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Motivation – Biology & String Matching

Biological world is highly stochasticand inhomogeneous (S. Salzberg).

Start codon codons Donor site

 CGCCATGCCCTTCTCCAACAGGTGAGTGAGC

Transcription
      start

Exon

Promoter 5’ UTR CCTCCCAGCCCTGCCCAG

Acceptor site

Intron

Stop codon

GATCCCCATGCCTGAGGGCCCCTC
GGCAGAAACAATAAAACCAC

Poly-A site

3’ UTR



Motivation – Google & Subsequnce Matching



Motivation – Twitter & String Complexity

Figure 1: Two similar twitter texts have many common words

Figure 2: Twitters Classification
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Pattern Matching

Let W and T be (set of) strings generated over a finite alphabet A.

We call W the pattern and T the text. The text T is of length n and is

generated by a probabilistic source.

We shall write

T n
m = Tm . . . Tn.

The pattern W can be a single string

W = w1 . . . wm, wi ∈ A

or a set of strings

W = {W1, . . . ,Wd}
with Wi ∈ Ami being a set of strings of length mi.

Basic question:

how many times W occurs in T (or how long to wait until W occurs in T ).

Define

On(W) = #{i : T i
i−m+1 = W, m ≤ i ≤ n}.



Varations on Pattern Matching

(Exact) String Matching

In the exact string matching the pattern W = w1 . . . wm is a given string

(i.e., consecutive sequence of symbols).

Generalized String Matching

In the generalized pattern matching a set of patterns (rather than a

single pattern) is given, that is,

W = (W0,W1, . . . ,Wd), Wi ∈ Ami

where Wi itself for i ≥ 1 is a subset of Ami (i.e., a set of words of a given

length mi).

The set W0 is called the forbidden set.

Three cases to be considered:

W0 = ∅ — one is interested in the number of patterns from W occurring

in the text.

W0 6= ∅ — we study the number of Wi, i ≥ 1 pattern occurrences under

the condition that no pattern from W0 occurs in the text.

Wi = ∅, i ≥ 1, W0 6= ∅ — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence W = w1 . . . wm rather

than a string, that is, we look for indices 1 ≤ i1 < i2 < · · · < im ≤ n such

that

Ti1
= w1, Ti2

= w2, · · · , Tim = wm.

We also say that the word W is “hidden” in the text.

For example:

W = date

T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not

even once as a string.

Self-Repetitive Pattern Matching

n this case the pattern W is part of the text:

W = T
m
1 .

We may ask when the first m symbols of the text will occur again. This is

important in Lempel-Ziv like compression algorithms.
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How do you distinguish a cat from a dog by their DNA? 

Did Shakespeare really write all of his plays? 

Pattern matching techniques can offer answers to these questions and to 
many others, from molecular biology, to telecommunications, to classifying 
Twitter content. 

This book for researchers and graduate students demonstrates the 
probabilistic approach to pattern matching, which predicts the performance 
of pattern matching algorithms with very high precision using analytic 
combinatorics and analytic information theory.  Part I compiles known 
results of pattern matching problems via analytic methods. Part II focuses on 
applications to various data structures on words, such as digital trees, suffix 
trees, string complexity and string-based data compression. The authors use 
results and techniques from Part I and also introduce new methodology such 
as the Mellin transform and analytic depoissonization. 

More than 100 end-of-chapter problems help the reader to make the link 
between theory and practice.

Philippe Jacquet is a research director at INRIA, a major public research 
lab in Computer Science in France. He has been a major contributor to the 
Internet OLSR protocol for mobile networks. His research interests involve 
information theory, probability theory, quantum telecommunication, 
protocol design, performance evaluation and optimization, and the analysis 
of algorithms. Since 2012 he has been with Alcatel-Lucent Bell Labs as head 
of the department of Mathematics of Dynamic Networks and Information. 
Jacquet is a member of the prestigious French Corps des Mines, known for 
excellence in French industry, with the rank of “Ingenieur General”. He is 
also a member of ACM and IEEE.

Wojciech Szpankowski is Saul Rosen Professor of Computer Science and (by 
courtesy) Electrical and Computer Engineering at Purdue University, where 
he teaches and conducts research in analysis of algorithms, information 
theory, bioinformatics, analytic combinatorics, random structures, 
and stability problems of distributed systems. In 2008 he launched the 
interdisciplinary Institute for Science of Information, and in 2010 he became 
the Director of the newly established NSF Science and Technology Center 
for Science of Information. Szpankowski is a Fellow of IEEE and an Erskine 
Fellow. He received the Humboldt Research Award in 2010.
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Analysis: Exact String Matching

In the exact string matching the pattern W = w1 . . . wm is a given string and

one searches for its occurrences in a random text T n
1 .

Memoryless Source: The text is a realization of an independently, identically

distributed sequence of random variables such that a symbol s ∈ A occurs

with probability P (s).

Extensions to Markovian Source are relatively easy.

Objective: probabilistic laws for

On(W) = #{i : T
i
i−m+1 = W, m ≤ i ≤ n}.

Tools. Symbolic calculus and analytic tools of languages:

Language L is a collection of words satisfying some properties.

Generating function L(z) of language L is defined as

L(z) =
∑

u∈L
P (u)z

|u|

where P (w) is the stationary probability u occurrence, |u| is the length of w.



Autocorrelation Set and Polynomial

Given a pattern W , we define the autocorrelation set S as:

S = {wm
k+1 : wk

1 = wm
m−k+1}, wk

1 = wm
m−k+1

and WW is the set of positions k satisfying wk
1 = wm

m−k+1.

w1 wk wm-k+1 wm

S

The generating function of S is S(z) known also as the autocorrelation

polynomial.

S(z) =
∑

k∈WW
P (w

m
k+1)z

m−k
.

Example: Let W = bab over the alphabet A = {a, b}.

WW = {1, 3} and S = {ǫ, ab},

where ǫ is the empty word, since

b a b

b a b

For the unbiased memoryless source: S(z) = 1 + P (ab)z2 = 1 + z2

4 .



Language Tr and Associated Languages

Define Tr as set of words containing exactly r ≥ 1 occurrences of W :

Tr = R · Mr−1 · U.

which can be illustrated as

R M M M U

T4

(i) We define R as the set of words containing only one occurrence of W ,

located at the right end. For example, for W = aba, we have ccaba ∈ R.

(ii) We also define U as

U = {u : W · u· ∈ T1}
that is, a word u ∈ U if W ·u has exactly one occurrence of W at the left

end of W · u,

bba ∈ U, ba /∈ U.

(iii) Let M be the language:

M = {u : W · u ∈ T2 and W occurs at the right of W · u},

that is, M is a language such that WM has exactly two occurrences of

W at the left and right end of a word from M (e.g., ba ∈ M since ababa).



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and R satisfy:

⋃

k≥1

Mk = A∗ · W + S − {ǫ},

U · A = M + U − {ǫ}, W · M = A · R − (R − W) ,

where A∗ is the set of all words.

(ii) The generating functions associated with languages M,U and R satisfy

1

1 − M(z)
= SW(z) + P (W)

zm

1 − z
,

UW(z) =
M(z) − 1

z − 1
, R(z) = P (W)z

m · UW(z)

Theorem 1. The generating functions Tr(z) =
∑

n≥0 Pr{On(W) = r}zn and

T (z, u) =
∑∞

r=1 Tr(z)u
r satisfy

Tr(z) = R(z)M
r−1
W (z)UW(z) , r ≥ 1

T (z, u) = R(z)
u

1 − uM(z)
UW(z).



Main Results: Asymptotics

Theorem 2. (i) Moments. The expectation satisfies, for n ≥ m:

E[On(W)] = P (W)(n − m + 1),

while the variance is

Var[On(W)] = nc1 + c2

with

c1 = P (W)(2S(1) − 1 − (2m − 1)P (W) ,

c2 = P (W)((m − 1)(3m − 1)P (W) − (m − 1)(2S(1) − 1) − 2S
′
(1)).

(ii) Case r = O(1). Let ρW be the smallest root of

DW(z) = (1 − z)SW(z) + zmP (W) = 0.

Then

Pr{On(W) = r} ∼
r+1
∑

j=1

(−1)jaj

( n

j − 1

)

ρ
−(n+j)
W

where

ar+1 =
ρm
WP (W) (ρW − 1)r−1

(

D′
W(ρW)

)r+1
,

and the remaining coefficients can be easily computed, too.



Central Limit and Large Deviations

(iii) CLT: Case r = EOn + x
√
VarOn for x = O(1). Then:

Pr{On(W) = r} =
1√

2πc1n
e
−1
2x

2
(

1 + O

(

1√
n

))

.

(iv) Large Deviations: Case r = (1 + δ)EOn. Let a = (1 + δ)P (W) with

δ 6= 0. For complex t, define ρ(t) to be the root of

1 − e
t
MW(e

ρ
) = 0 ,

while ωa and σa are defined as

−ρ
′
(ωa) = a

−ρ
′′
(ωa) = σ

2
a

Then

Pr{On(W) ∼ (1 + δ)EOn} =
e−(n−m+1)I(a)+δa

σa

√

2π(n − m + 1)

where I(a) = aωa + ρ(ωa) and δa is a constant.



Biology – Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever

a word is overrepresented, then its subwords are also overrepresented.

For example, if W1 = AATAAA, then

W2 = ATAAAN

is also overrepresented.

Overrepresented subwords are called artifact, and it is important to

disregard automatically noise created by artifacts.

New Approach:

Once a dominating signal has been detected, we look for a weaker

signal by comparing the number of observed occurrences of patterns

to the conditional expectations not the regular expectations.

To solve this harder quastion one needs a new approach thru Generalized

Pattern Matching discussed in Chapter 4. Thea, as in Denise and Regnier

(2002) we find

E[On(W2)|On(W1) = k] ∼ αn.

When W1 is overrepresented the constant α differs significantly from

E[On(W2].



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA

polyadenylation signal in mRNA of humans genes. To avoid artifacts

Beaudoing et al cancelled all sequences where the overrepresented

hexamer was found.

Using our approach Denise and Regnier (2002) discovered/eliminated all

artifacts and found new signals in a much simpler and reliable way.

Hexamer Obs. Rk Exp. Z-sc. Rk Cd.Exp. Cd.Z-sc. Rk

AAUAAA 3456 1 363.16 167.03 1 1

AAAUAA 1721 2 363.16 71.25 2 1678.53 1.04 1300

AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404

UUUUUU 1105 4 416.36 33.75 8 373 .30 37.87 2

AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078

AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420

UAAAAU 1017 7 373.23 33.32 9 780.18 8.48 211

AUUAAA 1013 l 373.23 33.12 10 385.85 31.93 3

AUAAAG 972 9 184.27 58.03 4 593.90 15.51 34

UAAUAA 922 10 373.23 28.41 13 1233.24 –8.86 4034

UAAAAA 922 11 363.16 29.32 12 922.67 9.79 155

UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4

CAAUAA 847 13 185.59 48.55 5 613.24 9.44 167

AAAAAA 841 14 353.37 25.94 14 496.38 15.47 36

UAAAUA 805 15 373.23 22.35 21 1143.73 –10.02 4068
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