{p})) \Big).
$$

This suggests the following alternating maximization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\boldsymbol{\gamma}^{(t)} = \arg\max_{\boldsymbol{\gamma}}\, \exp\Big(-F_{\mathrm{Gibbs}}\big(\boldsymbol{\gamma};\boldsymbol{\theta}(\mathbf{p}^{(t-1)})\big)\Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \exp \left(-F_{\text{Gibbs}}(\boldsymbol{\gamma}^{(t)}; \boldsymbol{\theta}(\mathbf{p})) \right)
$$

This suggests the following alternating maximization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\boldsymbol{\gamma}^{(t)} = \arg\max_{\boldsymbol{\gamma}}\, \exp\Big(-F_{\mathrm{Gibbs}}\big(\boldsymbol{\gamma};\boldsymbol{\theta}(\mathbf{p}^{(t-1)})\big)\Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \, \exp \Big(-F_{\text{Gibbs}} \big(\gamma^{(t)}; \boldsymbol{\theta}(\mathbf{p}) \big) \Big)
$$

This algorithm is equivalent to an expectation maximization (EM) algorithm proposed by Orlitsky *et al.*

This suggests the following alternating maximization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\boldsymbol{\gamma}^{(t)} = \arg\max_{\boldsymbol{\gamma}}\, \exp\Big(-F_{\mathrm{Gibbs}}\big(\boldsymbol{\gamma};\boldsymbol{\theta}(\mathbf{p}^{(t-1)})\big)\Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \, \exp \Big(-F_{\text{Gibbs}} \big(\gamma^{(t)}; \boldsymbol{\theta}(\mathbf{p}) \big) \Big)
$$

Can be approximated with the help of MCMC based techniques.

Bethe approximation to PML distribution

Recall:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp\big(-F_{\text{Gibbs}}(\gamma;\boldsymbol{\theta})\big).
$$

Gibbs free energy

Combined:

$$
\mathbf{p}^{\mathrm{PML}} = \arg \max_{\mathbf{p}} \max_{\gamma} \exp \Big(-F_{\mathrm{Gibbs}}(\gamma; \boldsymbol{\theta}(\mathbf{p}))\Big).
$$

Bethe Approximation to thePattern ML Distribution

Now:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) \approx \max_{\gamma} \exp\big(-F_{\text{Bethe}}(\gamma;\boldsymbol{\theta})\big).
$$

Bethe free energy

Combined:

$$
\mathbf{p}^{\text{PML}} \approx \mathbf{p}^{\text{BPML}} \stackrel{\Delta}{=} \arg \max_{\mathbf{p}} \max_{\gamma} \exp \Big(-F_{\text{Bethe}}(\gamma; \boldsymbol{\theta}(\mathbf{p}))\Big).
$$

Bethe Approximation to thePattern ML Distribution

We can rewrite this as an

alternating minimization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\gamma^{(t)} = \arg\max_{\gamma} \, \exp\Big(- F_\text{Bethe}\big(\gamma; \boldsymbol{\theta}(\mathbf{p}^{(t-1)})\big)\Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \, \exp \Big(- F_{\text{Bethe}} \big(\gamma^{(t)} ; \boldsymbol{\theta}(\mathbf{p}) \big) \Big)
$$

Bethe Approximation to thePattern ML Distribution

We can rewrite this as an

alternating minimization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\boldsymbol{\gamma}^{(t)} = \arg \max_{\boldsymbol{\gamma}} \, \exp \Big(- F_{\text{Bethe}} \big(\boldsymbol{\gamma}; \boldsymbol{\theta}(\mathbf{p}^{(t-1)}) \big) \Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \, \exp \Big(- F_{\text{Bethe}} \big(\gamma^{(t)} ; \boldsymbol{\theta}(\mathbf{p}) \big) \Big)
$$

Sinkhorn approximation to PML distribution

Recall:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}\left(\boldsymbol{\theta}(\mathbf{p})\right)
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) = \max_{\gamma} \exp\big(-F_{\text{Gibbs}}(\gamma;\boldsymbol{\theta})\big).
$$

Gibbs free energy

Combined:

$$
\mathbf{p}^{\mathrm{PML}} = \arg \max_{\mathbf{p}} \max_{\gamma} \exp \Big(-F_{\mathrm{Gibbs}}(\gamma; \boldsymbol{\theta}(\mathbf{p}))\Big).
$$

Sinkhorn Approximation to thePattern ML Distribution

Now:

$$
\mathbf{p}^{\text{PML}} = \arg \max_{\mathbf{p}} \text{perm}(\boldsymbol{\theta}(\mathbf{p}))
$$

\n
$$
\uparrow
$$

\n
$$
\text{perm}(\boldsymbol{\theta}) \approx \max_{\gamma} \exp(-F_{\text{Sinkhorn}}(\gamma; \boldsymbol{\theta})).
$$

Sinkhorn free energy

Combined:

$$
\mathbf{p}^{\mathrm{PML}} \approx \mathbf{p}^{\mathrm{BPML}} \stackrel{\Delta}{=} \arg \max_{\mathbf{p}} \max_{\gamma} \, \exp \Big(-F_{\mathrm{Sinkhorn}} \big(\gamma; \boldsymbol{\theta}(\mathbf{p}) \big) \Big).
$$

Sinkhorn Approximation to thePattern ML Distribution

We can rewrite this as an

alternating minimization algorithm:

- Fix some $\mathbf{p}^{(0)}$.
- For $t=1,2,\ldots$ do:
	- First half:

$$
\boldsymbol{\gamma}^{(t)} = \arg \max_{\boldsymbol{\gamma}} \, \exp \Big(- F_{\text{Sinkhorn}} \big(\boldsymbol{\gamma}; \boldsymbol{\theta}(\mathbf{p}^{(t-1)}) \big) \Big)
$$

• Second half:

$$
\mathbf{p}^{(t)} = \arg \max_{\mathbf{p}} \, \exp \Big(-F_{\text{Sinkhorn}} \big(\gamma^{(t)}; \boldsymbol{\theta}(\mathbf{p}) \big) \Big)
$$

Key ingredients:

Key ingredients:

Poissonization trick:

instead of sequences of length n consider sequences of length n' where $n' \sim$ $\sim \text{Poisson}(n)$

Key ingredients:

Poissonization trick:

instead of sequences of length n consider sequences of length n' where $n' \sim$ $\sim \text{Poisson}(n)$ \Rightarrow multiplicities of pattern symbols are independent!

Key ingredients:

Poissonization trick:

instead of sequences of length n consider sequences of length n' where $n' \sim$ $\sim \text{Poisson}(n)$ \Rightarrow multiplicities of pattern symbols are independent!

A source symbol with probablity p will yield a pattern symbol with multiplicity μ where

> $\mu \sim$ $\sim \text{Poisson}(n \cdot p).$

Key ingredients:

Set up ^a linear program that looks for ^a sorted distribution

$$
\mathbf{p} = \left(\underbrace{p^{(1)}, \dots, p^{(1)}}_{\text{length } k^{(1)}}, \underbrace{p^{(2)}, \dots, p^{(2)}}_{\text{length } k^{(2)}}, \dots, \underbrace{p^{(L)}, \dots, p^{(L)}}_{\text{length } k^{(L)}} \right)
$$

- such that the expected multiplicity histogram "matches" the observed mulitiplicty vector $\boldsymbol{\mu}$
- such that p $\mathcal{P}^{(\ell)} \in \mathcal{Q}$ for some finite set \mathcal{Q}
- and such that $k^{(1)} + k^{(2)} + \cdots + k^{(L)} = k$.

Key ingredients:

Set up ^a linear program that looks for ^a sorted distribution

- such that the expected multiplicity histogram "matches" the observed mulitiplicty vector $\boldsymbol{\mu}$
- such that p $\mathcal{P}^{(\ell)} \in \mathcal{Q}$ for some finite set \mathcal{Q}
- and such that $k^{(1)} + k^{(2)} + \cdots + k^{(L)} = k$.

Note: there is ^a bijection between

sorted distributions and distribution histograms.

Connections

Based on the sorted distribution \mathbf{p}^{*} found by the above LP, one can define a $k\times k$ matrix $\boldsymbol{\gamma}^*$ with entries

$$
\gamma_{i,j}^* \triangleq e^{-np_i^*} \cdot \frac{(np_i^*)^{\mu_j}}{\mu_j! \cdot \varphi_{\mu_j}}, \quad (i,j) \in [k]^2.
$$

such that

- $\bullet\,$ The matrix $\boldsymbol{\gamma}^*$ is approximately doubly stochastic. By this we mean
	- that all entries are non-negative and
	- $\bullet\,$ that the row and column sums are approximately $1.$
- The vector-matrix pair (\mathbf{p}^*, γ^*) is close to being a stationary point of $F_{\textrm{Sinkhorn}}\big(\boldsymbol{\gamma}^{(t)};\boldsymbol{\theta}(\mathbf{p})\big)$.

We have defined the PML estimate and various approximations.

- We have defined the PML estimate and various approximations.
- We have defined the Valiant–Valiant estimate of the distribution \bullet histogram.

- We have defined the PML estimate and various approximations.
- We have defined the Valiant–Valiant estimate of the distributionhistogram.
- We have discussed <mark>connections</mark> between these estimates.

- We have defined the PML estimate and various approximations.
- We have defined the Valiant–Valiant estimate of the distributionhistogram.
- We have discussed <mark>connections</mark> between these estimates.
- The <mark>key object</mark> for establishing these connections and for establishing properties of these estimates is the matrix γ and its approximations.
Conclusions / Outlook

- We have defined the PML estimate and various approximations.
- We have defined the Valiant–Valiant estimate of the distributionhistogram.
- We have discussed <mark>connections</mark> between these estimates.
- The <mark>key object</mark> for establishing these connections and for establishing properties of these estimates is the matrix γ and its approximations.
- Use insights to <mark>speed up</mark> Bethe PML and Sinkhorn PML algorithms.

Thank you!

i
E

医气态