Tradeoffs in Large Scale Learning: Statistical Accuracy vs. Numerical Precision

Sham M. Kakade

Microsoft Research, New England

Statistical estimation involves optimization

Problem:

Find the minimizer *w*[∗] of

 $L(\vec{w}) = \mathbb{E}[\text{loss}(\vec{w}, \text{point})]$

You only get *n* samples.

Example: Estimate a linear relationship with *n* points in *d* dimensions?

- Costly on large problems: $O(nd^2 + d^3)$ runtime, $O(d^2)$ memory
- How should we approximate our solution?

Stochastic approximation

Numerical analysis

- e.g. stochastic gradient descent
- obtain poor accuracy, quickly?
- simple to implement
- e.g. (batch) gradient descent
- o obtain high accuracy, slowly?
- \bullet more complicated

What would you do?

Vowpal Wabbit

The Vowpal Wabbit (VW) project is a fast out-of-core learning system sponsored by Microsoft Research and (previously) Yahoo! Research. Support is available through the mailing list.

C affe

Deep learning framework developed by Yangqing Jia / BVLC

Can we provide libraries to precisely do statistical estimation at scale?

Analogous to what was done with our linear algebra libraries? (LAPACK/BLAS)?

 $\min_{\mathbf{w}} L(\mathbf{w})$ where $L(\mathbf{w}) = \mathbb{E}_{\text{point} \sim \mathcal{D}}[\text{loss}(\mathbf{w}, \text{point})]$ *w*

• With *N* sampled points from D,

*p*1, *p*2, . . . *p^N*

how do you estimate *w*∗, the minima of *P*?

• Your expected error/excess risk/regret is:

 $\mathbb{E}[L(\hat{w}_N) - L(w_*)]$

Goal: Do well statistically. Do it quickly.

What would you like to do?

Compute the empirical risk minimizer /*M*-estimator:

$$
\widehat{w}_N^{\text{ERM}} \in \underset{w}{\text{argmin}} \frac{1}{N} \sum_{i=1}^N \text{loss}(w, p_i).
$$

Consider the ratio:

$$
\frac{\mathbb{E}[L(\widehat{w}_N^{\text{ERM}})-L(w_*)]}{\mathbb{E}[L(\widehat{w}_N)-L(w_*)]}.
$$

Can you compete with the ERM on every problem efficiently?

Theorem

For linear/logistic regression, generalized linear models, M-estimation, (i.e. assume "strong convexity" + "smoothness"), we provide a streaming algorithm which:

Computationally:

- *single pass; memory is O*(*one sample*)
- *trivially parallelizable*

Statistically:

- *achieves the statistical rate of the best fit on every problem (even considering constant factors)*
- *(super)-polynomially decreases the initial error*

Related work: Juditsky & Polyak (1992); Dieuleveut & Bach (2014);

1 Statistics:

the statistical rate of the ERM

- ² Computation: optimizing sums of convex functions
- ³ Computation + Statistics: combine ideas

Precisely, what is the error of \hat{w}_N^{ERM} ?

$$
\sigma^2:=\frac{1}{2}\mathbb{E}\left[\|\nabla \text{loss}\!\left(\textit{\textbf{w}}_{*}, \boldsymbol{\rho}\right)\|_{(\nabla^2 L(\textit{\textbf{w}}_{*}))^{-1}}^2\right]
$$

Thm: (e.g. van der Vaart (2000)), Under regularity conditions, *e.g.*

- loss is convex (almost surely)
- loss is smooth (almost surely)
- $\sqrt{\ }$ ∇^2 *L*(w_*) exists and is positive definite.

we have,

$$
\lim_{N\to\infty}\frac{\mathbb{E}[L(\widehat{w}_N^{\text{ERM}})-L(w_*)]}{\sigma^2/N}=1
$$

optimizing sums of convex functions

$$
\min_{w} L(w) \text{ where } L(w) = \frac{1}{N} \sum_{i=1}^{N} \text{loss}(w, p_i)
$$

Assume:

- $L(w)$ is μ strongly convex
- **a** loss is L-smooth
- $\kappa = L/\mu$ is the effective condition number

• optimizing sums of convex functions

$$
\min_{w} L(w) \text{ where } L(w) = \frac{1}{N} \sum_{i=1}^{N} \text{loss}(w, p_i)
$$

Assume:

- $L(w)$ is μ strongly convex
- **o** loss is L-smooth
- $\bullet \ \kappa = L/\mu$ is the effective condition number
- Stochastic Gradient Descent: (Robbins & Monro, '51)
- **•** Linear convergence: Strohmer & Vershynin (2009), Yu & Nesterov (2010), Le Roux, Schmidt, Bach (2012), Shalev-Shwartz & Zhang, (2013), (SVRG) Johnson & Zhang (2013)

Stochastic Gradient Descent (SGD)

SGD update rule: at each time *t*,

sample a point *p* $W \leftarrow W - \eta \nabla \text{loss}(W, p)$

Stochastic Gradient Descent (SGD)

SGD update rule: at each time *t*,

sample a point *p* $W \leftarrow W - \eta \nabla \text{loss}(W, p)$

Stochastic Gradient Descent (SGD)

SGD update rule: at each time *t*,

sample a point *p* $w \leftarrow w - \eta \nabla \text{loss}(w, p)$

Problem: even if *w* = *w*∗, the update changes *w*.

How do you fix this?

Stochastic Variance Reduced Gradient (SVRG)

¹ exact gradient computation: at stage *^s*, using *^w*e*s*, compute:

$$
\nabla L(\widetilde{w}_s) = \frac{1}{N} \sum_{i=1}^N \nabla \text{loss}(\widetilde{w}_s, p_i)
$$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$, for *m* steps,

sample a point
$$
p
$$

\n
$$
w \leftarrow w - \eta \left(\nabla \text{loss}(w, p) - \nabla \text{loss}(\widetilde{w}_s, p) + \nabla L(\widetilde{w}_s) \right)
$$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

Stochastic Variance Reduced Gradient (SVRG)

 \bullet exact gradient computation: at stage *s*, using \widetilde{w}_s , compute:

$$
\nabla L(\widetilde{w}_s) = \frac{1}{N} \sum_{i=1}^N \nabla \text{loss}(\widetilde{w}_s, p_i)
$$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$, for *m* steps,

sample a point
$$
p
$$

\n
$$
w \leftarrow w - \eta \left(\nabla \text{loss}(w, p) - \nabla \text{loss}(\widetilde{w}_s, p) + \nabla L(\widetilde{w}_s) \right)
$$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

Two ideas:

o If $\tilde{w} = w_*$, then no update.

• unbiased updates: blue term is mean 0.

Thm: (Johnson & Zhang, '13) SVRG has linear convergence, for fixed η .

$$
\mathbb{E}[L(\widetilde{w}_s) - L(w_*)] \leq e^{-s} \cdot (L(\widetilde{w}_0) - L(w_*))
$$

- many recent algorithms with similar guarantees Yu & Nesterov '10; Shalev-Shwartz & Zhang '13
- **Issues:** must store dataset, requires many passes What about the statistical rate?

Our problem:

$$
\min_{w} L(w) \text{ where } L(w) = \mathbb{E}[\text{loss}(w, \text{point})]
$$

(Streaming model) We obtain one sample at a time.

¹ estimate the gradient: at stage *^s*, using *^w*e*s*,

with k_s fresh samples, estimate $\widehat{\nabla}L(\widetilde{w}_s)$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$, for *m* steps:

sample a point
\n
$$
\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\nabla \text{loss}(\mathbf{w}, \mathbf{p}) - \nabla \text{loss}(\widetilde{\mathbf{w}}_s, \mathbf{p}) + \widehat{\nabla} \mathcal{L}(\widetilde{\mathbf{w}}_s) \right)
$$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$

single pass; memory of *O*(one parameter); parallelizable

Theorem (Frostig, Ge, Kakade, & Sidford '14)

- κ *effective condition number*
- **•** *choose* $p > 2$
- *schedule: increasing batch size k*_s = 2 k_{s-1} . fixed m and $\eta = \frac{1}{2^k}$ $\frac{1}{2^p}$.

If total sample size N is larger than multiple of κ *(depends on p), then*

$$
\mathbb{E} [L(\widehat{w}_N) - L(w_*)] \leq 1.5 \frac{\sigma^2}{N} + \frac{L(\widehat{w}_0) - L(w_*)}{\left(\frac{N}{\kappa}\right)^p}
$$

σ ²/*N is the ERM rate.*

• general case: use self-concordance

We can obtain (nearly) the same rate as the ERM in a single pass.

R. Frostig R. Ge A. Sidford

Collaborators:

