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♠ Compare two results of High-Dimensional Statistics:

Theorem A [Ibragimov & Khas’minskii 1979] Given α,L, k, let X be the
set of all functions f : [0,1]→ R with (α,L)-Hölder continuous k-th
derivative. The minimax risk of recovering x(0), x ∈ X , from noisy
observations

ω = f
∣∣
Γn

+ ξ, ξ ∼ N (0; In)
taken along n-point equidistant grid Γn, up to a factor C(β) = [...],
β := k + α, is (Ln−β)1/(2β+1), and the upper bound is attained at the
affine in ω estimate explicitly given by [...]

Theorem B [Donoho 1994] Let X ⊂ RN be a convex compact set, A be
an n × N matrix, and g(·) be a linear form on X . The minimax, over
x ∈ X , risk of recovering g(x) from noisy observations

ω = Ax + ξ, ξ ∼ N (0, In),
within factor 1.2 is attained at an affine in ω estimate readily given,
along with its risk, by the solution to convex optimization problem [...]
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♠ Similarity: A, B are about estimating a linear function of (unknown)
"signal" x from a given convex set X via observation ω of (affine image
of) x in white Gaussian noise. Both A, B claim near minimax optimality
of certain efficiently computable affine in ω estimate.
♠ Difference:
• A is narrowly focused (very special X ) descriptive result – it presents
the estimate and its risk in "closed analytic form" (⇒huge explanation
power). Descriptive results form the bulk of High-Dimensional Statistics
and typically are "fragile;" e.g., it is really difficult to extend A to the case
of indirect observations ω = Ax + ξ.
• B is an operational result explaining how to act rather than what to
expect: in B, the estimate and its risk are given by efficient computation
instebad of "closed analytic form" expressions (⇒no explanation
power). B is broadly focused (all needed is linearity of ω in x and
convexity of the set X of candidate signals) and guarantees that the
computed risk, whether high or low, is optimal, up to 20%, under the
circumstances.
♣ Contents of the Talk: Near-optimal operational results in hypothesis
testing
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♠ Starting point: Detector-based tests. Consider the basic problem
of deciding on two composite hypotheses: Given two families P1, P2 of
probability distributions on a given observation space Ω and an
observation ω ∼ P with P known to belong to P1 ∪ P2, we want to
decide whether P ∈ P1 (hypothesis H1) or P ∈ P2 (hypothesis H2).
♣ A detector is a function φ : Ω→ R. Risks ε1,2, ε2,1 of a detector φ are
defined as

ε1,2 = sup
P∈P1

∫
Ω

e−φ(ω)P(dω), ε2,1 = sup
P∈P2

∫
Ω

eφ(ω)P(dω)

• Given observation ω ∈ Ω, the test Tφ associated with detector φ
accepts H1 and rejects H2 when φ(ω) ≥ 0; otherwise the test accepts
H2 and rejects H1.

♣ Observation I: The probability for Tφ to reject the true hypothesis is
≤ ε1,2 when H1 is true and is ≤ ε2,1 when H2 is true:

P ∈ P1 ⇒ Probω∼P{ω : φ(ω) < 0} ≤ ε1,2
P ∈ P2 ⇒ Probω∼P{ω : φ(ω) ≥ 0} ≤ ε2,1
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sup
P∈P1

∫
Ω

e−φ(ω)P(dω) ≤ ε1,2, sup
P∈P2

∫
Ω

eφ(ω)P(dω) ≤ ε2,1 (!)

Observation II: Detector-based tests admit simple calculus:

♠ Shift φ(·) 7→ φ(·)− a results in ε1,2 7→ exp{a}ε1,2, ε2,1 7→ exp{−a}ε2,1
⇒What matters is the product ε2 := ε1,2ε2,1 of the risks: by shift we can
redistribute ε2 between the factors as we wish, e.g., we can make both risks
equal to ε ("balanced detector")

♠ Detectors are ideally suited to passing from a single observation
ω ∼ P ∈ P1 ∪ P2 to stationary K -repeated observation – an i.i.d. sample
ωK = (ω1, ..., ωK ) with ωt ∼ P: setting φ(K )(ωK ) =

∑K
t=1 φ(ωt ), the risks of φ(K )

are ε(K )
1,2 = εK1,2, ε(K )

2,1 = εK2,1.

♠ (!) is a system of convex constraints on φ(·), ε1,2, ε2,1
♠ P enters (!) linearly⇒risk remains intact when passing from P1, P2 to their
convex hulls

♠ Let T decide on H1, H2 with risks ≤ δ < 1/2. Setting

φ(ω) = 1
2 ln(δ−1 − 1) ·

{
1, T accepts H1
−1, T accepts H2

,

the risks of the resulting detector are ≤ 2
√
δ(1− δ) < 1.
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♣ Conclusion:
Imagine we can solve the convex optimization problem

ln(ε?) = 1
2min
φ(·)

max
P1∈P1
P2∈P2

[
ln
(∫

Ω

e−φ(ω)P1(dω)

)
+ ln

(∫
Ω

eφ(ω)P2(dω)

)]
(!)

Balanced optimal solution φ?(·) to (!) induces test deciding on H1, H2
with risk ≤ ε? which is near-optimal: whenever H1, H2 can be decided
upon with risk δ < 1/2, it holds

ε? ≤ 2
√
δ(1− δ).

♠ Difficulty:
Unless Ω is finite, (!) is an infinite-dimensional problem, and unless P1,
P2 are finite, (!) is a problem with difficult to compute objective.
⇒In general, (!) is intractable...

♣ This talk:
We are about to consider "good" observation schemes where Difficulty
can be circumvented.
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♣ Good Observation Scheme
O = ((Ω,P), {pµ : µ ∈M},F)

♠ (Ω,P): (complete separable metric) observation space Ω with
(σ-finite σ-additive) reference measure P, suppP = Ω;

♠ {pµ(·) : µ ∈M}: parametric family of probability densities, taken w.r.t.
P, on Ω.

• M is a relatively open convex set in some Rn

• pµ(ω): positive and continuous in µ ∈M, ω ∈ Ω

♠ F : finite-dimensional space of continuous functions on Ω containing
constants and such that

ln(pµ(·)/pν(·)) ∈ F ∀µ, ν ∈M

♠ For φ ∈ F , the function µ 7→ ln
(∫

Ω

eφ(ω)pµ(ω)P(dω)

)
is finite and

concave in µ ∈M.

Hypothesis Testing via Convex Oprimization



Gaussian o.s.

(Ω = Rd ,dω), {pµ(·)= N (µ, Id ) : µ ∈ Rd}, F = {affine functions on Ω}

Poisson o.s.

(Ω,P) = (Zd
+, counting measure), {pµ(ω) =

d∏
i=1

µ
ωi
i e−µi

ωi !
: µ ∈M := Rd

++},

F = {affine functions on Ω}

Discrete o.s.

(Ω,P) = ({1, ...,d}, counting measure),
{pµ(ω) = µω, µ ∈M = {µ > 0 :

∑d
ω=1 µω = 1}, F = {all functions on Ω}
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Direct product of good o.s. Ot = ((Ωt ,Pt ), {pµt ,t (·) : µt ∈Mt},Ft ),1 ≤ t ≤ K

Samples ωK of K independent observations drawn from O1, ...,OK :

(Ω,P) = (
K⊗

t=1
Ωt ,

K⊗
t=1

Pt ), {pµ(ωK ) =
K∏

t=1
pµt ,t (ωt ) : µ ∈M :=

K⊗
t=1
Mt},

F (K ) = {f (ωK ) =
K∑

t=1
ft (ωt ) : ft ∈ Ft}

K -repeated version of a good o.s. O = ((Ω,P), {pµ(·) : µ ∈M},F)

K -element i.i.d. samples ωK drawn from O:

(Ω,P) = (Ω× ...× Ω︸ ︷︷ ︸
K

,P × ...× P︸ ︷︷ ︸
K

), {pµ(ωK ) =
K∏

t=1
pµ(ωt ) : µ ∈M},

F (K ) = {
K∑

t=1
f (ωt ) : f ∈ F}
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ln(ε?) = 1
2min
φ(·)

max
P1∈P1
P2∈P2

[
ln
(∫

Ω

eφ(ω)P1(dω)

)
+ ln

(∫
Ω

e−φ(ω)P2(dω)

)]
(!)

♠ Main Theorem: Let
O := ((Ω,P), {pµ : µ ∈M},F)

be a good o.s., and let
P1 = {pµ(ω)P(dω) : µ ∈ X1}, P2 = {pµ(ω)P(dω) : µ ∈ X2}

where X1, X2 are nonempty convex compact subsets ofM.

• Problem
ln(ε?) = maxµ∈X1,ν∈X2 ln

(∫
Ω

√
pµ(ω)pν(ω)P(dω)

)
is convex and solvable, and its optimal solution (µ∗, ν∗) induces the detector
φ∗(ω) = 1

2 ln(pµ∗(ω)/pν∗(ω)) which is a balanced optimal solution to (!).

• For every K , the detector φ(K )
∗ (ωK ) =

∑K
t=1 φ∗(ωt ) induces test T K deciding

on the hypotheses H1,H2:
Hχ : ω1, ..., ωK are i.i.d. drawn from pµ with some µ ∈ Xχ,

with risk εK? , and this test is near-optimal: if “in the nature” there exists a test,
based on K∗ observations, deciding on H1,H2 with risk ε < 1/2, the test T K

ensures the same risk ε whenever
K ≥ 2

1− ln(4(1−ε))
ln(1/ε)

K∗

Hypothesis Testing via Convex Oprimization



♠ Note: For Discrete o.s., Main Theorem is covered by classical results
of Le Cam, Huber & Strassen, and L. Birgé on deciding on two convex
families of probability distributions.
♥ The novelty in the general case stems from the fact that for a convex
set X in the space of parameters of a good o.s., the associated family of
distributions PX = {pµ(·) : µ ∈ X} typically is nonconvex, the Discrete
o.s. being an exception.
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From pairwise to multiple hypothesis testing

♣ Recovery up to closeness: Given
• a good o.s. O = ((Ω,P), {pµ(·) : µ ∈M},F)
• n convex compact sets Xi ⊂M, i = 1, ...,n,
• closeness C – symmetric Boolean n × n matrix with zero diagonal,

along with an i.i.d. sample ωK = (ω1, ..., ωK ) drawn from a distribution pµ∗ with
some µ∗ ∈

⋃
i Xi , we want to decide on the hypotheses Hi : µ ∈ Xi , 1 ≤ i ≤ n,

“up to closeness C”, i.e., we are ready to accept along with the true hypothesis
Hi∗ (one with µ∗ ∈ Xi∗ ) the hypotheses Hi C-close to Hi∗ (those with Ci∗ i = 0).

♣ Theorem. Tests φij (·) and risks εij given by Main Theorem as applied to
pairs of hypotheses Hi , Hj , 1 ≤ i < j ≤ n, can be efficiently assembled into a
test T K deciding, up to closeness C, on H1,...,Hn with risk at most

ε? =

∥∥∥∥[Cijε
K
ij

]
i,j

∥∥∥∥
2,2

[εii := 0, εij := εji for i > j]

meaning that
As applied to i.i.d. sample ωt ∼ pµ∗(·), 1 ≤ t ≤ K , with µ∗ ∈ Xi∗ for some i∗, the
pµ∗ -probability of the event “T K accepts the true hypothesis Hi∗ , and all
hypotheses accepted by T K are C-close to Hi∗ ” is at least 1− ε?.
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♠ Follow up: The test T K is near-optimal:

♠ Assume that in the nature there exists a test, based on K∗-repeated
observations, solving the Recovery-up-to-closeness problem with risk ε < 1/2.
Then the test T K solves the same problem with the same risk ε whenever the
number of observations K satisfies

K ≥ 2 ln(n/ε)
ln(1/ε)−ln(4(1−ε))K∗.
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♠ Along with “static” versions of the above testing problems, we can
address their
• sequential settings, where at time instants t = 1,2, ...,K , given

observations ω1, ..., ωt acquired so far, we either make inference and
terminate, or pass to the next observation, and the goal is to make
reliable inference as fast as possible;
• dynamical settings, where the hypotheses “evolve in time” (change

point detection)
♠We can utilize tests to solve in a near-optimal, in the minimax sense,
estimation problems like

Given a finite collection of convex compact sets Xi ⊂M and a
function f : X :=

⋃
i Xi → R which is affine (or affine-fractional)

on every one of Xi , estimate f (µ) from an i.i.d. sample ωt ∼ pµ,
1 ≤ t ≤ K , with unknown µ known to belong to X .
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♣ Potential applications: design of near-optimal tests and estimates in
♠ Gaussian Signal Processing, where, given an observation

ω = Ax +N (0, I)
of unknown signal x ∈

⋃N
i=1Xi with convex compact Xi , we want to

make inferences on the “location” of x
♠ Poisson Imaging – same as Gaussian Signal Processing, but with
observation ω with independent entries ωi ∼ Poisson([Ax ]i), where
A ≥ 0 and Xi ⊂ Rn

+.
Poisson Imaging covers image recovery problems in
• Positron Emission Tomography
• Large Binocular Telescope – cutting edge astronomical imaging
instrument under development by an international consortium
• Nanoscale Fluorescent Microscopy (Poisson Biophotonics) – a
revolutionary technology allowing to break the diffraction barrier
and to view biological molecules "at work" at a resolution 10-20 nm,
yielding entirely new insights into the signalling and transport
processes within cells.
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