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Simple Multi-Armed Bandit Model

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric family, or not:
canonical exponential family, general bounded
rewards

Example Bernoulli rewards: θ ∈ [0, 1]K, νa = B(θa)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

At = πt(X1, . . . ,Xt−1)



Simple Multi-Armed Bandit Model

Real challenges

Randomized clinical trials
original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems:

advertisement

website optimization

news, blog posts, . . .

Computer experiments
large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few
choices are possible for the parameters

Games and planning (tree-structured options)



Simple Multi-Armed Bandit Model

Performance Evaluation: Cumulated Regret

Cumulated Reward: ST =
∑T

t=1 Xt

Goal: Choose π so as to maximize

E [ST ] =

T∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . ,Xt−1]

]
=

K∑
a=1

µaE [Nπ
a (T)]

where Nπ
a (T) =

∑
t≤T 1{At = a} is the number of

draws of arm a up to time T, and µa = E(νa).
Regret Minimization: maximizing E [ST ] ⇐⇒ minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
a (T)]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}



Simple Multi-Armed Bandit Model

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85; Agrawal ’95; Auer&al ’02]

Construct an upper confidence bound for the expected
reward of each arm:

Sa(t)
Na(t)︸ ︷︷ ︸

estimated reward

+

√
log(t)
2Na(t)︸ ︷︷ ︸

exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]
Its behavior is easily interpretable and intuitively appealing
Listen to Robert Nowak’s talk tomorrow!



Simple Multi-Armed Bandit Model

Optimality?

Generalization of [Lai&Robbins ’85]

Theorem [Burnetas and Katehakis, ’96]

If π is a uniformly efficient strategy, then for any θ ∈ [0, 1]K,

lim inf
T→∞

E
[
Na(T)

]
log(T)

≥ 1
Kinf (νa, µ∗)

where

Kinf (νa, µ
∗) = inf

{
K(νa, ν

′) :

ν ′ ∈ Fa,E(ν ′) ≥ µ∗
}

Idea: change of distribution ν∗

δ1

δ 1
2

δ0

Kinf(νa, µ?)

νa

µ∗



Simple Multi-Armed Bandit Model

Reaching Optimality: Empirical Likelihood

The KL-UCB Algorithm, AoS 2013
joint work with O. Cappé, O-A. Maillard, R. Munos, G. Stoltz

Parameters: An operator ΠF :M1(S)→ F ; a non-decreasing
function f : N→ R
Initialization: Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do
compute for each arm a the quantity

Ua(t) = sup
{

E(ν) : ν ∈ F and KL
(

ΠF
(
ν̂a(t)

)
, ν
)
≤ f (t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



Simple Multi-Armed Bandit Model

Regret bound

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that µa > 0 for all arms a
and that µ? < 1. There exists a constant M(νa, µ

?) > 0 only
depending on νa and µ? such that, with the choice
f (t) = log(t) + log

(
log(t)

)
for t ≥ 2, for all T ≥ 3:

E
[
Na(T)

]
≤ log(T)

Kinf
(
νa, µ?

) +
36

(µ?)4
(
log(T)

)4/5 log
(

log(T)
)

+

(
72

(µ?)4 +
2µ?

(1− µ?) Kinf
(
νa, µ?

)2

)(
log(T)

)4/5

+
(1− µ?)2 M(νa, µ

?)

2(µ?)2
(
log(T)

)2/5

+
log
(
log(T)

)
Kinf

(
νa, µ?

) +
2µ?

(1− µ?) Kinf
(
νa, µ?

)2 + 4 .



Simple Multi-Armed Bandit Model

Regret bound
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E
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(
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+
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Complexity of Best Arm Identification

Best Arm Identification Strategies

A two-armed bandit model is
a pair ν = (ν1, ν2) of probability distributions (’arms’) with
respective means µ1 and µ2

a∗ = argmaxa µa is the (unknown) best arm

Strategy =
a sampling rule (At)t∈N where At ∈ {1, 2} is the arm
chosen at time t (based on past observations) a sample
Zt ∼ νAt is observed
a stopping rule τ indicating when he stops sampling the
arms
a recommendation rule âτ ∈ {1, 2} indicating which arm he
thinks is best (at the end of the interaction)

In classical A/B Testing, the sampling rule At is uniform on
{1, 2} and the stopping rule τ = t is fixed in advance.



Complexity of Best Arm Identification

Best Arm Identification

Joint work with Emilie Kaufmann and Olivier Cappé (Telecom
ParisTech)

Goal: design a strategy A = ((At), τ, âτ ) such that:

Fixed-budget setting Fixed-confidence setting

τ = t Pν(âτ 6= a∗) ≤ δ

pt(ν) := Pν(ât 6= a∗) as small Eν [τ ] as small
as possible as possible

See also: [Mannor&Tsitsiklis ’04], [Even-Dar&al. ’06],
[Audibert&al.’10], [Bubeck&al. ’11,’13], [Kalyanakrishnan&al.
’12], [Karnin&al. ’13], [Jamieson&al. ’14]...



Complexity of Best Arm Identification

Two possible goals

Goal: design a strategy A = ((At), τ, âτ ) such that:

Fixed-budget setting Fixed-confidence setting

τ = t Pν(âτ 6= a∗) ≤ δ

pt(ν) := Pν(ât 6= a∗) as small Eν [τ ] as small
as possible as possible

In the particular case of uniform sampling :

Fixed-budget setting Fixed-confidence setting

classical test of sequential test of
(µ1 > µ2) against (µ1 < µ2) (µ1 > µ2) against (µ1 < µ2)

based on t samples with probability of error
uniformly bounded by δ

[Siegmund 85]: sequential tests can save samples !



Complexity of Best Arm Identification

The complexities of best-arm identification

For a classM bandit models, algorithm A = ((At), τ, âτ ) is...

Fixed-budget setting Fixed-confidence setting
consistent onM if δ-PAC onM if

∀ν ∈M, pt(ν) = Pν(ât 6= a∗) −→
t→∞

0 ∀ν ∈M, Pν(âτ 6= a∗) ≤ δ

From the literature
pt(ν) ' exp

(
− t

CH(ν)

)
Eν [τ ] ' C′H′(ν) log(1/δ)

[Audibert&al.’10],[Bubeck&al’11] [Mannor&Tsitsiklis ’04],[Even-Dar&al. ’06]
[Bubeck&al’13],... [Kalanakrishnan&al’12],...

=⇒ two complexities

κB(ν) = inf
A cons.

(
lim sup

t→∞
− 1

t log pt(ν)

)−1
κC(ν) = inf

A δ−PAC
lim sup
δ→0

Eν [τ ]
log(1/δ)

for a probability of error ≤ δ, for a probability of error ≤ δ,
budget t ' κB(ν) log(1/δ) Eν [τ ] ' κC(ν) log(1/δ)



Complexity of Best Arm Identification Lower bounds on the complexities

Changes of distribution

Theorem: how to use (and hide) the change of distribution

Let ν and ν ′ be two bandit models with K arms such that for all
a, the distributions νa and ν ′a are mutually absolutely continuous.
For any almost-surely finite stopping time σ with respect to (Ft),

K∑
a=1

Eν [Na(σ)] KL(νa, ν
′
a) ≥ sup

E∈Fσ
kl
(
Pν(E),Pν′(E)

)
,

where kl(x, y) = x log(x/y) + (1− x) log
(
(1− x)/(1− y)

)
.

Useful remark:

∀δ ∈ [0, 1], kl
(
δ, 1− δ

)
≥ log 1

2.4 δ
,



Complexity of Best Arm Identification Lower bounds on the complexities

General lower bounds

Theorem 1

LetM be a class of two armed bandit models that are
continuously parametrized by their means. Let
ν = (ν1, ν2) ∈M.

Fixed-budget setting Fixed-confidence setting

any consistent algorithm satisfies any δ-PAC algorithm satisfies

lim supt→∞−
1
t log pt(ν) ≤ K∗(ν1, ν2) Eν [τ ] ≥ 1

K∗(ν1,ν2)
log
( 1

2.4δ
)

with K∗(ν1, ν2) with K∗(ν1, ν2)
= KL(ν∗, ν1) = KL(ν∗, ν2) = KL(ν1, ν∗) = KL(ν2, ν∗)

Thus, κB(ν) ≥ 1
K∗(ν1,ν2)

Thus, κC(ν) ≥ 1
K∗(ν1,ν2)



Complexity of Best Arm Identification Gaussian Feedback

Gaussian Rewards: Fixed-Budget Setting

For fixed (known) values σ1, σ2, we consider Gaussian bandit
models

M =
{
ν =

(
N
(
µ1, σ

2
1
)
,N
(
µ2, σ

2
2
))

: (µ1, µ2) ∈ R2, µ1 6= µ2
}

Theorem 1:

κB(ν) ≥ 2(σ1 + σ2)2

(µ1 − µ2)2

A strategy allocating t1 =
⌈

σ1
σ1+σ2

t
⌉

samples to arm 1 and
t2 = t− t1 samples to arm 1, and recommending the
empirical best satisfies

lim inf
t→∞

−1
t

log pt(ν) ≥ (µ1 − µ2)2

2(σ1 + σ2)2

κB(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2



Complexity of Best Arm Identification Gaussian Feedback

Gaussian Rewards: Fixed-confidence setting

The α-Elimination algorithm with exploration rate β(t, δ)
Ü chooses At in order to keep a proportion N1(t)/t ' α
Ü if µ̂a(t) is the empirical mean of rewards obtained from a up

to time t, σ2
t (α) = σ2

1/dαte+ σ2
2/(t− dαte),

τ = inf
{

t ∈ N : |µ̂1(t)− µ̂2(t)| >
√

2σ2
t (α)β(t, δ)

}

0 200 400 600 800 1000

−
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0
−
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5
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5
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0

Ü recommends the empirical best arm âτ = argmaxaµ̂a(τ)



Complexity of Best Arm Identification Gaussian Feedback

Gaussian Rewards: Fixed-confidence setting

From Theorem 1:

Eν [τ ] ≥ 2(σ1 + σ2)2

(µ1 − µ2)2 log
(

1
2.4δ

)
σ1

σ1+σ2
-Elimination with β(t, δ) = log t

δ + 2 log log(6t) is
δ-PAC and

∀ε > 0, Eν [τ ] ≤ (1 + ε)
2(σ1 + σ2)2

(µ1 − µ2)2 log
(

1
2.4δ

)
+ oε
δ→0

(
log 1

δ

)

κC(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2



Complexity of Best Arm Identification Gaussian Feedback

Gaussian Rewards: Conclusion

For any two fixed values of σ1 and σ2,

κB(ν) = κC(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2

If the variances are equal, σ1 = σ2 = σ,

κB(ν) = κC(ν) =
8σ2

(µ1 − µ2)2

uniform sampling is optimal only when σ1 = σ2

1/2-Elimination is δ-PAC for a smaller exploration rate
β(t, δ) ' log(log(t)/δ)



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Lower Bounds

M = {ν = (B(µ1),B(µ2)) : (µ1, µ2) ∈]0; 1[2, µ1 6= µ2},

shorthand: K(µ, µ′) = KL (B(µ),B(µ′)).

Fixed-budget setting Fixed-confidence setting

any consistent algorithm satisfies any δ-PAC algorithm satisfies

lim supt→∞−
1
t log pt(ν) ≤ K∗(µ1, µ2) Eν [τ ] ≥ 1

K∗(µ1,µ2)
log
( 1

2δ
)

(Chernoff information)

K∗(µ1, µ2) > K∗(µ1, µ2)



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Uniform Sampling

For any consistent... For any δ-PAC...

... algorithm pt(ν) & e−K∗(µ1,µ2)t Eν [τ ]
log(1/δ) &

1
K∗(µ1,µ2)

... algorithm using pt(ν) & e−
K(µ,µ1)+K(µ,µ2)

2 t Eν [τ ]
log(1/δ) &

2
K(µ1,µ)+K(µ2,µ)

uniform sampling with µ = f (µ1, µ2) with µ = µ1+µ2
2

Remark: Quantities in the same column appear to be close
from one another

⇒ Binary rewards: uniform sampling close to optimal



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Uniform Sampling

For any consistent... For any δ-PAC...

... algorithm pt(ν) ' e−K∗(µ1,µ2)t Eν [τ ]
log(1/δ) &

1
K∗(µ1,µ2)

... algorithm using pt(ν) ' e−
K(µ,µ1)+K(µ,µ2)

2 t Eν [τ ]
log(1/δ) &

2
K(µ1,µ)+K(µ2,µ)

uniform sampling with µ = f (µ1, µ2) with µ = µ1+µ2
2

Remark: Quantities in the same column appear to be close
from one another

⇒ Binary rewards: uniform sampling close to optimal



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Fixed-Budget Setting

In fact,

κB(ν) =
1

K∗(µ1, µ2)

The algorithm using uniform sampling and recommending the
empirical best arm is very close to optimal



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Fixed-Confidence Setting

δ-PAC algorithms using uniform sampling satisfy

Eν [τ ]

log(1/δ)
≥ 1

I∗(ν)
with I∗(ν) =

K
(
µ1,

µ1+µ2
2
)

+ K
(
µ2,

µ1+µ2
2
)

2
.

The algorithm using uniform sampling and

τ = inf
{

t ∈ 2N∗ : |µ̂1(t)− µ̂2(t)| > log log(t) + 1
δ

}
is δ-PAC but not optimal: E[τ ]

log(1/δ) '
2

(µ1−µ2)2 > 1
I∗(ν) .

A better stopping rule NOT based on the difference of empirical
means

τ = inf
{

t ∈ 2N∗ : t I∗(µ̂1(t), µ̂2(t)) > log log(t) + 1
δ

}



Complexity of Best Arm Identification Binary Feedback

Binary Rewards: Conclusion

Regarding the complexities:
κB(ν) = 1

K∗(µ1,µ2)

κC(ν) ≥ 1
K∗(µ1,µ2)

> 1
K∗(µ1,µ2)

Thus
κC(ν) > κB(ν)

Regarding the algorithms
There is not much to gain by departing from uniform
sampling
In the fixed-confidence setting, a sequential test based on
the difference of the empirical means is no longer optimal



Complexity of Best Arm Identification Binary Feedback

Conclusion

Ü the complexities κB(ν) and κC(ν) are not always equal
(and feature some different informational quantities)

Ü strategies using random stopping do not necessarily lead
to a saving in terms of the number of sample used

Ü for Bernoulli distributions and Gaussian with similar
variances, strategies using uniform sampling are (almost)
optimal

Ü Generalization to m best arms identification among K arms



Complexity of Best Arm Identification Binary Feedback
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