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Statistical estimation involves optimization

Problem:

@ Find the minimizer w, of

L(w) = E[loss(w, point)]

@ You only get n samples.

Example: Estimate a linear relationship with n points in d dimensions?

@ Costly on large problems: O(nd? + d®) runtime, O(d?) memory
@ How should we approximate our solution?
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Statistics vs. Computation

Stochastic approximation Numerical analysis

@ e.g. stochastic gradient descent @ e.g. (batch) gradient descent
@ obtain poor accuracy, quickly? @ obtain high accuracy, slowly?
@ simple to implement @ more complicated

What would you do?
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Machine learning at scale!

Vowpal Wabbit

The Vowpal Wabbit (VW) project is a fast out-of-core learning system sponsored by

Microsoft Research and (previously) Yahoo! Research. Support is available through the
mailing list.

Caffe
Deep learning framework '@ base
Y torCh developed by

Yangging Jia / BVLC

ASCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT

Can we provide libraries to precisely do statistical estimation at
scale?

Analogous to what was done with our linear algebra libraries?
(LAPACK/BLAS)?
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The Stochastic Optimization Problem

mMi/n L(w) where L(w) = Eyoin~p[loss(w, point)]

@ With N sampled points from D,

P1,P2,...PN

how do you estimate w,, the minima of P?
@ Your expected error/excess risk/regret is:

E[L(Wn) — L(w)]

Goal: Do well statistically. Do it quickly.
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Without Computational Constraints...

What would you like to do?
Compute the empirical risk minimizer /M-estimator:

N
. 1

ERM i .
Wy € arngm N ;—1 loss(w, p;).

Consider the ratio:

E[L(wy™) — L(w.)]
E[L(wy) — L(w.)]

Can you compete with the ERM on every problem efficiently?
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This Talk

Theorem

For linear/logistic regression, generalized linear models, M-estimation,
(i.e. assume “strong convexity” + “smoothness”’),
we provide a streaming algorithm which:

Computationally:
@ single pass; memory is O(one sample)
@ ftrivially parallelizable

Statistically:

@ achieves the statistical rate of the best fit on every problem
(even considering constant factors)

@ (super)-polynomially decreases the initial error

Related work: Juditsky & Polyak (1992); Dieuleveut & Bach (2014);
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Outline

@ Statistics:
the statistical rate of the ERM

@ Computation:
optimizing sums of convex functions

© Computation + Statistics:
combine ideas
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(just) Statistics

Precisely, what is the error of wiM?

1
2 _ i
02— §E [HVIOSS(W*,P)H(VZL(W*))*‘

Thm: (e.g. van der Vaart (2000)), Under regularity conditions, e.g.
@ loss is convex (almost surely)

@ loss is smooth (almost surely)

@ V2L(w,) exists and is positive definite.

we have,

=1
N— oo 0'2/N
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(just) Computation

@ optimizing sums of convex functions
mmi/n L(w) where L(w) = Zloss(w pi)

@ Assume:
o L(w) is p strongly convex
@ loss is L-smooth
o k= L/uis the effective condition number
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(just) Computation

@ optimizing sums of convex functions
mmi/n L(w)where L(w)= Zloss(w pi)

@ Assume:
o L(w) is p strongly convex
@ loss is L-smooth
o k= L/uis the effective condition number
@ Stochastic Gradient Descent: (Robbins & Monro, '51)

@ Linear convergence:
Strohmer & Vershynin (2009), Yu & Nesterov (2010),
Le Roux, Schmidt, Bach (2012), Shalev-Shwartz & Zhang, (2013),
(SVRG) Johnson & Zhang (2013)
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Stochastic Gradient Descent (SGD)

@ SGD update rule: at each time t,

sample a point p
w < w — nVloss(w, p)
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Stochastic Gradient Descent (SGD)

@ SGD update rule: at each time t,
sample a point p
w < w — nVloss(w, p)
@ Problem: even if w = w,, the update changes w.

How do you fix this?
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Stochastic Variance Reduced Gradient (SVRG)

@ exact gradient computation: at stage s, using ws, compute:

N
~ 1 ~
VL(ws) = N E Vloss(Ws, pi)
i=1

@ corrected SGD: initialize w < ws. for m steps,

sample a point p
W < w — 1 (Vloss(w, p)—Vloss(Ws, p) + VL(Ws) )

© update and repeat: wg, 1 < w.
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Stochastic Variance Reduced Gradient (SVRG)

@ exact gradient computation: at stage s, using ws, compute:

N

o _
VL(Ws) = 1 > Vioss(Ws, pi)
i=1

@ corrected SGD: initialize w < ws. for m steps,

sample a point p
W < w — 1 (Vloss(w, p)—Vloss(Ws, p) + VL(Ws) )

© update and repeat: wg, 1 < w.

Two ideas:
e If w = w,, then no update.
@ unbiased updates: blue term is mean 0.
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SVRG has linear convergence

@ Thm: (Johnson & Zhang, '13) SVRG has linear convergence,
for fixed 7.

E[L(Ws) — L(w:)] < e° - (L(Wo) — L(ws))

@ many recent algorithms with similar guarantees
Yu & Nesterov ’10; Shalev-Shwartz & Zhang '13

@ Issues: must store dataset, requires many passes

What about the statistical rate?
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Computation + Statistics

Our problem:
min L(w) where L(w) = E[loss(w, point)]
w

(Streaming model) We obtain one sample at a time.
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Our algo: streaming SVRG

@ estimate the gradient: at stage s, using ws,
with kg fresh samples, estimate ﬂ( Ws)
@ corrected SGD: initialize w < ws. for m steps:

sample a point

W w-—n (Vloss(w, p)—Vloss(We, p) + V L(Ws) )

© update and repeat: wg, 1 < w

single pass; memory of O(one parameter); parallelizable
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Single Pass Least Squares Estimation

Theorem (Frostig, Ge, Kakade, & Sidford ’14)

@ x effective condition number

@ choosep > 2

@ schedule: increasing batch size ks = 2ks_1. fixed m andn = 5.

If total sample size N is larger than multiple of k. (depends on p), then

B[L(i) — L(w.)] < 1.5% + L)L)

(%)°

3=

o2 /N is the ERM rate.

@ general case: use self-concordance
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Thanks!

@ We can obtain (nearly) the same rate as the ERM in a single pass.

Collaborators:

R. Frostig R. Ge A. Sidford

S. M. Kakade (MSR) One pass learning 15/15



