Adaptive compression over countable alphabets

S. Boucheron,

joint work with D. Bontemps, A. Garivier, E. Gassiat & M. Ohanessian

Microsoft-INRIA, Paul Sabatier, Paris-Diderot, ENS, Paris-Sud

March, 17th, 2015

Information Theory, ... and Big Data 2015, S. Bouch

Adaptive compression

March, 17th, 2015 1 / 19

JI NOR

A B > A B >

Lossless compression over a countable alphabet

Lossless compression

Mapping messages (sequences of symbols from countable alphabet X) to codewords (sequences of {0, 1}), so as to minimize the expected length of codewords in a one-to-one and non-ambiguous way.

Non-ambiguous codes satisfy Kraft-McMillan inequality

For $\lambda \colon A \to \mathbb{N}_+$,

 $\sum_{\omega \in A} 2^{-\lambda(\omega)} \leq 1, \text{ iff } \exists \text{ non-ambiguous code } f \colon A \to \{0, 1\}^* \text{ with } \ell[f(\omega)] = \lambda(\omega)$

Kraft-Mac Millan inequality

provides a bridge between codes and probability distributions

- Any non-ambiguous code defines a (sub)-probability distribution over the set of messages
- Any probability distribution Q over the set of messages defines a non-ambiguous encoding where codeword length is at most $-\log_2 Q(\omega) + 1$.

Redundancy, minimax

Redundancy

Definition (Redundancy of coding probability Q^n with respect to source P^n)

Expected difference between codelengths obtained by feeding an arithmetic coder with $Q^n(\mathbf{x})$ rather than with the correct source statistics $P^n(\mathbf{x})$

$$D(P^n,Q^n) = \mathbb{E}_{P^n}\log\frac{P^n(X_{1:n})}{Q^n(X_{1:n})}$$

 Λ^n is collection of probability distributions over messages of length *n*. Each probability distribution is called a source.

Definition (Minimax redundancy)Definition (Maximin redundancy) $R^+(\Lambda^n) = \inf_{\mathcal{Q}} \sup_{P \in \epsilon\Lambda} D(P^n, \mathcal{Q}^n)$ $\pi : \text{ prior distribution on sources}$ MinMax Theorem $R_+(\Lambda^n) = \sup_{\pi} \inf_{\mathcal{Q}} \mathbb{E}_{\pi} D(P^n, \mathcal{Q}^n)$ Remove the result of theory..., and Big Data 2015, S. BouchAdaptive compression

Redundancies: alphabet size matters

Minimax redundancy

$$R^+(\Lambda^n) = \frac{k-1}{2}\log\frac{n}{2\pi e} + O(1)$$

Rissanen, Ryabko, Shtarkov, Krichevsky, Trofimov, Barron, Clarke, Xie et al.

Krichevsky-Trofimov coding is asymptotically maximin and approximately minimax

$$\mathbb{KT} (X_{n+1} = a | X_{1:n} = x_{1:n}) = \frac{n_a(x_{1:n}) + \frac{1}{2}}{n + \frac{k}{2}},$$

Countable alphabets

Negative results

$$\exists (Q^n)_n, \quad \forall P \in \Lambda,$$
$$\lim_n \frac{1}{n} D(P^n, Q^n) = 0$$

iff

$$\exists P^*, \quad \forall P \in \Lambda, \\ \mathbb{E}_{p^1} \left[-\log P^*(X) \right] < \infty$$

J. Kieffer (1993), Gyorfi, Pali van der Meulen (1993)

< ロ > < 同 > < 回 > < 回 > :

Information Theory, ... and Big Data 2015, S. Bouch

March, 17th, 2015 4 / 19

EL OQO

Definition(s)

Envelop classes

For stationary ergodic sources over a countable alphabet, no analogue of Lempel-Ziv coding.

To obtain positive results... it is necessary to impose constraints on source classes

Envelop function

 $f: \mathbb{N} \to \mathbb{R}_+$ with $1 < \sum_{i>0} f(j) < \infty$.

Envelop class

$$\Lambda_f = \left\{ \mathbb{P} : \forall x \in \mathbb{N}, \mathbb{P}^1 \{x\} \le f(x) \text{ and } \mathbb{P} \text{ is stationary and memoryless.}
ight\}$$

Envelope distribution

-
$$F(k) = 1 - \sum_{j > k} f(j)$$
for $k \ge l_f := \max\{k : \sum_{j \ge k} f(j) \ge 1\}$ envelope distribution- $\overline{F} = 1 - F$ tail envelope function- $U(t) = \inf\{x : F(x) \ge 1 - 1/t\}$ tail quantile (envelope) function

Information Theory, ... and Big Data 2015, S. Bouch

Envelopes

Sub-exponential classes

- F_c has non-decreasing hazard rate (ako log-concavity assumption)
- $U_c \circ \exp is \operatorname{concave}$.

Example

▶ ...

- Exponential envelopes. $f(k) = \gamma e^{-\left(\frac{k}{\beta}\right)^{\alpha}}$. with $\alpha \ge 1, \beta > 0$ and $\gamma > 1$
- ► Poisson envelopes $f(k) = \gamma e^{-\beta} \beta^k / k!$ with $\beta > 0$ and $\gamma > 1$

Regularly varying envelops

 F_c (resp. U_c) is regularly varying with index $-1/\gamma$ (resp. $\gamma > 0$)

$$4x > 0, \qquad \lim_{t} \frac{F_{c}(tx)}{F_{c}(t)} = x^{-1/\gamma}.$$

$$U_c(t)=t^\gamma\ell(t)$$

where ℓ is slowly varying

Example

- Power-law envelopes: $U_c(t) = \kappa t^{\gamma}$
- Heavy-Tailed envelopes $U_c(t) = \kappa t^{\gamma} \ell(t)$

Bounds on minimax redundancy

Theorem (BGG, 2009)

If Λ is a class of memoryless sources, with the tail envelope distribution function $\bar{F}_{\Lambda^1}(u) = \sum_{k>u} \hat{p}(k)$, then:

$$R^+(\Lambda^n) \leq \inf_{u:u \leq n} \left[n\overline{F}_{\Lambda^1}(u) \log_2 e + \frac{u-1}{2} \log_2 n \right] + 2$$

Suggestion

If the envelop is known, choose threshold τ as the solution of $\bar{F}_{\Lambda^1}(u) = \frac{u}{n}$.

- i) Encode symbols over threshold using Elias penultimate code
- ii) Encode other symbols using Krichevsky-Trofimov mixture over alphabet $\{1, \ldots, \tau\}$.

If the envelop is not known, look for a data-driven threshold

Lower bounds

Flavors of adaptivity

- For collections of small classes
- Definition (Asymptotic adaptivity)
- $(Q^n)_n$ is asymptotically adaptive with respect to $(\Lambda_m)_{m\in M}$ if

$$\forall m \in \mathcal{M}, \quad R^+(\mathcal{Q}^n, \Lambda_m^n) = \sup_{\mathbb{P} \in \Lambda_m} D(\mathbb{P}^n, \mathcal{Q}^n) \le (1 + o(1))R^+(\Lambda_m^n)$$

For collections of massive envelop classes

Definition (Weak asymptotic adaptivity)

 $(Q^n)_n$ is asymptotically weakly adaptive with respect to $(\Lambda_m)_{m\in M}$

 $\forall m \in \mathcal{M}, \quad R^+(Q^n, \Lambda^n_m) \leq o(\log n)R^+(\Lambda^n_m).$

Censuring codes: sketch

AC-code : Thresholding above last record

 $m_i = \max_{1 \le j \le i} x_j.$ The j^{th} record is denoted by \widetilde{m}_j ($\widetilde{m}_0 = 0$) Let $\widetilde{\mathbf{m}} = (\widetilde{m}_i - \widetilde{m}_{i-1} + 1)\mathbf{1}.$ Symbols from $\widetilde{\mathbf{m}}$ encoded using Elias penultimate code.

Progressive KT coding below the last record

$$\begin{split} \widetilde{x}_i &= x_i \mathbb{I}_{x_i \leq m_{i-1}}.\\ C_M : \text{ progressive } \mathbb{K}\mathbb{T}\text{- encoding of } \widetilde{x}_{1:n} 0 \end{split}$$

$$\begin{aligned} & \mathcal{Q}_{i+1}(\widetilde{X}_{i+1} = j | X_{1:i} = x_{1:i}) &= \frac{n'_i + \frac{1}{2}}{i + \frac{m_i + 1}{2}} \quad \text{if} \quad 1 \le j \le m_i, \\ & \mathcal{Q}_{i+1}(\widetilde{X}_{i+1} = 0 | X_{1:i} = x_{1:i}) &= \frac{1/2}{i + \frac{m_i + 1}{2}}, \end{aligned}$$

where n_i^j is the number of occurrences of symbol *j* in $x_{1:j}$, $n_i^0 = 0$.

< D > < A > < B >

The AC-code is adaptive with respect to source classes defined by envelopes with finite and non-decreasing hazard rate.

Theorem (B., Bontemps, Gassiat, 2014)

 Q^n : the coding probability associated with the AC-code, If *f* is an envelope with non-decreasing hazard rate,

 $R^+(Q^n;\Lambda_f^n) \le (1+o(1))R^+(\Lambda_f^n)$

while

$$R^{+}(\Lambda_{f}^{n}) = (1 + o(1))(\log e) \int_{1}^{n} \frac{U_{c}(x)}{2x} dx$$

Information Theory, ... and Big Data 2015, S. Bouch

Envelopes with heavier tails

If the tail envelope distribution is heavier than exponential, thresholding at maximum does not lead to (weakly) adaptive coding

Ideal threshold: solution of

 $t\overline{F}_c(u) = \frac{u}{2}\log t$

Proxy threshold: m_c solution of

$$t\overline{F}_c(u) = u \text{ or } u = U_c\left(\frac{t}{u}\right)$$

Properties

- \triangleright *m_c* is non-decreasing.
- ▶ $m_c(t) \nearrow \infty$
- ▶ $m_c(t)/t \searrow 0$
- ▶ If U_c is γ -regularly varying, m_c is $\gamma/(\gamma + 1)$ -regularly varying.

Empirical theshold

 $M_n = \min\left(n, \{k : X_{k,n} \leq k\}\right)$

Weak adaptivity of ETAC encoding

If
$$\overline{F}_c \in MDA(-1/\gamma)$$
 with $\gamma > 0$,

 $\forall \epsilon > 0, \text{ for sufficiently large } n, \mathbb{E} X_{M_n,n} \leq m_n (1 + \epsilon) \qquad R^+(\Lambda_f^n) \geq \frac{m_n}{2} \,.$

If Q^n is the coding probability associated with the ETAC code $R^+(Q^n, \Lambda_n) \le (5 + o_{\Lambda}(1)) \frac{m_n}{2} \log n + 2$

B., Gassiat, Ohannessian, 2014

For power law envelopes $U_c(t) = \kappa t^{\gamma}$ (Acharya et al. 2014)

$$R^{+}(\Lambda_{f}^{n}) \sim \left(\frac{\kappa^{1/\gamma}}{\gamma}n\right)^{\frac{\gamma}{\gamma+1}} \left(\frac{1}{\gamma} + \gamma \log e + c\right)$$

▶ Details

Folks

Thanks

Information Theory, ... and Big Data 2015, S. Bouch

Adaptive compression

March, 17th, 2015 13 / 19

References

- S. Boucheron and E. Gassiat : A Bernstein-von Mises theorem for discrete probability distributions Electronic Journal of Statistics. 3 (2009) 114-148.
- S. Boucheron and A. Garivier and E. Gassiat : Coding over Infinite Alphabet s IEEE Trans. on Inform. Theory 55 (2009) 358 - 373.
- D. Bontemps: Universal coding on infinite alphabets: exponentially decreasing envelopes. IEEE Trans. Inform. Theory 57 (2011), no. 3, 1466–1478.
- D. Bontemps, S. Boucheron and E. Gassiat : Adaptive compression against a countable alphabet. IEEE Trans. Inform. Theory 60 (2014), 808 ‧ 821.
- S. Boucheron, E. Gassiat & M. Ohanessian : Weakly adaptive compression against a countable alphabet. 2014
- S. Boucheron, M. Thomas: Concentration inequalities for order statistics. Electronic Communications in Probability. 17 (2012). 1-12

Envelop classes

Smoothed distribution function

- F_c has piecewise constant hazard rate,
- $\overline{F}_c(n) = \overline{F}(n)$
- $U_c(t) = \inf\{x: 1/\overline{F}_c(x) \ge t\}.$

If $X \sim F_c$ then $\lfloor X \rfloor + 1 \sim F$ and $U(t) = \lfloor U_c(t) \rfloor + 1$ for t > 1.

Lemma (Stochastic comparison by quantile coupling)

There exists a probability space where $X \sim G \in \Lambda_f$, $Y \sim F_c$ such that

$$\mathbb{P}\{X \le Y\} = 1$$

Information Theory, ... and Big Data 2015, S. Bouch

Bounds on minimax redundancy

Redundancy-Capacity theorem For any prior μ on $\Lambda^1(f)$

 $R^+(\Lambda^n) = I(\theta; X_{1:n})$

For an ad hoc prior

 $I(\theta; X_{1:n}) \geq \mathbb{E}Z_n$

where Z_n is the number of distinct symbols in $X_{1:n}$

 $\mathbb{E}Z_n \ge m_n$

where m_n satisfies $\overline{F}_c(m_n) \approx \frac{m_n}{n}$

Made in California For light-tailed envelopes

$$R^+(\Lambda_f^n) \sim \log(e) \int_1^n \frac{U_c(x)}{2x} \mathrm{d}x \left(1 + o(1)\right)$$

Bontemps, B. & Gassiat, 2014 using Haussler & Opper, AoS, 1997

For power law envelopes $U_c(t) = \kappa t^{\gamma}$

$$R^+(\Lambda_f^n) \sim \left(\frac{\kappa^{1/\gamma}}{\gamma}n\right)^{\frac{\gamma}{\gamma+1}} \left(\frac{1}{\gamma} + \gamma \log e + c\right)$$

Acharya, J., Jafarpour, A., Orlitsky, A., & Suresh, A. T. (2014)

Return

Censuring codes: sketch

▲ Return

Light-tailed envelopes

Decomposing redundancy of AC-code

Decomposing pointwise redundancy

$$-\log Q^n(X_{1:n}) + \log \mathbb{P}^n(X_{1:n}) = \underbrace{\ell(C_E)}_{I} + \underbrace{\ell(C_M) + \log \mathbb{P}^n(X_{1:n})}_{II}.$$

Establishing main theorem in (BBG, 2014)

 \hookrightarrow

- ▷ (1) (Elias encoding of increments between records) is negligible with respect to $R^+(\Lambda_f^n)$, uniformly for $\mathbb{P} \in \Lambda_f$,
- ▶ The expected value of (II) is upper bounded, uniformly for $\mathbb{P} \in \Lambda_f$, by a term which is equivalent to $R^+(\Lambda_f^n)$.

▲ Return

EL OQO

∃ ► < ∃ ►</p>

Light-tailed envelopes

Stochastic behavior of M_n

```
Let X_1, \ldots, X_n \sim_{i.i.d.} P \in \Lambda_f^1, let M_n = \max(X_1, \ldots, X_n), then,

\mathbb{E}M_n \leq U_c(en) + 1
\mathbb{E}[M_n \log M_n] \leq [U_c(en) + 1] \log[U_c(en) + 1] + 2/b^2.
```

Ingredients of proof

- ▶ Rényi's representation of order statistics & concavity of $U \circ \exp$
- Sub-additivity of relative entropy (see Ledoux, 2001, Massart, 2006)
- \triangleright The entropy method \rightarrow sharp tail and moment bounds for order statistics (B. & Thomas, 2012)

Weak adaptivity of ETAC encoding

 $M_n = \min\left(n, \{k : X_{k,n} \leq k\}\right)$

$F_{c} \in \mathsf{MDA}(\gamma), \gamma > 0$ $\stackrel{M_{n}}{\longrightarrow} \frac{P}{1}.$ $\stackrel{X_{M_{n},n}}{\longrightarrow} \frac{P}{1}.$

M_n is self-bounded

$$\mathbb{P}\left\{|M_{n} - \mathbb{E}M_{n}| \geq t\right\}$$
$$\leq 2e^{\left(-\frac{t^{2}}{2(\mathbb{E}M_{n}+t)}\right)}.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

◀ Return