Nearest Neighbor based Coordinate Descent

Pradeep Ravikumar, UT Austin

Joint with Inderjit Dhillon, Ambuj Tewari

Simons Workshop on Information Theory, Learning and Big Data, 2015

- Across modern applications {fMRI images, gene expression profiles, social networks}
	- ‣ many^many variables in system, not enough observations
- Curse of dimensionality
	- ‣ To train the system or model, number of observations have to be much larger than variables in system (scaling exponentially in non-parametric models, polynomially in parametric models)

- Research over the last decade and a half:
	- ‣ Finesse curse of dimensionality when there is some intrinsic "low-dimensional structure" such as (group) sparsity, low rank, etc.

- Research over the last decade and a half:
	- ‣ Finesse curse of dimensionality when there is some intrinsic "low-dimensional structure" such as (group) sparsity, low rank, etc.
	- ‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure

- Research over the last decade and a half:
	- ‣ Finesse curse of dimensionality when there is some intrinsic "low-dimensional structure" such as (group) sparsity, low rank, etc.
	- ‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure
- Under such structure, we know how to obtain estimators whose **statistical or** sample complexity depends weakly on problem dimension "p"
	- typically scaling as log(p)

- Research over the last decade and a half:
	- ‣ Finesse curse of dimensionality when there is some intrinsic "low-dimensional structure" such as (group) sparsity, low rank, etc.
	- ‣ See Negahban, Ravikumar, Wainwright, Yu, 2012; Chandrasekharan, Recht, Willsky, 2012 for a general linear-algebraic notion of structure
- Under such structure, we know how to obtain estimators whose **statistical or** sample complexity depends weakly on problem dimension "p" — typically scaling as log(p)
- Can we achieve similar weak dependence on "p" in **computational complexity**?

Convex Optimization ∞ instance ² = *p*¹ when *A* is the all 1's matrix. {independent}@cs.utexas.edu/
edu/independent practices.edu/independent production and production and production and production and production
edu/independent production and production and production and production and prod

Consider the optimization problem, • Optimization Problem:

$$
\min_{w\in \mathbb{R}^p}\mathcal{L}(w).
$$

$$
\blacktriangleright
$$
 Loss $\mathcal L$ is convex and smooth:

$$
\|\nabla \mathcal{L}(w) - \nabla \mathcal{L}(v)\|_\infty \leq \kappa_1 \cdot \|w-v\|_1
$$

202

 $k = \frac{1}{2}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ $\sum_{k=1}^{\infty} \frac{1}{k}$ *parse minimizer* $w : ||w||_0 = s, ||w||_{\infty} \leq B$ ► Sparse minimizer w^* : $||w^*||_0 = s$, $||w^*||_{\infty} \leq B$

Coordinate Descent thus possible for ² to be much larger than 1: for instance ² = *p*¹ when *A* is the all 1's matrix.

• Optimization Problem: Consider the optimization problem,

$$
\min_{w\in \mathbb{R}^p}\mathcal{L}(w).
$$

202

Algorithm Cyclic coordinate Descent $\overline{\text{Algorithm}}$ Cyclic coordinate Deceant

Initialize: Set the initial value of w^0 . for $n = 1, \ldots$ do $j = t \mod p$. $w_j^t \in \arg\min_{\alpha} \mathcal{L}(w^{t-1} + \alpha e_j).$ $w_l^t = w_l^{t-1}$, for $l \neq j$. end for $\frac{1 + 8}{1}$ $\begin{array}{l} j = t \,\, \mathrm{mod} \,\, p.\ w^t_j \in \arg \min_{\alpha} \mathcal{L}(w^{t-1} + \alpha e_j). \end{array}$ $w_j \in \arg \min_{\alpha} \mathcal{L}(w + \alpha e_j)$
 $w_t^t = w_t^{t-1}$ for $l \neq j$. α

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step
		- ✦ Small computation per step; well suited for high-dimensional problems

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step
		- ✦ Small computation per step; well suited for high-dimensional problems
	- ‣ Recently shown to enjoy good empirical performance

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step
		- ✦ Small computation per step; well suited for high-dimensional problems
	- ‣ Recently shown to enjoy good empirical performance
	- ‣ But at least linear (or worse) dependence of comp. complexity on **p!**

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step
		- ✦ Small computation per step; well suited for high-dimensional problems
	- ‣ Recently shown to enjoy good empirical performance
	- ‣ But at least linear (or worse) dependence of comp. complexity on **p!**
- Suppose the optimal solution is sparse (very few coordinates are non-zero)

- Coordinate Descent
	- ‣ Optimize only a single coordinate per step
		- ✦ Small computation per step; well suited for high-dimensional problems
	- ‣ Recently shown to enjoy good empirical performance
	- ‣ But at least linear (or worse) dependence of comp. complexity on **p!**
- Suppose the optimal solution is sparse (very few coordinates are non-zero)
	- ‣ If CD judiciously chooses coordinate to optimize at each step, can it be expected to leverage potential sparsity of optimum?

Greedy Coordinate Descent (GCD)

In this section, we show the section, we show that there is a simple determined by the simple determined by th
In this section, we show that the simple determined by the simple determined by the simple determined by the s

Consider the optimization problem,

Optimization Droblem: $min \ \mathcal{C}(w)$ formula station is the picture. $w \in \mathbb{R}^p$ ∞ (∞). **Optimization Problem:**

min $w \in \mathbb{R}^p$ $\mathcal{L}(w)$.

400

203
203
203 - Paul Bartham

Algorithm Greedy Coordinate Gradient Descent

Initialize: Set the initial value of w^0 . for $t = 1, \ldots$ do $j = \arg \max_{l} |\nabla_l \mathcal{L}(w^t)|.$ $w^t = w^{t-1} - \frac{1}{\kappa_1} \nabla_j \mathcal{L}(w^t) e_j.$ end for $\textbf{for } t = 1, \dots \textbf{do}$
 $\dot{\mathbf{i}} = \arg \max_l |\nabla_l \mathcal{L}(w^t)|.$ 2.1. Coordinate Descent

Greedy Coordinate Descent: Analysis areedy Coordinate Descent. Analysis

 \blacktriangleright Loss $\mathcal L$ is convex and smooth:

 $\|\nabla \mathcal{L}(w) - \nabla \mathcal{L}(v)\|_{\infty} \leq \kappa_1 \cdot \|w - v\|_1$

► Sparse minimizer w^* : $||w^*||_0 = s$, $||w^*||_{\infty} \leq B$

\overline{a} Guarantee: **Greedy Coordinate Descent**

$$
\mathcal{L}(w^t) - \mathcal{L}(w^*) \le \frac{\kappa_1}{2} \frac{\|w^0 - w^*\|_1^2}{t} = \frac{\kappa_1}{2} \frac{s^2 B^2}{t}
$$

- PRO: No. of iterations avoids costly dependence on dimension "p"
- CON: Each GCD iteration (naively implemented) takes Ω (p) time

- PRO: No. of iterations avoids costly dependence on dimension "p"
- CON: Each GCD iteration (naively implemented) takes $\Omega(p)$ time
- Solution: Perform approximate greedy steps **via** reduction to Approximate Nearest Neighbor (ANN)

Greedy CD

- PRO: No. of iterations avoids costly dependence on dimension "p"
- CON: Each GCD iteration (naively implemented) takes $\Omega(p)$ time
- Solution: Perform approximate greedy steps **via** reduction to Approximate Nearest Neighbor (ANN)
	- \triangleright allows us to use recent advances in **sublinear time** ANN search: e.g. locality sensitive hashing (LSH)

! Common objective in statistical learning:

$$
\mathcal{L}(w) = \sum_{i=1}^n \ell(w^T x^i, y^i)
$$

! Common objective in statistical learning:

$$
\mathcal{L}(w) = \sum_{i=1}^n \ell(w^T x^i, y^i)
$$

 $\blacktriangleright \nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle$ is an *inner product* between feature *j* and "residual" $r(w) = (\ell'(w^T x^i, y^i))_{i=1}^n$

! Common objective in statistical learning:

$$
\mathcal{L}(w) = \sum_{i=1}^n \ell(w^T x^i, y^i)
$$

- $\blacktriangleright \nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle$ is an *inner product* between feature *j* and "residual" $r(w) = (\ell'(w^T x^i, y^i))_{i=1}^n$
- ► Greedy step needs to compute (assuming $||x_j||_2 = 1$)

$$
\arg \max_{j \in [p]} |\langle x_j, r(w^t) \rangle| \equiv \arg \min_{j \in [2p]} \|\bar{x}_j - r(w^t)\|_2^2
$$

! Common objective in statistical learning:

$$
\mathcal{L}(w) = \sum_{i=1}^n \ell(w^T x^i, y^i)
$$

- $\blacktriangleright \nabla_j \mathcal{L}(w) = \langle x_j, r(w) \rangle$ is an *inner product* between feature *j* and "residual" $r(w) = (\ell'(w^T x^i, y^i))_{i=1}^n$
- ► Greedy step needs to compute (assuming $||x_j||_2 = 1$)

$$
\arg \max_{j \in [p]} |\langle x_j, r(w^t) \rangle| \equiv \arg \min_{j \in [2p]} \|\bar{x}_j - r(w^t)\|_2^2
$$

• Leverage state-of-the-art in NN search to do this in $o(p)$ time

Approximate Greedy CD: Analysis Tailores de la constructura de la
Data Structures de la constructura de la constructura de la constructura de la constructura de la constructur

If greedy step has *multiplicative approxi*mation factor $(1 + \epsilon_{nn})$ then:

$$
\mathcal{L}(w^t) - \mathcal{L}(w^{\star}) \le \frac{1 + \epsilon_{\text{nn}}}{\epsilon_{\text{nn}}(1/\epsilon) + 1} \cdot \frac{\kappa_1 \|w^0 - w^{\star}\|_1^2}{t}
$$

In summary, convergence rate is $K \cdot \frac{{\kappa _1 s^2 }}{t}$

Fast Greedy: Computational Complexity $\mathcal{L}(\mathbf{w}) = \mathcal{L}(\mathbf{w})$ amputational Co lookup tables after random projections. It gives:

 $\mathcal{L} = \mathcal{L} \mathcal{L}$

n log n + ϵ

If each greedy step costs $C_t(n, p, \epsilon_{nn}),$ *overall cost* C_G to accuracy ϵ is:

 \blacksquare In summary, convergence rate is K - \blacksquare is K \blacksquare . The interaction of K \blacksquare

$$
C_G = C_t(n, p, \epsilon_{nn}) \cdot \frac{K \kappa_1 s^2}{\epsilon}
$$

Preprocessing time $C_{-}(n, p, \epsilon_{nn})$ can be amortized.

Fast Greedy: Computational Complexity

Example 1 Locality Sensitive Hashing: Uses random projections to hash data points such that distant points are unlikely to collide. It gives: $(\rho = 1/(1 + \epsilon_{nn}) < 1)$ $C_t = O (np^{\rho}) \qquad C_- = O (n p^{1+\rho} \epsilon_{nn}^{-2})$

Fast Greedy: Computational Complexity

- Locality Sensitive Hashing: Uses random projections to hash data points such that distant points are unlikely to collide. It gives: $(\rho = 1/(1 + \epsilon_{nn}) < 1)$ $C_t = O (np^{\rho}) \qquad C_- = O (n p^{1+\rho} \epsilon_{nn}^{-2})$
- ! Ailon & Chazelle (2006)'s method: Uses multiple lookup tables after random projections. It gives: $C_t = O(n \log n + \epsilon_{nn}^{-3} \log^2 p)$ $C_- = O$ $\left(p^{\epsilon_{\rm nn}^{-2}}\right)$

Fast Greedy: Computational Complexity

- Locality Sensitive Hashing: Uses random projections to hash data points such that distant points are unlikely to collide. It gives: $(\rho = 1/(1 + \epsilon_{nn}) < 1)$ $C_t = O (np^{\rho}) \qquad C_- = O (n p^{1+\rho} \epsilon_{nn}^{-2})$
- ! Ailon & Chazelle (2006)'s method: Uses multiple lookup tables after random projections. It gives: $C_t = O(n \log n + \epsilon_{nn}^{-3} \log^2 p)$ $C_- = O$ $\left(p^{\epsilon_{\rm nn}^{-2}}\right)$
- \blacktriangleright Quad Trees+Random Projections: Under *mutual* incoherence, using simple quad tree with random Gaussian projections, we obtain:

$$
C_t = O\left(p^{\epsilon_{\mathrm{nn}}^{-2}}\right) \qquad C_- = O\left(n p \, \log p \, \epsilon_{\mathrm{nn}}^{-2}\right)
$$

Mutual incoherence $(\mu = \max_{i \neq j} \langle x_i, x_j \rangle < 1)$ plays important role in *statistical complexity* for sparse parameter recovery. Here it is also related to *computational complexity*.

Non-smooth Objectives Non-smooth Objectives

! Smooth plus separable composite objective: (think of $\mathcal{R} = \lambda \|\cdot\|_1$)

$$
\min_{w\in \mathbb{R}^p}\mathcal{L}(w)+\mathcal{R}(w)
$$

Beparable regularizer: $\mathcal{R}(w) = \sum_j \mathcal{R}_j(w_j)$

Non-smooth Objectives Non-smooth Objectives

 \blacktriangleright Smooth plus separable *composite objective*: (think of $\mathcal{R} = \lambda \|\cdot\|_1$)

$$
\min_{w\in \mathbb{R}^p}\mathcal{L}(w)+\mathcal{R}(w)
$$

Beparable regularizer: $\mathcal{R}(w) = \sum_j \mathcal{R}_j(w_j)$

If we updated coordinate i :

$$
w_j^{t+1} = \arg\min_{w} g_j^t (w - w_j^t) + \frac{\kappa_1}{2} (w - w_j^t)^2 + R_j(w)
$$

• Guaranteed descent in objective is $\frac{\kappa_1}{2} |\eta_j^t|^2$ where $\eta_j^t = w_j^{t+1} - w_j^t$

Modified Greedy for non-smooth objectives

Modified greedy algorithm

(chooses j with maximum guaranteed descent)

$$
\begin{array}{l}\text{Initialize: } w^0 \leftarrow \mathbf{0}.\\\\text{for } t = 1, \dots \text{ do}\\\quad j_t \leftarrow \arg \max_{j \in [p]} |\eta_j^t|\\\quad w^{t+1} \leftarrow w^t + \eta_{jt}^t \mathbf{e}_{jt}\\\quad \text{end for}\n\end{array}
$$

Guarantee:

$$
\mathcal{L}(w^t) + \mathcal{R}(w^t) - \mathcal{L}(w^*) - \mathcal{R}(w^*) \leq \frac{\kappa_1}{2} \frac{\|w^0 - w^*\|_1^2}{t}
$$

Experiments F Yner ! Guaranteed descent in objective is ^κ¹

Experiments: Logistic Loss $E\times$ pullin

Summary

- Optimization Method with **sub-linear** dependence on p!
- New connections between computational geometry and first order optimization
- Interplay between statistical and computational efficiency: mutual incoherence \Rightarrow very simple data structure works for ANN
- New greedy algorithm for composite objectives