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& Compare two results of High-Dimensional Statistics:

Theorem A [Ibragimov & Khas’minskii 1979] Given «, L, k, let X be the
set of all functions f : [0, 1] — R with (a, L)-Hblder continuous k-th
derivative. The minimax risk of recovering x(0), x € X, from noisy
observations

w= f‘rn—i—&{rvN(O; In)
taken along n-point equidistant grid T ,, up to a factor C(3) = |[...],
B =k +a, is (Ln=?)1/(8+1)  and the upper bound is attained at the
affine in w estimate explicitly given by [...]

Theorem B [Donoho 1994] Let X ¢ RN be a convex compact set, A be

an n x N matrix, and g(-) be a linear form on X. The minimax, over

x € X, risk of recovering g(x) from noisy observations
w:AX+£J£NN(Oa/n)1

within factor 1.2 is attained at an affine in w estimate readily given,

along with its risk, by the solution to convex optimization problem [...]
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& Similarity: A, B are about estimating a linear function of (unknown)
"signal" x from a given convex set X via observation w of (affine image
of) x in white Gaussian noise. Both A, B claim near minimax optimality
of certain efficiently computable affine in w estimate.

& Difference:

e A is narrowly focused (very special X') descriptive result — it presents
the estimate and its risk in "closed analytic form" (=-huge explanation
power). Descriptive results form the bulk of High-Dimensional Statistics
and typically are "fragile;" e.g., it is really difficult to extend A to the case
of indirect observations w = Ax + €.

e B is an operational result explaining how to act rather than what to
expect: in B, the estimate and its risk are given by efficient computation
instebad of "closed analytic form" expressions (= no explanation
power). B is broadly focused (all needed is linearity of w in x and
convexity of the set X’ of candidate signals) and guarantees that the
computed risk, whether high or low, is optimal, up to 20%, under the
circumstances.

& Contents of the Talk: Near-optimal operational results in hypothesis

testing
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& Starting point: Detector-based tests. Consider the basic problem
of deciding on two composite hypotheses: Given two families Py, P» of
probability distributions on a given observation space Q2 and an
observation w ~ P with P known to belong to Py U P», we want to
decide whether P € Py (hypothesis H{) or P € P> (hypothesis H>).
& A detectoris a function ¢ : Q — R. Risks ¢4 2, €2 1 Of a detector ¢ are
defined as

€12 = sup e"b(w)P(dw), €21 = SUP e¢(”)P(dw)

PePy Q PeP> Q

e Given observation w € Q, the test T, associated with detector ¢
accepts Hy and rejects H, when ¢(w) > 0; otherwise the test accepts
H, and rejects Hj.

& Observation I: The probability for T, to reject the true hypothesis is
< €12 when Hy is true and is < e 1 when Hy is true:

PePy = PI'ObWNP{w : ¢(w) < 0} < €1,2

PeP, = Prob, p{w: d(w) >0} < ey
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sup [ e ?WP(dw) < erp, sup [ e?@P(dw) < ep ()
PePy 0 PePy
Observation II: Detector-based tests admit simple calculus:

& Shift ¢(-) — ¢(-) — a results in 1 » — exp{a}er 2, €21 — exp{—alea 1

= What matters is the product € := ¢ 2621 Of the risks: by shift we can
redistribute ¢ between the factors as we wish, e.g., we can make both risks
equal to e ("balanced detector")

& Detectors are ideally suited to passing from a single observation
w ~ P € Py UPs to stationary K-repeated observation — an i.i.d. sample
WK = (w1, ..., w) Withwy ~ P: setting () (wK) = SK | ¢(wy), the risks of ¢(K)

K _ k (K)_ K
& 2 = e G = G

& () is a system of convex constraints on ¢(-), €12, €21
& P enters (!) linearly = risk remains intact when passing from Py, P> to their
convex hulls

& Let T decide on Hy, Hy with risks < § < 1/2. Setting

_ 1, 7T accepts H;
_ 1 1 . )
¢lw) = 3 In(0 1) { —1, 7T acceptsH, ’

the risks of the resulting detector are < 2.,/6(1 — 9) < 1.
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Conclusion:

Imagine we can solve the convex optimization problem

In(e,) = 3mMin max [In <fe (e P1(dw)> +1In <fe Pz(dw)>] ("

60) Eny

Balanced optimal solution ¢,(-) to (!) induces test deciding on Hq, Hz
with risk < e, which is near-optimal: whenever H;, H> can be decided
upon with risk 6 < 1/2, it holds

€ < 24/6(1 —9).
Difficulty:

Unless 1 is finite, () is an infinite-dimensional problem, and unless Py,
P> are finite, () is a problem with difficult to compute objective.
=-In general, () is intractable...

This talk:

We are about to consider "good" observation schemes where Difficulty
can be circumvented.
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& Good Observation Scheme
O =((2,P).{pu: pe M}, F)

& (Q, P): (complete separable metric) observation space Q with
(o-finite o-additive) reference measure P, suppP = Q;

o’

& {p.(-) : p e M}: parametric family of probability densities, taken w.r.t.
P, on Q.

e M is arelatively open convex set in some R”

e p,(w): positive and continuous in 4 € M,w € Q

& F: finite-dimensional space of continuous functions on 2 containing
constants and such that

In(pu(")/Pu(")) € F Vp,v € M

& For ¢ € F, the function y + In ( [ e“’(“)p,,,(w)P(dw)> is finite and
Q

concave in u € M.
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Gaussian o.s.

(Q =RY, dw), {p.(")= N(p, Iy) : p € R}, F = {affine functions on Q}

Poisson o.s.

Cia—Hj
e ':MGM::R1+},

wi!

o

(Q, P) = (29, counting measure), {p,,(w) =

1

F = {affine functions on Q}

(Q,P)=({1,...,d}, counting measure),
{Pu(w) = p, pe M ={pu>0: 2511 p, = 1}, F = {all functions on Q}
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Direct product of good 0.s. Ot = ((Q, Pt), {Pu.t(-) : pt € M}, Fi),1 <t < K

Samples wX of K independent observations drawn from Oy, ..., Ok:
K K K K

(Q,P) = (@3 Q, Q Py), {pu(w’) = H1 Put(we) 1 p € M = t@ M},
= = t= =

K
]:(K) =] {f(wK) = Z ft(o.}[) o f[ € ]:t}
=l

K-repeated version of a good 0.s. O = ((2, P), {p.(:) : p € M}, F)

K-element i.i.d. samples w* drawn from O:
K
(LP)=(2x ... x QP x...x P), {pu(w) = [ pu(ws): u € M},
K . t=1
K
FE) = {3 f(w) : fe F}
t=1
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In(e,) = ;mln max {In <f e P1(dw)) +1In <f e@(w)Pg(dw)>] Q)
o(-) P1ePy Q
PyePop
& Main Theorem: Let
O :=((Q,P),{py:pneM}F)
be a good o.s., and let
P1 = {pu(w)P(dw) : p € X1}, P2 = {pu(w)P(dw) : 1 € X2}
where Xi, Xo are nonempty convex compact subsets of M.

e Problem

In(e,) = Maxex; e, I ( fo v/Bu(@)P@)P(a))

is convex and solvable, and its optimal solution (., v.) induces the detector
di(w) = % In(p,.. (w)/p..(w)) which is a balanced optimal solution to (!).

e For every K, the detector %0 (W) = Zf: 1 ¢«(wy) induces test T deciding
on the hypotheses Hy, Hs:

H, : wi,...,wk areii.d. drawn from p, with some p € X,
with risk X, and this test is near-optimal: if “in the nature” there exists a test,
based on K. observations, deciding on Hy,H, with risk e < 1/2, the test T S
ensures the same risk ¢ whenever

|n(1/)
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& Note: For Discrete o.s., Main Theorem is covered by classical results
of Le Cam, Huber & Strassen, and L. Birgé on deciding on two convex
families of probability distributions.

O The novelty in the general case stems from the fact that for a convex
set X in the space of parameters of a good o.s., the associated family of
distributions Px = {pu(-) : p € X} typically is nonconvex, the Discrete
0.S. being an exception.
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From pairwise to multiple hypothesis testing

& Recovery up to closeness: Given

e agoodo.s. O=((2P),{p.():peM}F)

e n convex compact sets X; ¢ M, i=1,....,n,

e closeness C — symmetric Boolean n x n matrix with zero diagonal,
along with an i.i.d. sample w = (wy, ..., wx) drawn from a distribution p,,. with
some (. € |J; Xi, we want to decide on the hypothesesH; : 1 € X;, 1 <i<n,
“up to closeness C’, i.e., we are ready to accept along with the true hypothesis
H, (one with . € X;, ) the hypotheses H; C-close to H;, (those with C; ; = 0).

o’

& Theorem. Tests ¢;(-) and risks € given by Main Theorem as applied to
pairs of hypotheses H;, H;, 1 < i < j < n, can be efficiently assembled into a
test TX deciding, up to closeness C, on Hy,...,H,, with risk at most

],

€yx —

[eii =0, ¢ := ¢ for i > j]
2.2
meaning that

As applied to i.i.d. sample w; ~ p,.(-), 1 < t < K, with . € Xj, for some i, the
p,.. -probability of the event “T K accepts the true hypothesis H;_, and all
hypotheses accepted by TX are C-close to H;_ ” is at least 1 — «,.

4
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& Follow up: The test TX is near-optimal:

& Assume that in the nature there exists a test, based on K., -repeated
observations, solving the Recovery-up-to-closeness problem with risk e < 1/2.
Then the test TX solves the same problem with the same risk e whenever the
number of observations K satisfies

21 €
K > mrrgmintat=ay K-
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& Along with “static” versions of the above testing problems, we can
address their

e sequential settings, where at time instants t = 1,2, ..., K, given
observations w1, ..., w; acquired so far, we either make inference and
terminate, or pass to the next observation, and the goal is to make
reliable inference as fast as possible;

e dynamical settings, where the hypotheses “evolve in time” (change
point detection)
& We can utilize tests to solve in a near-optimal, in the minimax sense,
estimation problems like

Given a finite collection of convex compact sets X; C M and a
function f : X := |J; Xi — R which is affine (or affine-fractional)
on every one of X, estimate f(u) from an i.i.d. sample wt ~ p,,
1 < t < K, with unknown p. known to belong to X.
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& Potential applications: design of near-optimal tests and estimates in
& Gaussian Signal Processing, where, given an observation
w=Ax+N(0,/)
of unknown signal x € |JY , &; with convex compact ;, we want to
make inferences on the “location” of x
& Poisson Imaging — same as Gaussian Signal Processing, but with
observation w with independent entries w; ~ Poisson([Ax];), where
A>0and X; C R.
Poisson Imaging covers image recovery problems in
e Positron Emission Tomography
e [arge Binocular Telescope — cutting edge astronomical imaging
instrument under development by an international consortium
e Nanoscale Fluorescent Microscopy (Poisson Biophotonics) — a
revolutionary technology allowing to break the diffraction barrier
and to view biological molecules "at work" at a resolution 10-20 nm,
yielding entirely new insights into the signalling and transport
processes within cells.
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