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Plan of the talk

The model

Some results and tools in the model

Application of the tools
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Background and motivation

Property testing for probability distributions – the basic setup
There is an unknown distribution D over [N] that one can only access
via (expensive) calls to some “oracle”
There is a property P of interest that D may or may not have
The goal is to distinguish, using a sublinear number of oracle calls,
between the two cases:
(a) D has property P;
(b) D is “ε-far” from all distributions that have property P (w.r.t. some

chosen metric).

Standard model of testing probability distributions:
The oracle is SAMPD: at each call, it returns an i.i.d. draw from D.
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Distribution testing (1)
In more detail.

Our metric: total variation distance (∝ L1 distance)

dTV(D1,D2) def= 1
2‖D1 − D2‖1 = 1

2
∑

i∈[N]
|D1(i)− D2(i)|.

Definition (Testing algorithm)

Let P be a property of distributions over [N], and ORACLED be some type
of oracle which provides access to D. A q(ε,N)-query ORACLE testing
algorithm for P is a (randomized) algorithm T which, given ε,N as input
parameters and oracle access to an ORACLED oracle, and for any
distribution D over [N], makes at most q(ε,N) calls to ORACLED, and:

if D ∈ P then, w.p. at least 2/3, T outputs ACCEPT;
if dTV(D,P) ≥ ε then, w.p. at least 2/3, T outputs REJECT.
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Distribution testing (2)
Comments

A few remarks
“gray” area for dTV(D,P) ∈ (0, ε);
2/3 is completely arbitrary;
extends to several oracles and distributions;
our measure is the # of oracle calls (not the running time).
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Distribution testing (3)
A concrete example: testing uniformity

Property P (“being U , the uniform distribution over [N]”) ⇔ set SP of
distributions with this property (SP = {U})
Distance to P:

dTV(D,SP) = min
D′∈SP

dTV
(
D,D′

)
=

here
dTV(D,U)

Distribution testing in the standard model:
1 Draw a bunch of points from D;
2 “Process” them (for instance by counting the number of points drawn more

than once: collision-based tester);
3 Output ACCEPT or REJECT based on the result.
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The lay of the land in the standard model

Fact
In the standard SAMPD model, many basic properties are “expensive” to
test: any tester requires Ω(

√
N) queries to test, even to accuracy ε = 1/10.

Examples:

Testing uniformity: Θ(
√

N/ε2) sample complexity
[GR00, BFR+10, Pan08]
Testing equivalence to a known distribution: Θ̃(

√
N/ε2)

[BFF+01, Pan08];
Testing equivalence of two unknown distributions:
Θ
(

max{N2/3

ε4/3 ,
√

N
ε2 }

)
[BFR+10, Val11, CDVV13]
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Our model: a different oracle

More power to the tester
We consider a new model. Each oracle call:

Testing algorithm specifies a subset S of the domain [N];
In response, gets a draw from D conditioned on it landing in S.

Models scenarios where a scientist/experimenter has some control over an
‘experiment’ to restrict the range of possible outcomes (e.g., by altering the
conditions).

Definition (COND oracle)
Fix a distribution D over [N]. A COND oracle for D, denoted CONDD, is
defined as follows: The oracle is given as input a query set S ⊆ [N] that has
D(S) > 0, and returns an element i ∈ S, where the probability that element
i is returned is DS(i) = D(i)/D(S), independently of all previous calls to
the oracle.
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Our model

Remark
Generalizes the SAMP oracle (S = [N]);
Provides a richer “algorithmic playground” (adaptiveness);
Natural variants of the COND model only allow certain specific types
of subsets to be queried:

I PCOND: can query [N] or 2-element sets {i , j};
I ICOND can query intervals [i , . . . , j];

similar model independently introduced by Chakraborty et
al. [CFGM13].
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Our results

Question
Do COND oracles enable more efficient testing algorithms than SAMP
oracles?

Yes — in many cases, exponentially more efficient.
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Our results
Comparison of the COND and SAMP models on several testing problems

Problem Our results Standard model

Is D = D∗ for a
known D∗?

CONDD Õ
( 1

ε4

)
PCONDD

Õ
(

log4 N
ε4

)
Θ̃
(√

N
ε2

)
[BFF+01, Pan08]

Ω
(√

log N
log log N

)
Are D1, D2 (both
unknown) equiva-
lent?

CONDD1,D2 Õ
(

log5 N
ε4

)
Θ
(

max
(

N2/3

ε4/3 ,
√

N
ε2

))
[BFR+10, Val11, CDVV13]PCONDD1,D2 Õ

(
log6 N

ε21

)
Table: Comparison between the COND model and the standard model for these problems. The
upper bounds are for testing dTV = 0 vs. dTV ≥ ε.
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Rest of the talk

Plan for rest of talk:
sketch of testing uniformity and testing D vs. D∗

introduce some tools: Estimate-Neighborhood and
Approx-Eval
use the tools: test equivalence of two unknown distributions
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Testing Uniformity (1)
Special case of testing identity to D∗

Recall the standard SAMP model uniformity testing bounds:

Theorem (Testing Uniformity with SAMP)

Given SAMPD, testing whether D = U versus D is ε-far from uniform
requires Θ(

√
N/ε2) calls to SAMPD.

Lower bound sketch: Suppose D is either uniform over [N], or uniform over
a random subset of [N] (hence far from uniform over [N]). In either case,√

N/100 calls to SAMPD will w.v.h.p. result in a uniform random subset of√
N/100 distinct elements of [N] (birthday paradox), so can’t distinguish.
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Testing Uniformity (2)
Special case of testing identity to D∗

Theorem (Testing Uniformity with PCOND)

There exists a Õ(1/ε2)-query PCONDD tester for uniformity, i.e. it accepts
w.p. at least 2/3 if D = U and rejects w.p. at least 2/3 if dTV(D,U) ≥ ε.

High-level idea: Intuitively, if D is ε-far from uniform, it must have

(a) a lot of points “very light” (noticeably less than 1/N); and
(b) a lot of weight on “very heavy” points (noticeably more than 1/N).

Sampling Õ(1/ε) points uniformly, w.v.h.p. we get a type-(a) point, and
sampling Õ(1/ε) points according to D, w.v.h.p. we get a type-(b) point.
Use PCOND to compare them, and get evidence that D is far from uniform.

C. Canonne, D. Ron, R. Servedio Testing distributions with conditional samples March 20, 2015 14 / 33
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Testing D versus D∗ (1)

A more general problem: have CONDD access to D, want to test equality
to a fixed, known distribution D∗.

The approach for uniformity does not work for general D∗.
For testing uniformity, O(1/ε) calls to PCOND will reveal when two
points’ weights differ by at least a multiplicative 1 + ε.
But with a general D∗, the actual ratios can be arbitrarily big or small.
E.g., if D∗(x)/D∗(y) =

√
N, need Ω(

√
N) calls to PCONDD({x , y})

to distinguish D(x)/D(y) =
√

N from D(x)/D(y) = 2
√

N.
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Testing D versus D∗ (2)

Towards a fix: Adapt the algorithm to compare points with (carefully
chosen) comparable sets. I.e., for carefully chosen x ∈ [N] and Y ⊂ [N],
check (using CONDD) that D(x)/D(Y ) (approximately matches) the
(known) value D∗(x)/D∗(Y ).

Theorem (Testing Equivalence to a known D∗ with COND)

For any fixed known distribution D∗, there is a Õ(1/ε4)-query CONDD
tester for equivalence to D∗ (accepts w.p. at least 2/3 if D = D∗ and
rejects w.p. at least 2/3 if dTV(D,D∗) ≥ ε).
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Testing D versus D∗ (3)
A lower bound for PCOND

Our Õ(1/ε4)-query algorithm uses CONDD, not just PCONDD. In fact, no
PCONDD algorithm can have query complexity independent of N:

Theorem (Lower bound for testing equivalence to D∗ with PCOND)

There exists a distribution D∗ over [N] such that for ε = 1/2, any
PCONDD tester that ε-tests equivalence to D∗ must make Ω

(√
log N

log log N

)
queries to PCONDD.

Intuition: construct D∗, and distributions D far from D∗, so that any two
points either have equal weight in both cases, or very skewed weights in
both cases. This means pairwise comparisons don’t give new information.
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Rest of the talk

Plan for rest of talk:
sketch of testing uniformity and testing D vs. D∗

introduce some tools: Estimate-Neighborhood and
Approx-Eval
use the tools: test equivalence of two unknown distributions
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Some useful tools (1)
First tool: The low-level Compare

“Comparison is the death of joy.” – Mark Twain.

X ⊆ [N]

disjoint Y ⊆ [N]

“Low”

ρD(X)�
D(Y

)

ρ ' D(Y )
D(X)

D(X) ≈ D(Y )

ρ

“High”

D(X
)�

D(Y
)
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Some useful tools (2)
Second tool: Estimate-Neighborhood procedure

Fix D. Given a point x , the γ-neighborhood of x is the set Uγ(x) of points
that have “roughly” the same weight as x (up to multiplicative 1 + γ):

Definition (γ-Neighborhood)

Uγ(x) def=
{

y ∈ [N] : (1+γ)−1D(x) ≤ D(y) ≤ (1+γ)D(x)
}
, γ ∈ [0, 1]

How much weight does D put on the γ-neighborhood of x?

“Theorem”
There is an algorithm Estimate-Neighborhood which, given a point
x ∈ [N] and a parameter γ, gives a multiplicative (1± ε)-approximation of
D(Uγ(x)), and makes poly(1/ε, 1/γ) many PCONDD queries.
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Some useful tools (3)
Third tool: Approximate-EVAL oracle

EVAL oracle

An EVALD simulator for D is a procedure ORACLE such that the output of
ORACLE on input i∗ ∈ [N] is D(i∗) ∈ [0, 1], the amount of probability D
puts on i∗.
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Some useful tools (3)
Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

Ideally, an (ε, δ)-approximate EVALD simulator for D would be a
randomized procedure ORACLE such that w.p. 1− δ the output of
ORACLE on input i∗ ∈ [N] is a value D̂(i∗) ∈ [0, 1] such that
D̂(i∗) ∈ [1− ε, 1 + ε]D(i∗).

Bad news: Can’t achieve this efficiently for every i∗: how to tell
whether D(i∗) is 1/22N or 1/222N

?
Good news: Can achieve this for every i∗ except for an “error set” of
mass at most ε (where we may say “don’t know”).
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Some useful tools (3)
Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

An (ε, δ)-approximate EVALD simulator for D is a randomized procedure
ORACLE s.t for each ε, there is a fixed set S(ε) ( [N] with D(S(ε)) < ε for
which the following holds. For all i∗ ∈ [N], ORACLE(i∗) is either a value
D̂(i∗) ∈ [0, 1] or Unknown, and furthermore:

(i) If i∗ /∈ S(ε) then w.p. 1− δ the output of ORACLE on input i∗ is a
value D̂(i∗) ∈ [0, 1] such that D̂(i∗) ∈ [1− ε, 1 + ε]D(i∗);

(i) If i∗ ∈ S(ε) then w.p. 1− δ the procedure either outputs Unknown or
outputs a value D̂(i∗) ∈ [0, 1] such that D̂(i∗) ∈ [1− ε, 1 + ε]D(i∗).
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Some useful tools (3)
Third tool: Approximate-EVAL oracle

(Approximate) EVAL oracle

An (ε, δ)-approximate EVALD simulator for D is a randomized procedure
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(i) If i∗ ∈ S(ε) then w.p. 1− δ the procedure either outputs Unknown or
outputs a value D̂(i∗) ∈ [0, 1] such that D̂(i∗) ∈ [1− ε, 1 + ε]D(i∗).

Theorem
There is an algorithm Approx-Eval which uses Õ

(
(log N)5·(log(1/δ))2

ε3

)
calls

to CONDD, and is an (ε, δ)-approximate EVALD simulator.
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CONDD

Approx-Evalε

“Unknown”
or D̂(i)

i ∗∈ S (ε)

D̂(i)

i∗ /∈
S(ε)

i∗ ∈ [N]
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Some useful tools (4)
Third tool: Approximate-EVAL oracle

S0 = [N]

Scan over heavy elements: i not amongst them?

S1

Scan over heavy elements: i not amongst them?

S2 S′2

Sk−1

Sk = {i} S′k

S′1

Figure: Execution of Approx-Eval on some i : scan over heavy elements, randomly partition
the light ones, recurse; finally get an estimate of D(i) by multiplying estimates at each
branching.
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Applications

Testing equivalence of two unknown distributions D1, D2

Given an oracle for D1 and a separate oracle for D2, distinguish D1 = D2 vs.
dTV(D1,D2) ≥ ε.

Two different approaches:
1 with PCOND and Estimate-Neighborhood – finding

“representatives” points for both distributions;
2 with COND and Approx-Eval – adapting an EVAL algorithm from

[RS09].

Both approaches use poly(log N, 1/ε) calls to the oracle.

Theorem
[Acharya, Canonne, Kamath ’14] Any tester for this problem must make
Ω(
√

log log N) CONDD queries.
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Conclusion

new model for studying probability distributions
attempt to capture aspects of real-world settings where experimenter
can do more than just SAMP
allows significantly more query-efficient algorithms

generalizing to other structured domains? (e.g., the Boolean
hypercube {0, 1}n)
what about distribution learning in this framework
more properties? (entropy, independence, . . . )
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The end.

Thank you.

C. Canonne, D. Ron, R. Servedio Testing distributions with conditional samples March 20, 2015 26 / 33



41

References I

T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, Testing random variables for independence and
identity, Proceedings of FOCS, 2001, pp. 442–451.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing that distributions are close, Proceedings of
FOCS, 2000, pp. 189–197.

, Testing closeness of discrete distributions, Tech. Report abs/1009.5397, 2010, This is a long version
of [BFR+00].

S.-O. Chan, I. Diakonikolas, G. Valiant, and P. Valiant, Optimal Algorithms for Testing Closeness of Discrete
Distributions, ArXiv e-prints (2013).

S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah, On the power of conditional samples in distribution testing,
Proceedings of ITCS, 2013, Arxiv posting http://arxiv.org/abs/1210.8338 31 Oct 2012.

O. Goldreich and D. Ron, On testing expansion in bounded-degree graphs, Tech. Report TR00-020, ECCC, 2000.

L. Paninski, A coincidence-based test for uniformity given very sparsely sampled discrete data, IEEE-IT 54 (2008), no. 10,
4750–4755.

R. Rubinfeld and R. A. Servedio, Testing monotone high-dimensional distributions, RSA 34 (2009), no. 1, 24–44.

P. Valiant, Testing symmetric properties of distributions, SICOMP 40 (2011), no. 6, 1927–1968.

C. Canonne, D. Ron, R. Servedio Testing distributions with conditional samples March 20, 2015 27 / 33



42

Backup slides
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Testing Uniformity (3)
Getting our hands dirty.

Algorithm 1: PCONDD-Test-Uniform
Set t = Θ(log( 1

ε )).
Select q = Θ(1) points i1, . . . , iq uniformly {Reference points}
for j = 1 to t do

Call the oracle sj = Θ(2jt) times to get h1, . . . , hsj∼ D {Heavy points?}
Draw sj points `1, . . . , `sj uniformly from [N] {Light points?}
for all pairs (x , y) = (ir , hr ′ ) and (x , y) = (ir , `r ′ ) do

Get a good estimate of D(x)/D(y). {Ideally, should be 1}
Reject if the value is not in [1− 2j−5 ε

4 , 1 + 2j−5 ε
4 ]

end for
end for
Accept

C. Canonne, D. Ron, R. Servedio Testing distributions with conditional samples March 20, 2015 29 / 33



44

Testing Uniformity (4)

Proof (Outline).
Sample complexity by the setting of t, q and the calls to Compare
Completeness unless Compare fails to output a correct value, no rejection

Soundness Suppose D is ε-far from U ; refinement of the previous
approach by bucketing low and high points:

Hj
def=
{

h
∣∣∣∣ (1 + 2j−1 ε

4

) 1
N ≤ D(h) <

(
1 + 2j ε

4

) 1
N

}

Lj
def=
{
`

∣∣∣∣ (1− 2j ε

4

) 1
N < D(`) ≤

(
1− 2j−1 ε

4

) 1
N

}
for j ∈ [t − 1], with also H0, L0,Ht , Lt to cover everything;
each loop iteration on l.3 “focuses” on a particular bucket.

+ Chernoff and union bounds.
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Some useful tools (5)

The (slightly) higher-level subroutine Estimate-Neighborhood

Given as input a point x , parameters γ, β, η ∈ (0, 1/2] and PCONDD
access, the procedure Estimate-Neighborhood outputs a pair
(ŵ , α) ∈ [0, 1]× (γ, 2γ) such that w.h.p

1 If D(Uα(x)) ≥ β, then ŵ ∈ [1− η, 1 + η] · D(Uα(x)), and (. . . )
2 If D(Uα(x)) < β, then ŵ ≤ (1 + η) · β, and (. . . )

Estimate-Neighborhood performs Õ
(

1
γ2η4β3

)
queries.

Remark
Does not estimate exactly D(Uγ(x)).
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(

1
γ2η4β3

)
queries.

Remark
Does not estimate exactly D(Uγ(x)).

C. Canonne, D. Ron, R. Servedio Testing distributions with conditional samples March 20, 2015 31 / 33



47

Uγ

U2γ

Uα

Uα+θ

' no weight
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Some useful tools (6)

[N]

[
1, N

2

]
[

1, N
4

] [
N
4 + 1, N

2

]
[i − 2, i − 1] [i , i + 1]

{i} {i + 1}

[
N
2 + 1,N

]

Figure: (Rough) idea of the “binary descent” on i for Approx-Eval: get an
estimate of D(i) by multiplying estimates at each branching.
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