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Simple Multi-Armed Bandit Model

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters 6 = (64, ..., 0x) such that
for any possible choice of arm a; € {1,...,K} at
time t, one receives the reward

Xt - X[l,f,t

where, forany 1 <a <Kands>1, X,;s ~ v,, and
the (X, s)as are independent.

Reward distributions v, € F, parametric family, or not:
canonical exponential family, general bounded
rewards

Example Bernoulli rewards: 6 € [0,1]X, v, = B(6,)

Strategy The agent’s actions follow a dynamical strategy
m = (m,m,...) such that

Ay =m(X1,..., Xi-1)

=] F



Simple Multi-Armed Bandit Model

m Randomized clinical trials

m original motivation since the 1930’s
m dynamic strategies can save resources

m Recommender systems:

m advertisement

m website optimization

B news, blog posts, ...

ORELLY

m Computer experiments
m large systems can be simulated in order to optimize some
criterion over a set of parameters
m but the simulation cost may be high, so that only few
choices are possible for the parameters

m Games and planning (tree-structured options)



Simple Multi-Armed Bandit Model

Performance Evaluation: Cumulated Regret

Cumulated Reward: St = I, X;

Goal: Choose 7 so as to maximize

t=1 a=1

T K
E[Sr] =) Y E[E[X1{A =a}Xs,..., X 1]]

K
=3 uaE [N} (T)
a=1

where Nj(T) = ;.1 1{A; = a} is the number of
draws of arm a up to time T, and y, = E(v,).
Regret Minimization: maximizing E [St] <= minimizing

Rr=Tp*—E[St]= Y (4" — pa)E[N7(T)]

azprg<p*
where p* € max{y, : 1 <a <K}

=



Simple Multi-Armed Bandit Model

UCB [Lai&Robins ’85; Agrawal '95; Auer&al ’02]

m Construct an upper confidence bound for the expected
reward of each arm:

Sa (t) N /// 10g(f)
2Nﬂ (t)

estimated reward ¢ pjoration bonus

m Choose the arm with the highest UCB

m |t is an index strategy [Gittins '79]
m lts behavior is easily interpretable and intuitively appealing
m Listen to Robert Nowak’s talk tomorrow!



Simple Multi-Armed Bandit Model

Generalization of [Lai&Robbins ’85]

Theorem [Burnetas and Katehakis, '96]

If 7 is a uniformly efficient strategy, then for any 6 < [0, 1]X,

. E[N,(T)] 1
0 08 (T) = Koy (s )

where

Kinf(”a»l‘*) = inf {K(l/a, I//) :
v e Fo, E(V) > ,u*}

Idea: change of distribution




Simple Multi-Armed Bandit Model

The KL-UCB Algorithm, AoS 2013
joint work with O. Cappé, O-A. Maillard, R. Munos, G. Stoltz

Parameters: An operator I1r : M;(S) — F; a non-decreasing
functionf : N — R

Initialization: Pull each arm of {1,...,K} once

fort =KtoT —1do
compute for each arm a the quantity

u,,(t)zsup{E(u); veF and KL(Hf(ﬁ,l(t)),u) < J0 }

pick anarm A1 € argmax U,(t)
ae{l,....K}
end for



Simple Multi-Armed Bandit Model

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that p, > 0 for all arms a
and that p* < 1. There exists a constant M(v,, u*) > 0 only
depending on v, and p* such that, with the choice

f(t) =log(t) +log(log(t)) for t > 2, forall T > 3:

E[N,(T)] < K;;éfl*) (5*6) ~(1og(T))** log (1og(T))
72 2+ 45
" ((u*)‘* " (1- H*)Kinf(l/aaﬂ*)2> (&)
_,*)\2 Va, *
LR M) oy
(7)) 2u*




Simple Multi-Armed Bandit Model
Regret bound

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that u, > 0 for all arms a
and that ;* < 1. There exists a constant M(v,, 1*) > 0 only
depending on v, and p* such that, with the choice

f(t) =log(t) + log(log(t)) for t > 2, forall T > 3:

BINAT] < B og(T) log (108(T)
72 2 4/
+ ((N*)4 + (1 u*) mf(Va,M*)2> (1og(T)>
1 — ) M(v,,
4 >(m§ ) (log(T))¥?
+10g(10g D) . 2u* .y
Kinf (Va, M*) Kinf (va, 1)
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Complexity of Best Arm Identification

m Lower bounds on the complexities
m Gaussian Feedback

m Binary Feedback
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Complexity of Best Arm Identification

A two-armed bandit model is
m a pair v = (v, 1) of probability distributions ("arms’) with
respective means p1 and up
m g" = argmax, /, is the (unknown) best arm

Strategy =

m a sampling rule (A:)ieny Where Ay € {1,2} is the arm
chosen at time t (based on past observations) a sample
Zt ~ vy, is observed

m a stopping rule T indicating when he stops sampling the
arms

m a recommendation rule a. € {1,2} indicating which arm he
thinks is best (at the end of the interaction)

In classical A/B Testing, the sampling rule A; is uniform on
{1,2} and the stopping rule = = t is fixed in advance.



Complexity of Best Arm Identification

Joint work with Emilie Kaufmann and Olivier Cappé (Telecom

ParisTech)

design a strategy A = ((A;), 7,4, ) such that:

Fixed-budget setting

Fixed-confidence setting

T=t

pt(v) := P, (a; # a*) as small
as possible

P,(a, #a*) <5

E,[r] as small
as possible

See also: [Mannor&Tsitsiklis '04], [Even-Dar&al. '06],
[Audibert&al.10], [Bubeck&al. ’11,13], [Kalyanakrishnan&al.
’12], [Karnin&al. ’13], [Jamieson&al. '14]...




Complexity of Best Arm Identification

design a strategy A = ((A;), 7,4, ) such that:

Fixed-budget setting Fixed-confidence setting
T=t P,(a; #a*) <o
pe(v) :=P,(a; # a*) as small E,[r] as small
as possible as possible

In the particular case of uniform sampling :

Fixed-budget setting Fixed-confidence setting
classical test of sequential test of
(11 > p2) against (u1 < p2) | (p1 > p2) against (u1 < p2)
based on t samples with probability of error
uniformly bounded by §

[Siegmund 85]: sequential tests can save samples !



Complexity of Best Arm Identification

The complexities of best-arm identification

For a class M bandit models, algorithm A = ((A¢), 7,4,) is...

Fixed-budget setting Fixed-confidence setting
consistent on M fif 0-PAC on M if
Vv e M, pi(v) =Py (a; # a*) P 0 YveM, P,(a; #£a*) <6

From the literature

pr(v) =~ exp (—#M) E,[7] ~ C'H'(v)1og(1/6)
[Audibert&al’10],[Bubeck&al’11] [Mannor&Tsitsiklis '04],[Even-Dar&al. '06]
[Bubeck&al'13],... [Kalanakrishnan&al’12],...

— two complexities

=1
. . 1 _ . . ]El,[‘r]
ke(v) =inf (hrg Sup — ¢ log Pt(’/)> re(v) = ;r_lg,AChI?jslplo (1/¢
for a probability of error < 6, for a probability of error < 6,
budget t ~ xp(v)log(1/0) Ey[r] ~ rc(v)log(1/6)




Complexity of Best Arm Identification Lower bounds on the complexities

Changes of distribution

Theorem: how to use (and hide) the change of distribution

Let v and v/ be two bandit models with K arms such that for all
a, the distributions v, and v/, are mutually absolutely continuous.
For any almost-surely finite stopping time o with respect to (F;)

ZE [Na(0)] KL(va, 1) > sup KI(
EeFs

Pu(g)v ]PI/’ (5))7

where Kl(x,y) = xlog(x/y) + (1 — x)log ((1 — x)/(1 = y)).

Useful remark:

1
v (0,1, KI(6.1-6) >log 5 =,



Complexity of Best Arm Identification

Theorem 1

Let M be a class of two armed bandit models that are
continuously parametrized by their means. Let
v=(v,n) e M.

Fixed-budget setting Fixed-confidence setting

any consistent algorithm satisfies | any §-PAC algorithm satisfies

limsup, ,  —1logpi(v) <K*(vi,12) | Eul7] 2 gy 108 (235)

with K*(Vl, Vz) with K*(Vl, Vz)
= KL(v*, 1) = KL(v*, 1) = KL(v1, vi) = KL(2, v4)
ThUS, KB(I/) 2 m ThUS, KJC(V) 2 W




Complexity of Best Arm Identification

Gaussian Feedback

models

For fixed (known) values o1, 02, we consider Gaussian bandit

Gaussian Rewards: Fixed-Budget Setting

M={v=(N

(11,07) N (p2,03)) : (11, p12) € R, g # o }
m Theorem 1

F\:B(V) >

(01 + 02)*
m A strategy allocating t; = [

2
(1 — p2)?

(2]

i t1 samples to arm 1 and

t =t —t; samples to arm 1, and recommending the

empirical best satisfies

1 (11 — p2)?
—= >

i ind = log () = 50,
2(0‘1 + 0'2)2

RB\V) =

5() (11 —

f12)?




Complexity of Best Arm Identification Gaussian Feedback

Gaussian Rewards: Fixed-confidence setting

The a-Elimination algorithm with exploration rate 5(t, )

=» chooses A; in order to keep a proportion Ny (f)/t ~ «
=> if 4,(t) is the empirical mean of rewards obtained from a up
to time t, o?(a) = 0% /[at] + 03/ (t — [at]),

r=int {1 €N in0) - )] >\ 20@)3(05) |

|

0.0

-1.0 -0.5
I I

T T T T T T
0 200 400 600 800 1000

=» recommends the empirical best arm a4, = argmax,fi,(7)
[m] = = =

it
N)
pe)
?)



Complexity of Best Arm Identification

Gaussian Feedback

Gaussian Rewards: Fixed-confidence setting

m From Theorem 1

E,[r] > 2(01 + 02)?
(Nl -
| ]

g1

1
1) 246
~-Elimination with 5(t,6) =
J- PAC and

log 5 +2loglog(6t) i
Ve >0, E,[r]<(1+e¢)

2(0’1 + 0'2)2 1 1
i — )2 1°g(z 45> T (1°g3>

() = 2(o1 + 02)
) (1 —

12)?




Complexity of Best Arm Identification

Gaussian Feedback
Gaussian Rewards: Conclusion

For any two fixed values of o1 and o3,

2(o1 4 02)?
ke(v) = ( )2

(11 — p2)
If the variances are equal, o1 = 07 = 0,

802
kB(V) = kc(v) =
)= el = Gy
m uniform sampling is optimal only when o1 = o3

m 1/2-Elimination is §-PAC for a smaller exploration rate
B(t,6) =~ log(log(t)/9)



Complexity of Best Arm Identification

Binary Feedback
Binary Rewards: Lower Bounds

={v=(B(m

), B(p2)) : (11, p2)
shorthand: K(y,

10; 1%, pu1 # pia},
') =KL (B(u), B(w)).-
Fixed-budget setting Fixed-confidence setting
any consistent algorithm satisfies
limsup,_,

any 6-PAC algorithm satisfies
log pr(v) < K* (1, p12)

(Chernoff information)

Ev[7] > gumy 108 (25)

K*(p1, p2) > Ki(pa, p2)




Complexity of Best Arm Identification

Binary Feedback
Binary Rewards: Uniform Sampling

For any consistent... For any §-PAC..
: —K* (1,2 Ey[7] 1
... algorithm pi(v) = e et o 178) 2 Ko(ar i)
. . _ K@) K(Tw'z)t
... algorithm using | p(v) 2 e z
uniform sampling

E, [T

2

log(1/6) ~ K(u1,p)+K(pa,p)
with = M

from one another

with 7o = f (p1, p12) 5
Remark: Quantities in the same column appear to be close

= Binary rewards: uniform sampling close to optimal



Complexity of Best Arm Identification

Binary Feedback
Binary Rewards: Uniform Sampling

For any consistent... For any §-PAC..
i ~ o~ K (1,02 By [7] 1
... algorithm pi(v) ~ e et o 178) 2 Ko(ar i)
i ) _ K(m ) K(Tw'z)t
... algorithm using | p:(v) ~e 2
uniform sampling

E, [T
with 7o = f (p1, p12)

2
log(1/6) ~ K(p1,p)+K(p2,1)

with p = #1552
Remark: Quantities in the same column appear to be close
from one another

= Binary rewards: uniform sampling close to optimal



Complexity of Best Arm Identification

Binary Rewards: Fixed-Budget Setting

In fact,

() = o

[, 12)

The algorithm using uniform sampling and recommending the
empirical best arm is very close to optimal



Complexity of Best Arm Identification

Binary Feedback

Binary Rewards: Fixed-Confidence Setting

E,[7] S 1
log(1/0) ~— L(v)

0-PAC algorithms using uniform sampling satisfy

with I(v) =

(H ’ m-ZHLz) + K (MZ, u1+uz)
2

The algorithm using uniform sampling and

T = inf {t € 2N : | (t)

. log(t) +1
jlt)] > log B 1}
is 6-PAC but not optimal: log([l}é) s m _2#2)2
means

1
> oy
A better stopping rule NOT based on the difference of empirical

7= mf{t € 2N : L, (ju (8), fa(t)) > log 28

log(t) +1
I
] =



Complexity of Best Arm Identification

Binary Rewards: Conclusion

Binary Feedback

Regarding the complexities:
1
= 55(V) = K arm)

1 1
u K’C(V) = Ki(u1,u2) > K* (u1,042)
Thus

ke(v) > kp(v)
Regarding the algorithms

m There is not much to gain by departing from uniform
sampling

m In the fixed-confidence setting, a sequential test based on
the difference of the empirical means is no longer optimal



Complexity of Best Arm Identification

=» the complexities xg(v) and kc(v) are not always equal
(and feature some different informational quantities)

=» strategies using random stopping do not necessarily lead
to a saving in terms of the number of sample used

=» for Bernoulli distributions and Gaussian with similar
variances, strategies using uniform sampling are (almost)
optimal

=» Generalization to m best arms identification among K arms



Complexity of Best Arm Identification
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