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But first…. 



Sparsity in data 

•  Data is often sparse 
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(cropped) 

 
   Data can be specified by values and locations of their 

k large coefficients (2k numbers) 
  
 
 
     
  
 
    

seismic image 



Sparsity in data 

•  Data is often sparsely expressed using a suitable 
linear transformation 

pixels n large wavelet 
coefficients 

k ⌧ n

Wavelet 
transform  

 
   Data can be specified by values and locations of their 

k large wavelet coefficients (2k numbers) 
  
 
 
     
  
 
    



        Beyond sparsity 
•  Notion of sparsity captures  

simple primary structure 

•  But locations of large coefficients  
   often exhibit rich secondary 

structure 



This talk 

•  Structured sparsity:  
–  Models 
–  Examples: Block sparsity,Tree sparsity, Constrained EMD, 

Clustered Sparsity 
•  Efficient algorithms: how to extract structured sparse 

representations quickly 
•  Applications: 

–  (Approximation-tolerant) model-based compressive sensing 
–  Fault detection in seismic images 



Modeling approach 

Def: Specify a list of p allowable sparsity patterns 
M	  	  =	  {Ω1,	  .	  .	  .	  ,	  Ωp	  }  where	  Ωi	  	  ⊆  [n],	  |Ωi|≤k	  
 
Then, a structured sparsity model is the space of 

signals supported on one of the patterns in M  
M 	  	  =	  {x	  ∈  Rn	  	  |  ∃  Ωi	  	  ∈  Ω	  :	  supp(x	  )	  ⊆  Ωi	  }�

 
 
 
 
 

 
 n = 5, k = 2 p = 4 

M 



Model I: Block sparsity 

•  “Large coefficients hang out in 
groups” 

•  Parameters: k, b (block length) 
and l (number of blocks) 

•  The range {1…n} is partitioned 
into b-length blocks B1…Bn/b 

•  M contains all combinations of l 
blocks, i.e.,  

 M={ Bi1∪…∪Bil:i1,..,il∈{1..n/b} } 

•  Sparsity k=bl 
 



Model II: Tree-sparsity 

•  “Large coefficients hang out 
on a tree” 

•  Parameters: k,t 
•  Coefficients are nodes in a 

full t-ary tree 
•  M is the set of all rooted 

connected subtrees of size k 



Model III: Graph sparsity 

•  Parameters: k, g, graph G 
•  Coefficients are nodes in G 
•  M contains all subgraphs with k 

nodes that are clustered into g 
connected components 

u
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What can we do with those 
models ? 

•  Structured sparsity model specifies a hypothesis 
class for signals of interest  

•  For an arbitrary input signal x, a model projection 
oracle extracts structure by returning the 
“closest” signal in model 

M(x) = argminΩ∈M  ||x-xΩ||2 
 
 
 
 

•  Applications: 
–  Compression 
–  Denoising 
–  Machine learning 
–  Model-based compressive sensing 
–  … 

 



•  Good news: several important models admit 
projection oracles with polynomial time complexity 

 
 
•  Bad news:  

–  Polynomial time is not enough. E.g., consider a ‘moderate’ 
problem: n = 10 million, k = 5% of n. Then, nk >  5 x 1012 

–  For some models (e.g., graph sparsity), model projection is 
NP-hard  

Algorithms for model projection 

Blocks 

 

Block thresholding 
(linear time: O(n))  

Trees 

 

Dynamic programming 
(rectangular time: O(nk)) 



Approximation to the rescue 

•  Instead of finding an exact solution to the projection 
M(x) = argminΩ∈M  ||x-xΩ||2 

      we solve it approximately (and much faster) 
•  What does “approximately” mean ? 

–  (Tail) ||x-T(x)||≤ CT argminΩ∈M  ||x-xΩ||2 
–  (Head) ||H(x)||≥ CH argmaxΩ∈M  ||xΩ||2 

•  Choice depends on applications 
–  Tail: works great if approximation is good  
–  Head: meaningful output even if approximation is not good 

•  For compressive sensing application we need both ! 



Our results 

Model Previous time Our time 
Tree sparsity O(nk)  [exact] O(n log2n)  [H/T] 
Graph sparsity O(nτ) [approximate] O(n log4n)  [H/T] 
Constrained EMD 



Tree sparsity 

(Tail) ||x-T(x)||≤ CT argminΩ∈Tree  ||x-xΩ||2 
 
(Head) ||H(x)||≥ CH argmaxΩ∈Tree  ||xΩ||2 

Runtime Guarantee 

Baraniuk-Jones ‘94 O(n log n) ? 

Donoho ‘97 O(n) ? 

Bohanec-Bratko ‘94 O(n2) Exact 

Cartis-Thompson ‘13 O(nk) Exact 

This work O(n log n) Approx. Head 

This work O(n log n + k log2 n) Approx. Tail 



Proof (techniques) 
•  Approximate “tail” oracle:  

–  Idea: Lagrangian relaxation + 
Pareto curve analysis 

•  Approximate “head” oracle: 
–  Idea: Submodular 

maximization 



Implication for compressive 
sensing 

 
Let x be a k-sparse vector in Rn that belongs to one of 
the aforementioned models*. There is a matrix A with 
O(k) rows s.t. given Ax+e, we can recover x* such that  

||x-x*||2≤||e||2  

in time roughly 
 log n*(nlogO(1) n + matrix-vector-mult-time) 

 

* Assuming constant degree, number of components <k/log n 



Experiments: 2D images 

n =  512 x 512 
k  ~ 10,000 
m ~ 35,000 
 
m/n = 12% 
 
 

Sparsity 

Tree structure (approx) Tree structure (exact) 

Least-squares  Original image 



Experiments: Speed 

Algorithm Exact Approximate 2 Matlab FFTs 
Runtime 4.4175 sec 0.0109 sec 0.0150 sec 

* ~400x speedup over exact (dynamic 
programming based) model-projection for trees 
 
 
* Efficient algorithms for tree-structured 
data modeling 

Test instance: 512 x 512 image. 



Phase Transition 

•  Test signals of length n=1024 that is k=41 sparse in the 
wavelet domain  

•  Random Gaussian measurements (noiseless) 
•  Success is defined as recovering the signal within relative 

Euclidean norm error of 5% 



Conclusions/Open Problems 

•  Approximation algorithms for structured sparsity 
–  Rich collection of interesting algorithmic questions 
–  Applications (compressive sensing, applications, etc) 

•  Open questions: 
–  Fast and provable matrices A  

§  Recall: time  log n*(nlogO(1) n + matrix-vector-mult-time) ) 
§  In theory we are using Gaussian matrices, which are provable 

but slow 
§  In practice we are using Fourier matrices, which are fast but 

heuristic 
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