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Source coding, universality Lossless compression 101

Lossless compression over a countable alphabet

Lossless compression
Mapping messages (sequences of symbols from countable alphabet X) to
codewords (sequences of {0, 1}), so as to minimize the expected length of
codewords in a one-to-one and non-ambiguous way.

Non-ambiguous codes satisfy Kraft-McMillan inequality
For λ : A→ N+,∑

ω∈A
2−λ(ω) ≤ 1, iff ∃ non-ambiguous code f : A→ {0, 1}∗ with `[f (ω)] = λ(ω)

Kraft-Mac Millan inequality
provides a bridge between codes and probability distributions
. Any non-ambiguous code defines a (sub)-probability distribution over the set

of messages
. Any probability distribution Q over the set of messages defines a

non-ambiguous encoding where codeword length is at most − log2 Q(ω) + 1.
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Redundancy Redundancy, minimax

Redundancy

Definition (Redundancy of coding probability Qn with respect to source Pn)
Expected difference between codelengths obtained by feeding an arithmetic
coder with Qn(x) rather than with the correct source statistics Pn(x)

D(Pn,Qn) = EPn log Pn(X1:n)

Qn(X1:n)

Λn is collection of probability distributions over messages of length n. Each
probability distribution is called a source.

Definition (Minimax redundancy)

R+(Λn) = inf
Q

sup
P∈∈Λ

D(Pn,Qn)

Definition (Maximin redundancy)
π : prior distribution on sources

R+(Λn) = sup
π

inf
Q
EπD(Pn,Qn)

MinMax Theorem R+(Λn) = R+(Λn)
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Redundancy Curse of countable alphabets

Redundancies: alphabet size matters
Λ : memoryless sources over
finite alphabet with cardinality k

Minimax redundancy

R+(Λn) =
k − 1

2 log n
2πe + O(1)

Rissanen, Ryabko, Shtarkov,
Krichevsky, Trofimov, Barron, Clarke,
Xie et al..

Krichevsky-Trofimov coding is
asymptotically maximin and
approximately minimax

KT (Xn+1 = a|X1:n = x1:n)

=
na(x1:n) + 1

2

n + k
2

,

na = number of a’s in x1:n.

KT-coding
KT-coding mixes coding
probabilities using Jeffrey’s (least
favorable) prior.
↪→ no need to explicitly estimate
the source

Countable alphabets

Negative results

∃(Qn)n, ∀P ∈ Λ,

lim
n

1
nD(Pn,Qn) = 0

iff

∃P∗, ∀P ∈ Λ,

EP1 [− log P∗(X)] < ∞

J. Kieffer (1993), Gyorfi, Pali van der
Meulen (1993)

Information Theory, ... and Big Data 2015, S. Boucheron (Paris-Diderot)Adaptive compression March, 17th, 2015 4 / 19



Envelop classes Definition(s)

Envelop classes

For stationary ergodic sources over a countable alphabet, no analogue of
Lempel-Ziv coding.
To obtain positive results... it is necessary to impose constraints on source classes

Envelop function
f : N→ R+ with 1 < ∑

j>0 f (j) < ∞.

Envelop class

Λf =
{
P : ∀x ∈ N, P1{x} ≤ f (x) and P is stationary and memoryless.

}

Envelope distribution
- F(k) = 1 −∑

j>k f (j) for k ≥ lf := max{k :
∑

j≥k f (j) ≥ 1} envelope distribution
- F = 1 − F tail envelope function
- U(t) = inf{x : F(x) ≥ 1 − 1/t} tail quantile (envelope) function
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Envelop classes Examples of envelop classes

Envelopes

Sub-exponential classes
- Fc has non-decreasing hazard

rate (ako log-concavity
assumption)

- Uc ◦ exp is concave.

Example
. Exponential envelopes.

f (k) = γe−
(

k
β

)α
. with α ≥ 1, β > 0

and γ > 1
. Poisson envelopes

f (k) = γe−ββk/k! with β > 0 and
γ > 1

. ...

Regularly varying envelops
Fc (resp. Uc) is regularly varying
with index −1/γ (resp. γ > 0)

∀x > 0, lim
t

Fc(tx)

Fc(t)
= x−1/γ .

Uc(t) = tγ`(t)

where ` is slowly varying

Example
. Power-law envelopes:

Uc(t) = κtγ

. Heavy-Tailed envelopes
Uc(t) = κtγ`(t)
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Redundancies and adaptivity Upper bound on minimax redundancy

Bounds on minimax redundancy

Theorem [BGG, 2009]
If Λ is a class of memoryless sources, with the tail envelope distribution function
F̄Λ1 (u) =

∑
k>u p̂(k), then:

R+(Λn) ≤ inf
u:u≤n

[
nF̄Λ1 (u) log2 e +

u − 1
2 log2 n

]
+ 2 .

Suggestion

If the envelop is known, choose threshold τ as the solution of F̄Λ1 (u) = u
n .

i) Encode symbols over threshold using Elias penultimate code
ii) Encode other symbols using Krichevsky-Trofimov mixture over alphabet
{1, . . . , τ}.

If the envelop is not known, look for a data-driven threshold

Lower bounds
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Redundancies and adaptivity Adaptivity

Flavors of adaptivity

For collections of small classes

Definition [Asymptotic adaptivity]
(Qn)n is asymptotically adaptive with respect to (Λm)m∈M if

∀m ∈ M, R+(Qn,Λn
m) = sup

P∈Λm
D(Pn,Qn) ≤ (1 + o(1))R+(Λn

m)

For collections of massive envelop classes

Definition [Weak asymptotic adaptivity]
(Qn)n is asymptotically weakly adaptive with respect to (Λm)m∈M

∀m ∈ M, R+(Qn,Λn
m) ≤ o(log n)R+(Λn

m) .
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Coding strategies Censuring codes

Censuring codes: sketch

AC-code : Thresholding above last record
mi = max1≤j≤i xj .
The j th record is denoted by m̃j (m̃0 = 0)
Let m̃ = (m̃i − m̃i−1 + 1)1.
Symbols from m̃ encoded using Elias penultimate code.

Progressive KT coding below the last record
x̃i = xi Ixi≤mi−1 .
CM : progressive KT- encoding of x̃1:n0

Qi+1(X̃i+1 = j |X1:i = x1:i) =
nj

i + 1
2

i +
mi +1

2

if 1 ≤ j ≤mi ,

Qi+1(X̃i+1 = 0|X1:i = x1:i) =
1/2

i +
mi +1

2

,

where nj
i is the number of occurrences of symbol j in x1:i , n0

i = 0.

Example
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Results Results for light-tailed envelopes

Light-tailed envelopes

The AC-code is adaptive with respect to source classes defined by envelopes
with finite and non-decreasing hazard rate.

Theorem [B., Bontemps, Gassiat, 2014]

Qn : the coding probability associated with the AC-code,
If f is an envelope with non-decreasing hazard rate,

R+(Qn; Λn
f ) ≤ (1 + o(1))R+(Λn

f )

while
R+(Λn

f ) = (1 + o(1))(log e)

∫ n

1

Uc(x)

2x dx

Details
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Results Results for regularly varying envelopes

Envelopes with heavier tails

If the tail envelope distribution is
heavier than exponential,
thresholding at maximum does not
lead to (weakly) adaptive coding

Ideal threshold: solution of

tFc(u) = u
2 log t

Proxy threshold: mc solution of

tFc(u) = u or u = Uc
(

t
u

)
Properties
. mc is non-decreasing.
. mc(t)↗ ∞

. mc(t)/t ↘ 0

. If Uc is γ-regularly varying, mc is
γ/(γ + 1)-regularly varying.

Empirical theshold

Mn = min (n, {k : Xk ,n ≤ k}
)
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Results Results for regularly varying envelopes

Weak adaptivity of ETAC encoding

If Fc ∈ MDA(−1/γ) with γ > 0,

∀ε > 0, for sufficiently large n, EXMn ,n ≤mn(1 + ε) R+(Λn
f ) ≥ mn

2 .

If Qn is the coding probability associated with the ETAC code

R+(Qn,Λn) ≤ (5 + oΛ(1))
mn

2 log n + 2

B., Gassiat, Ohannessian, 2014

For power law envelopes Uc(t) = κtγ (Acharya et al. 2014)

R+(Λn
f ) ∼

(
κ1/γ

γ
n
) γ
γ+1

(
1
γ

+ γ log e + c
)

Details
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That’s all Folks

Thanks
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Envelop classes

Smoothed distribution function
- Fc has piecewise constant hazard rate,
- Fc(n) = F(n)

- Uc(t) = inf{x : 1/Fc(x) ≥ t}.
If X ∼ Fc then bX c+ 1 ∼ F and U(t) = bUc(t)c+ 1 for t > 1.

Lemma [Stochastic comparison by quantile coupling]
There exists a probability space where X ∼ G ∈ Λf , Y ∼ Fc such that

P{X ≤ Y } = 1

Return
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Bounds on minimax redundancy

Redundancy-Capacity theorem
For any prior µ on Λ1(f )

R+(Λn) = I (θ; X1:n)

For an ad hoc prior

I(θ; X1:n) ≥ EZn

where Zn is the number of distinct
symbols in X1:n

EZn ≥mn

where mn satisfies Fc(mn) ≈ mn
n

Made in California

For light-tailed envelopes

R+(Λn
f ) ∼ log(e)

∫ n

1

Uc(x)

2x dx (1+o(1))

Bontemps, B. & Gassiat, 2014 using
Haussler & Opper, AoS, 1997

For power law envelopes Uc(t) = κtγ

R+(Λn
f ) ∼

(
κ1/γ

γ
n
) γ
γ+1

(
1
γ

+ γ log e + c
)

Acharya, J., Jafarpour, A., Orlitsky, A., &
Suresh, A. T. (2014)

Return
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Censuring codes: sketch
x1:n

5 15 8 1 30 7 1 2 1 8 4 7 15 1 5 17 13 4 12 12

m1:n

5 15 15 15 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

x̃1:n y progressive KT encoding

0 0 8 1 0 7 1 2 1 8 4 7 15 1 5 17 13 4 12 12

m̃y Elias encoding

6 11 16

Return
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Light-tailed envelopes

Decomposing redundancy of AC-code

Decomposing pointwise redundancy

− log Qn(X1:n) + logPn(X1:n) = `(CE )︸︷︷︸
i

+ `(CM) + logPn(X1:n)︸                       ︷︷                       ︸
ii

.

Establishing main theorem in [BBG, 2014]
↪→

. (i) (Elias encoding of increments between records) is negligible with respect to
R+(Λn

f ), uniformly for P ∈ Λf ,
. The expected value of (ii) is upper bounded, uniformly for P ∈ Λf , by a term

which is equivalent to R+(Λn
f ).

Return
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Light-tailed envelopes

Stochastic behavior of Mn

Let X1, . . . ,Xn ∼i.i.d. P ∈ Λ1
f , let Mn = max(X1, . . . ,Xn), then,

EMn ≤ Uc(en) + 1
E[Mn log Mn] ≤ [Uc(en) + 1] log[Uc(en) + 1] + 2/b2.

Ingredients of proof
. Rényi’s representation of order statistics & concavity of U ◦ exp
. Sub-additivity of relative entropy (see Ledoux, 2001, Massart, 2006)
. The entropy method→ sharp tail and moment bounds for order statistics (B. &

Thomas, 2012)

Return
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Weak adaptivity of ETAC encoding
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Mn = min (n, {k : Xk ,n ≤ k}
)

Fc ∈ MDA(γ), γ > 0

. Mn
mn

P
−→ 1 .

.
XMn ,n
mc(n)

P
−→ 1 .

Mn is self-bounded

P
{
|Mn − EMn | ≥ t}
≤ 2e

(
− t2

2(EMn+t)

)
.
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