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Statistical estimation involves optimization

Problem:

Find the minimizer w∗ of

L(~w) = E[loss(~w , point)]

You only get n samples.

Example: Estimate a linear relationship with n points in d dimensions?

Costly on large problems: O(nd2 + d3) runtime, O(d2) memory
How should we approximate our solution?
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Statistics vs. Computation

Stochastic approximation

e.g. stochastic gradient descent
obtain poor accuracy, quickly?
simple to implement

Numerical analysis

e.g. (batch) gradient descent
obtain high accuracy, slowly?
more complicated

What would you do?
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Machine learning at scale!

Can we provide libraries to precisely do statistical estimation at
scale?

Analogous to what was done with our linear algebra libraries?
(LAPACK/BLAS)?
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The Stochastic Optimization Problem

min
w

L(w) where L(w) = Epoint∼D[loss(w , point)]

With N sampled points from D,

p1,p2, . . .pN

how do you estimate w∗, the minima of P?
Your expected error/excess risk/regret is:

E[L(ŵN)− L(w∗)]

Goal: Do well statistically. Do it quickly.
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Without Computational Constraints...

What would you like to do?

Compute the empirical risk minimizer /M-estimator:

ŵERM
N ∈ argmin

w

1
N

N∑
i=1

loss(w ,pi).

Consider the ratio:

E[L(ŵERM
N )− L(w∗)]

E[L(ŵN)− L(w∗)]
.

Can you compete with the ERM on every problem efficiently?
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This Talk

Theorem
For linear/logistic regression, generalized linear models, M-estimation,
(i.e. assume “strong convexity” + “smoothness”),
we provide a streaming algorithm which:

Computationally:
single pass; memory is O(one sample)

trivially parallelizable

Statistically:
achieves the statistical rate of the best fit on every problem
(even considering constant factors)
(super)-polynomially decreases the initial error

Related work: Juditsky & Polyak (1992); Dieuleveut & Bach (2014);
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Outline

1 Statistics:
the statistical rate of the ERM

2 Computation:
optimizing sums of convex functions

3 Computation + Statistics:
combine ideas
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(just) Statistics

Precisely, what is the error of ŵERM
N ?

σ2 :=
1
2
E
[
‖∇loss(w∗,p)‖2(∇2L(w∗))−1

]
Thm: (e.g. van der Vaart (2000)), Under regularity conditions, e.g.

loss is convex (almost surely)
loss is smooth (almost surely)
∇2L(w∗) exists and is positive definite.

we have,

lim
N→∞

E[L(ŵERM
N )− L(w∗)]
σ2/N

= 1
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(just) Computation

optimizing sums of convex functions

min
w

L(w) where L(w) =
1
N

N∑
i=1

loss(w ,pi)

Assume:
L(w) is µ strongly convex
loss is L-smooth
κ = L/µ is the effective condition number

Stochastic Gradient Descent: (Robbins & Monro, ’51)
Linear convergence:
Strohmer & Vershynin (2009), Yu & Nesterov (2010),
Le Roux, Schmidt, Bach (2012), Shalev-Shwartz & Zhang, (2013),
(SVRG) Johnson & Zhang (2013)
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Stochastic Gradient Descent (SGD)

SGD update rule: at each time t ,

sample a point p
w ← w − η∇loss(w ,p)

Problem: even if w = w∗, the update changes w .

How do you fix this?
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Stochastic Variance Reduced Gradient (SVRG)

1 exact gradient computation: at stage s, using w̃s, compute:

∇L(w̃s) =
1
N

N∑
i=1

∇loss(w̃s,pi)

2 corrected SGD: initialize w ← w̃s. for m steps,

sample a point p
w ← w − η

(
∇loss(w ,p)−∇loss(w̃s,p) +∇L(w̃s)

)
3 update and repeat: w̃s+1 ← w .

Two ideas:
If w̃ = w∗, then no update.
unbiased updates: blue term is mean 0.
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SVRG has linear convergence

Thm: (Johnson & Zhang, ’13) SVRG has linear convergence,
for fixed η.

E[L(w̃s)− L(w∗)] ≤ e−s · (L(w̃0)− L(w∗))

many recent algorithms with similar guarantees
Yu & Nesterov ’10; Shalev-Shwartz & Zhang ’13

Issues: must store dataset, requires many passes

What about the statistical rate?
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Computation + Statistics

Our problem:

min
w

L(w) where L(w) = E[loss(w , point)]

(Streaming model) We obtain one sample at a time.
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Our algo: streaming SVRG

1 estimate the gradient: at stage s, using w̃s,

with ks fresh samples, estimate ∇̂L(w̃s)

2 corrected SGD: initialize w ← w̃s. for m steps:

sample a point

w ← w − η
(
∇loss(w ,p)−∇loss(w̃s,p) + ∇̂L(w̃s)

)
3 update and repeat: w̃s+1 ← w

single pass; memory of O(one parameter); parallelizable
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Single Pass Least Squares Estimation

Theorem (Frostig, Ge, Kakade, & Sidford ’14)
κ effective condition number
choose p > 2
schedule: increasing batch size ks = 2ks−1. fixed m and η = 1

2p .

If total sample size N is larger than multiple of κ (depends on p), then

E[L(ŵN)− L(w∗)] ≤ 1.5
σ2

N
+

L(ŵ0)− L(w∗)(N
κ

)p

σ2/N is the ERM rate.

general case: use self-concordance
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Thanks!

We can obtain (nearly) the same rate as the ERM in a single pass.

Collaborators:

R. Frostig R. Ge A. Sidford
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