Nearly Linear-Time Algorithms for Structured Sparsity

Piotr Indyk

Joint work with C. Hegde and L. Schmidt (MIT), J. Kane and L. Lu and X. Chi and D. Hohl (Shell)

But first....

Congratulations Boston! Snowiest Season On Record

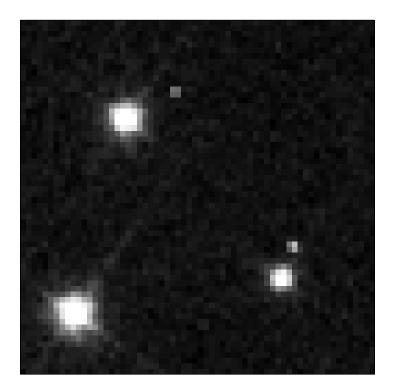
108.6 INCHES!

Previous Record 107.6" (1995-1996)

Website: www.weather.gov/boston Twitter: @NWSBoston Facebook: http://www.facebook.com/NWSBoston

Sparsity in data

• Data is often **sparse**



seismic image

Hubble image (cropped)

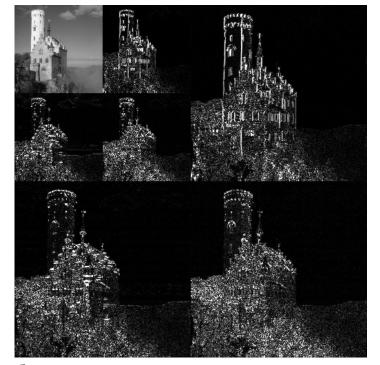
Data can be specified by values and locations of their k large coefficients (2k numbers)

Sparsity in data

 Data is often sparsely expressed using a suitable linear transformation

n pixels

Wavelet transform

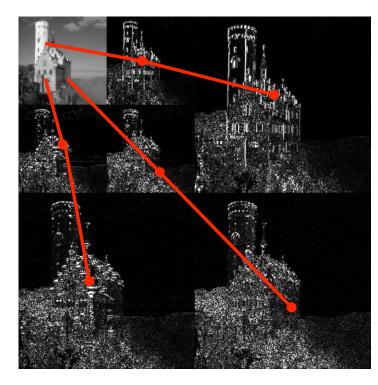


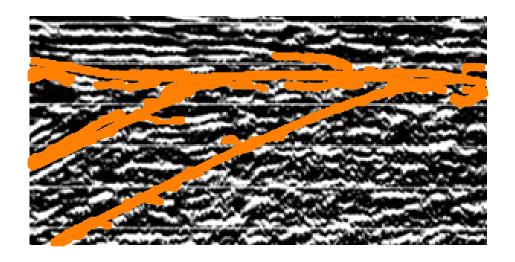
 $k \ll n$ large wavelet coefficients

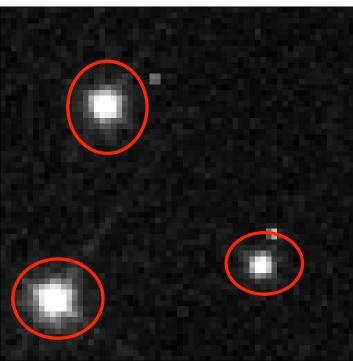
Data can be specified by values and locations of their k large **wavelet** coefficients (2k numbers)

Beyond sparsity

- Notion of sparsity captures
 simple primary structure
- But locations of large coefficients often exhibit rich secondary structure







This talk

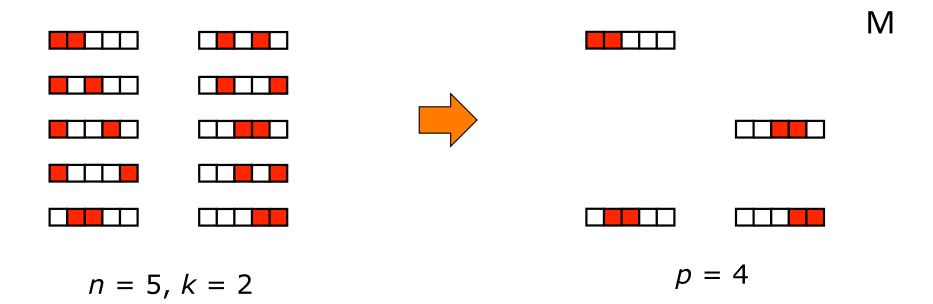
- Structured sparsity:
 - Models
 - Examples: Block sparsity, Tree sparsity, Constrained EMD, Clustered Sparsity
- Efficient algorithms: how to extract structured sparse representations quickly
- Applications:
 - Approximation-tolerant) model-based compressive sensing
 - Fault detection in seismic images

Modeling approach

Def: Specify a list of *p* allowable sparsity patterns $M = \{\Omega_1, \ldots, \Omega_p\}$ where $\Omega_i \subseteq [n], |\Omega_i| \le k$

Then, a **structured sparsity model** is the space of signals supported on one of the patterns in M

 $\mathcal{M} = \{x \in \mathbb{R}^n \mid \exists \Omega_i \in \Omega : \operatorname{supp}(x) \subseteq \Omega_i\}$

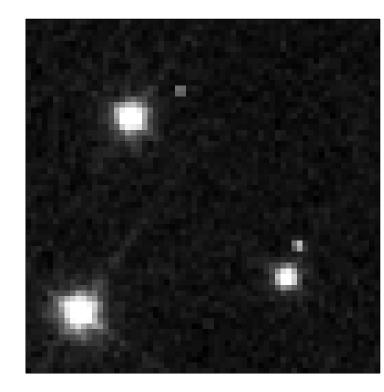


Model I: Block sparsity

- "Large coefficients hang out in groups"
- Parameters: k, b (block length) and l (number of blocks)
- The range {1...n} is partitioned into b-length blocks B₁...B_{n/b}
- M contains all combinations of *e* blocks, i.e.,

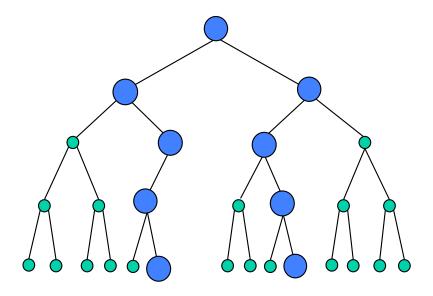
 $M = \{ B_{i1} \cup ... \cup B_{i\ell} : i_1, ..., i_{\ell} \in \{1...n/b\} \}$

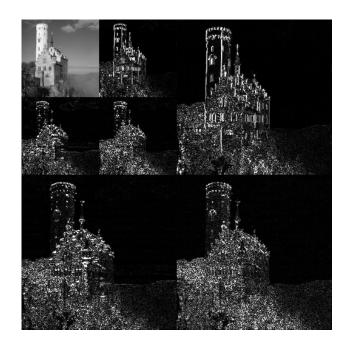
• Sparsity k=b_l



Model II: Tree-sparsity

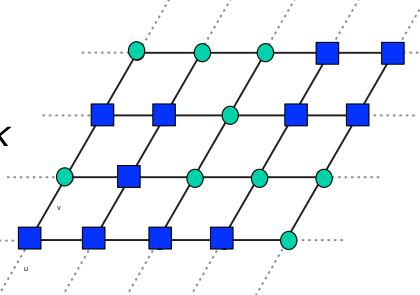
- "Large coefficients hang out on a tree"
- Parameters: k,t
- Coefficients are nodes in a full t-ary tree
- M is the set of all rooted connected subtrees of size k





Model III: Graph sparsity

- Parameters: k, g, graph G
- Coefficients are nodes in G
- M contains all subgraphs with k nodes that are clustered into g connected components

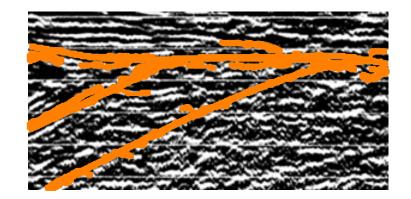


What can we do with those models ?

- Structured sparsity model specifies a hypothesis class for signals of interest
- For an arbitrary input signal x, a model projection oracle extracts structure by returning the "closest" signal in model

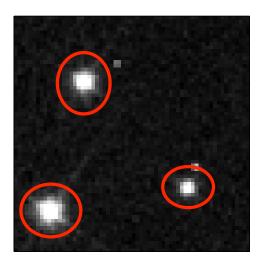
 $M(x) = \operatorname{argmin}_{\Omega \in M} ||x - x_{\Omega}||_{2}$

- Applications:
 - Compression
 - Denoising
 - Machine learning
 - Model-based compressive sensing



Algorithms for model projection

 Good news: several important models admit projection oracles with polynomial time complexity



Block thresholding

(**linear** time: O(n))

Blocks

Dynamic programming (rectangular time: O(nk))

Trees

- Bad news:
 - Polynomial time is not enough. E.g., consider a 'moderate' problem: n = 10 million, k = 5% of n. Then, $nk > 5 \times 10^{12}$
 - For some models (e.g., graph sparsity), model projection is NP-hard

Approximation to the rescue

- Instead of finding an exact solution to the projection $M(x) = \operatorname{argmin}_{\Omega \in M} ||x-x_{\Omega}||_{2}$
 - we solve it approximately (and much faster)
- What does "approximately" mean ?
 - − (Tail) $||x-T(x)|| \le C_T \operatorname{argmin}_{\Omega \in M} ||x-x_{\Omega}||_2$
 - (Head) $||H(x)|| \ge C_H \operatorname{argmax}_{\Omega \in M} ||x_{\Omega}||_2$
- Choice depends on applications
 - Tail: works great if approximation is good
 - Head: meaningful output even if approximation is not good
- For compressive sensing application we need both !

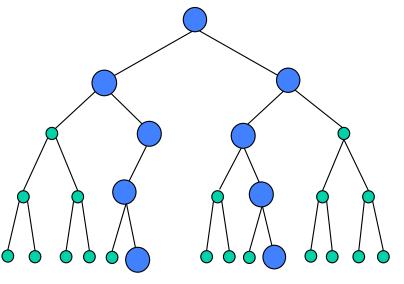
Our results

Model	Previous time	Our time
Tree sparsity	O(nk) [exact]	O(n log ² n) [H/T]
Graph sparsity	O(n ^T) [approximate]	O(n log ⁴ n) [H/T]
Constrained EMD		

Tree sparsity

(Tail) $||x-T(x)|| \le C_T \operatorname{argmin}_{\Omega \in Tree} ||x-x_{\Omega}||_2$

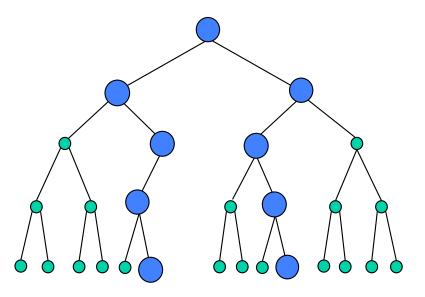
(Head) $||H(x)|| \ge C_H \operatorname{argmax}_{\Omega \in Tree} ||X_{\Omega}||_2$



	Runtime	Guarantee
Baraniuk-Jones '94	O(n log n)	?
Donoho `97	O(n)	?
Bohanec-Bratko `94	O(n ²)	Exact
Cartis-Thompson '13	O(nk)	Exact
This work	O(n log n)	Approx. Head
This work	O(n log n + k log ² n)	Approx. Tail

Proof (techniques)

- Approximate "tail" oracle:
 - Idea: Lagrangian relaxation + Pareto curve analysis
- Approximate "head" oracle:
 - Idea: Submodular maximization



Implication for compressive sensing

Let x be a k-sparse vector in Rⁿ that belongs to one of the aforementioned models*. There is a matrix A with O(k) rows s.t. given Ax+e, we can recover x* such that $||x-x^*||_2 \le ||e||_2$

in time roughly

log n*(nlog^{O(1)} n + matrix-vector-mult-time)

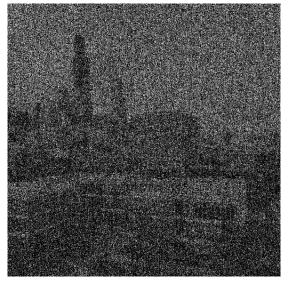
* Assuming constant degree, number of components <k/log n

Experiments: 2D images

Original image

 $n = 512 \times 512$ $k \sim 10,000$ $m \sim 35,000$

m/n = 12%



Least-squares

Sparsity

Tree structure (exact)

Tree structure (approx)

Experiments: Speed

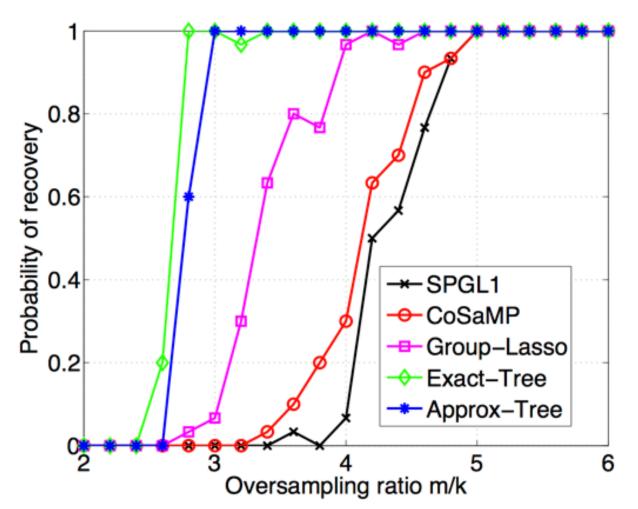
Test instance: 512 x 512 image.

Algorithm	Exact	Approximate	2 Matlab FFTs
Runtime	4.4175 sec	0.0109 sec	0.0150 sec

* ~400x speedup over exact (dynamic programming based) model-projection for trees

* Efficient algorithms for tree-structured data modeling

Phase Transition



- Test signals of length n=1024 that is k=41 sparse in the wavelet domain
- Random Gaussian measurements (noiseless)
- Success is defined as recovering the signal within relative Euclidean norm error of 5%

Conclusions/Open Problems

- Approximation algorithms for structured sparsity
 - Rich collection of interesting algorithmic questions
 - Applications (compressive sensing, applications, etc)
- Open questions:
 - Fast and provable matrices A
 - Recall: time log n*(nlog^{O(1)} n + matrix-vector-mult-time))
 - In theory we are using Gaussian matrices, which are provable but slow
 - In practice we are using Fourier matrices, which are fast but heuristic

Acknowledgments and references

- Images:
 - Boston Snowman- National Weather Service Boston.
 - Hubble telescope image

http://heritage.stsci.edu/gallery/bwgallery/bw0405/index.shtml

- Seismic image: "Structural framework of Southeastern Malay Basin", Ngah, 2000.
- Chicago skyline

http://news.uic.edu/files/2014/11/DG11_09_07_082_sm.jpg

- References:
 - Chinmay Hegde, Piotr Indyk, Ludwig Schmidt: Nearly Linear-Time Model-Based Compressive Sensing. ICALP 2014.
 - Chinmay Hegde, Piotr Indyk, Ludwig Schmidt: A fast approximation algorithm for tree-sparse recovery. ISIT 2014.
 - Chinmay Hegde, Piotr Indyk, Ludwig Schmidt: Approximation-Tolerant Model-Based Compressive Sensing. SODA 2014.
 - Ludwig Schmidt, Chinmay Hegde, Piotr Indyk, Jonathan Kane, Ligang Lu, Detlef Hohl: Automatic fault localization using the generalized Earth Mover's distance. ICASSP 2014.