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Introduction

Example: Genome-Wide Association Studies (GWAS)
I SNPs Xi ∈ {0, 1, 2}
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Question: How to model this data by a joint distribution?
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Introduction

Not enough data to estimate ground-truth distribution

# SNP sequences: 33,000,000 ≈ 101,400,000

# atoms in the universe ≈ 4× 1081

Low order marginals characterize a class of joint distributions C

Principle of maximum entropy: pick the distribution maximizing
Shannon entropy as a measure of uncertainty,

argmax
P∈C

H(P)
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Introduction

Example: Genome-Wide Association Studies for a particular trait
I SNPs Xi ’s, trait Y

1 2

X1 X2
X3×106 Y

2 0

0 1

2

1

2

Indiv. 1 1

1

0

Indiv. 1000

Indiv. 2

More sensible to minimize X,Y dependence

argmin
PX,Y∈C

DP(X; Y )
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Principle of minimum Renyi correlation

Question: Which measure of dependence to minimize?

Mutual information I (X ; Y ) [Globerson & Tishby, 2004]:
I No efficient algorithms available for its computation

Pearson correlation coefficient ρ(X ,Y ):
I not label-invariant

Renyi maximal correlation

R(X ; Y ) = max
f ,g

ρ(f (X ), g(Y ))
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Principle of minimum Renyi correlation

Renyi maximal correlation R(X ; Y ) = maxf ,g ρ(f (X ), g(Y )) :

I 0 ≤ R(X ; Y ) ≤ 1

I R(X ; Y ) = 0 if and only if X and Y are independent

I R(X ; Y ) = 1 if ∃h : Y = h(X )

I R(X ; Y ) = |ρ(X ; Y )| if (X ,Y ) are jointly Gaussian
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Principle of minimum Renyi correlation

What about principle of minimum Renyi correlation?

argmin
PX,Y∈C

RP(X; Y )

Analytic structure of the minimizer

Computation of the minimizing distribution
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Minimum Renyi correlation distribution: continuous setting

Real-valued X1,X2, . . . ,Xp, Y

Given
I First order moment, E[(X Y )] = µ ∈ Rp+1

I Second order moment, E[(X Y )T (X Y )] = Λ ∈ R(p+1)×(p+1)

Theorem 1

Jointly Gaussian minimizes Renyi correlation.

Key reason: linearity of conditional expectation

E[Y |X1, . . . ,Xp] =

p∑
i=0

ciXi
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Minimum Renyi correlation distribution: discrete setting

Discrete Xi ∈ {1, 2, . . . ,m} and Y ∈ {−1,+1}

Given second order marginals characterizing class C:
I Pr(Xi = x ,Xj = u), Pr(Xi = x ,Y = y)

Theorem 2

If there exists P ∈ C with a separable conditional expectation,

EP
[
Y
∣∣X1, . . .Xp

]
=
∑
i

γi (Xi )

P will minimize Renyi correlation.
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Renyi minimizer distribution computation: Recipe

Define XI as vector of indicator variables w.r.t. X:

XImi+j =

{
1 if Xi = j

0 otherwise

Find minimizer z∗ (linear regression on indicator variables):

z∗ ∈ argmin
z

E
[
(XT

I z− Y )2
]

= argmin
z

zTQz + fTz + 1

Define h as

h(X1, . . .Xp) =
1

2
(1 + z∗TXI)

If P with separable conditional expectation exists

P(Y = 1 |X1, . . .Xp) = h(X1, . . .Xp)

Observation: necessary condition for existence of separable P:

∀x1, . . . , xp : 0 ≤ h(x1, . . . xp) ≤ 1
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Minimum Renyi correlation distribution: discrete setting

Question: How to check whether this condition holds?

Theorem 3

Under the marginals consistency assumption, separable P exists if and only
if for a minimizer z∗ of

min
z

E
[
(XT

I z− Y )2
]

the separable function

h(X1, . . .Xp) =
1

2
(1 + z∗TXI)

satisfies
∀x1, . . . , xp : 0 ≤ h(x1, . . . xp) ≤ 1

Since h is separable, this condition can be checked in O(mp).
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Minimum Renyi correlation distribution: discrete setting

Ground-truth

Distribution Marginals

Second-order Class of

Distributions

Q QXi,Xj
, QXi,Y , CQ

Question: How large is the subset of Q’s for which CQ satisfies the
condition?

Theorem 4

For P uniform, there is an ε > 0 such that for any Q in the ε-distance from
P, CQ contains a distribution with separable conditional expectation.
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Variable Selection

Select a subset of features with highest correlation with the target

max
|S|≤k

R(XS ,Y )

Lower bound for Renyi correlation

R(XS ,Y ) ≥
√

1−min
z

E
[
(XT

I ,Sz− Y )2
]

Tight under the additive structure assumption.

max
|S|≤k

√
1−min

z
E
[
(XT

I ,Sz− Y )2
]
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Variable Selection: LASSO

Using empirical average, equivalent to

min
z
‖Az− b‖22

s.t. card(z) ≤ k

where A, b sample indicator variables matrix and response

Justification of group lasso for feature selection
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Summary

We introduced principle of minimum Renyi correlation as a
counterpart for principles of MaxEnt and MinMI.

In continuous case, jointly Gaussian is a minimizer under fixed first
and second order moments

There exists a certain separable structure in discrete minimizing
distributions for given first and second order marginals

We can compute conditional minimizing distribution by solving a
linear regression problem.

Principle of minimum Renyi correlation provides an interpretation for
group LASSO as a variable selection method
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Any Questions?
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