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Introduction and Overview of Results

Problem Definition

◮ W (· | ·) – DMC.

◮ C = I(W ) – symmetric capacity.

◮ Goal: Communicate at rate R with error probability Pe ≤ P 0
e .

◮ Capacity achieving family of codes: For any R < C, can find code

with rate R and blocklength N , such that Pe ≤ P 0
e .

◮ How does N scale with respect to C −R?

◮ Without complexity considerations: N = β/(C −R)2 (best

possible and is achievable).

◮ What about finite length scaling of computationally efficient

capacity achieving codes?
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Introduction and Overview of Results

Blocklength Scaling of Binary Polar Codes

◮ Polar codes [Arikan, 2009] are capacity achieving.

◮ Computational complexity is O(N logN).

◮ Blocklength scales polynomially: N = β
(C−R)µ

[Guruswami and Xia, 2013], [Hassani et al., 2014]. How small can
we set µ?

◮ 3.55 ≤ µ ≤ 6 [Hassani et al., 2014].
◮ µ ≤ 5.7 [Goldin and Burshtein, 2014].
◮ µ ≤ 4.7 [Mondelli et al., 2015].

◮ Similar scaling of N in lossy source coding, w.r.t. R(D)−R
[Goldin and Burshtein, 2014] and various problems in multiuser

information theory.
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Introduction and Overview of Results

How can we generalize / improve results?

◮ General polarization kernels, or nonbinary polar codes.

◮ Recent result for q-ary polar codes when q is prime: N scales

polynomially with respect to 1
C−R

: N = β
(C−R)µ

[Guruswami and Velingker, 2014].

◮ However, in the proof, µ is very large. Can we do better?

◮ We show that for q = 3 much lower values of µ can be obtained

[Goldin and Burshtein, 2015].

◮ The technique can be applied to other values of prime q.
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Fundamentals of Polar Codes

Polarization

Proposed in [Arikan, 2009]

◮ Blocklength N = 2n

◮ Generator matrix GN , size N ×N

◮ Message vector u = uN1 , x = xN1 = uGN

◮ B-DMC channel W : X → Y, X = {0, 1}
◮ Channel output y = yN1
◮ Probability distribution: P (u,x,y) = 1

2N
1{x=uGN}

∏N
i=1W (yi | xi)

◮ For i = 1, 2, . . . , N , define the N sub-channels

W
(i)
N (y, ui−1

1 | ui) ∆
= P (y, ui−1

1 | ui) =
1

2N−1

∑

uN
i+1

P (y | u)

◮ Polarization: Typically, either I(W
(i)
N ) ≈ 1 or I(W

(i)
N ) ≈ 0.
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Fundamentals of Polar Codes

Polar codes, Encoding

◮ Code rate R < I(W ).

◮ Let Z(W )
∆
=

∑

y∈Y
√

W (y | 0)W (y | 1).
◮ The frozen set F is the set of N(1−R) sub-channels with highest

Z(W
(i)
N ).

Algorithm (Encoding)

◮ If i ∈ F , fix to frozen uF .

◮ If i ∈ F c use it for information.

◮ Transmit x = uGN .
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Fundamentals of Polar Codes

Polar codes, Decoding

Algorithm (Decoding)

For i = 1, 2, . . . , N :

1. If i ∈ F , ûi = ui

2. If i ∈ F c, ûi =

{

0 if L
(i)
N > 1

1 if L
(i)
N ≤ 1

where L
(i)
N =

W
(i)
N

(y,ûi−1
1 | ui=0)

W
(i)
N (y,ûi−1

1 | ui=1)

◮ For R < I(W ), error probability, Pe, satisfies

[Arikan and Telatar, 2009]:

Pe = O
(

2−Nβ
)

, for any β < 1/2

◮ Encoding and decoding complexity O (N logN).
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Fundamentals of Polar Codes

Analysis of Polarization

Sub-channels can be described using the following random process:

◮ B1, B2 . . . i.i.d Pr {Bn = 0} = Pr {Bn = 1} = 1/2

◮ W0 = W , Wn+1 =

{

W−
n , if Bn+1 = 0

W+
n if Bn+1 = 1.

◮ W− (y1, y2 | u) ∆

=(W �W )(y1, y2 |u) ∆

= 1

2

∑

xW (y1 | u⊕ x)W (y2 | x)
◮ W+(y1, y2, x |u) ∆

=(W ⊛W )(y1, y2, x | u) ∆

= 1

2
W (y1 | x⊕ u)W (y2 | u)

W−(y1, y2 | u)

u

1
2 · 1{u⊕x1⊕x2=0}

x1 x2

W (y1 | x1) W (y2 | x2)

W+(y1, y2, x | u)

u

1
2 · 1{x1⊕u=x}

x1

W (y1 | x1) W (y2 | u)
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Fundamentals of Polar Codes

Analysis of Polarization (CONT’D)

◮ Wn uniformly distributed over
{

W
(i)
N

}N

i=1
.

◮ Hence, for Zn = Z(Wn), In = I(Wn),

P [Zn ∈ (a, b)] =
∣

∣

∣

{

i : Z
(

W
(i)
N

)

∈ (a, b)
}∣

∣

∣
/ N

P [In ∈ (a, b)] =
∣

∣

∣

{

i : I
(

W
(i)
N

)

∈ (a, b)
}∣

∣

∣
/ N

◮ It was shown [Arikan, 2009], for any fixed small δ > 0,
◮ limn→∞ Pr (Zn ≤ δ) = I(W )
◮ limn→∞ Pr (Zn ≥ 1− δ) = 1− I(W )
◮ limn→∞ Pr (In ≤ δ) = 1− I(W )
◮ limn→∞ Pr (In ≥ 1− δ) = I(W )
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Finite Blocklength Scaling of Binary Polar Codes

How can finite length scaling be derived?
Following [Hassani et al., 2014] and the variations in

[Goldin and Burshtein, 2014]:

◮ It is known that

Z(W+) = Z2(W )

Z(W )
√

2− Z2(W ) ≤ Z(W−) ≤ 2Z(W )− Z2(W )

◮ For some f0(z) > 0, z ∈ (0, 1), f0(0) = f0(1) = 0, define fk(z)
recursively:

fk(z)
∆
= sup

y∈[z
√
2−z2,z(2−z)]

fk−1

(

z2
)

+ fk−1(y)

2

◮ Also define Lk(z)
∆
= fk(z)/f0(z), Lk

∆
= supz∈(0,1) Lk(z).

◮ It can be shown that E[f0(Zn)] ≤ A ·
(

k
√
Lk

)n · f0 [Z(W )] for

constant A.
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Finite Blocklength Scaling of Binary Polar Codes

How can finite length scaling be shown? (CONT’D)

◮ Using appropriately chosen f0(z) it can now be shown:

P (Zn ∈ (δ, 1 − δ)) ≤ A

δ

(

k
√

Lk

)n

≤ A

δ
2−ρn

for constant A and ρ = 0.2127.

◮ Proceed by showing, given m0, for constant Ã, that

P (ω ∈ Ω : Zn(ω) 6∈ (δ, 1 − δ) ∀n ≥ m0) ≥ 1− Ã

δ
2−ρm0

P (ω ∈ Ω : Zn(ω) ≤ δ ∀n ≥ m0) ≥ I(W )− Ã

δ
2−ρm0
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Finite Blocklength Scaling of Binary Polar Codes

How can finite length scaling be shown? (CONT’D)

◮ Following [Arikan, 2009] it can now be shown that for

R ≤ I(W )−
(

1 +
A

δ

)

· 2−αn

we have

Pe = O
(

N−a
)

where a > 0 for α = 1/(1 + 1/ρ) = 5.702−1.

◮ This proves the following scaling result:

Theorem

For Pe ≤ P 0
e , sufficient to set N = β/ (I(W )−R)5.702.
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Generalizing to q-ary polarization

Outline of analysis of q-ary polarization

◮ Instead of Z(Wn) use I(Wn).

◮ Given q-ary input channel W , W− = W � W and W+ = W ⊛W
obtain a bound

I(W )− I(W−) ≥ ǫl [I(W )]

for some ǫl [I(W )].

◮ For some f0(x) > 0, x ∈ (0, 1), f0(0) = f0(1) = 0, define fk(x), for

k = 1, 2, . . ., recursively

fk(x)
∆
= sup

ǫl(x)≤ǫ≤ǫh(x)

fk−1(x+ ǫ) + fk−1(x− ǫ)

2

for ǫh(x)
∆
= min(x, 1− x).

◮ The rest of the analysis is very similar to the binary case.
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Generalizing to q-ary polarization

Outline of analysis of q-ary polarization (CONT’D)

◮ In particular Lk(x)
∆
= fk(x)/f0(x), Lk

∆
= supx∈(0,1) Lk(x).

◮ Hence

E[fk(In+1)]

= E

[

fk(I
+
n ) + fk(I

−
n )

2

]

≤ E

[

sup
ǫl(x)≤ǫ≤ǫh(x)

fk(In + ǫ) + fk(In − ǫ)

2

]

≤ E [fk+1(In)]

◮ Hence E [f0(In)] ≤ E [fk(In−k)] ≤ LkE [f0(In−k)].

◮ Hence E[f0(In)] ≤ A ·
(

k
√
Lk

)n · f0 [I(W )] for constant A.

◮ Rest is almost identical to the binary case when using Zn.
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Generalizing to q-ary polarization

The main difficulty

◮ In the binary case q = 2, a tight bound ǫl [I(W )] such that

I(W )− I(W−) ≥ ǫl [I(W )] is well known, e.g.

[Richardson and Urbanke, 2008].

◮ This is not the case for q > 2.

◮ We show how good bounds can be obtained numerically.
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Generalizing to q-ary polarization

Our approach to obtain ǫl(x)

◮ Following notation in [Karzand and Telatar, 2010], given q-ary

channel W (y|x)

W (y)
∆
= (1/q)

q−1
∑

x=0

W (y | x)

v(y)
∆
= [v0(y), v1(y), . . . , vq−1(y)]

T

vx(y)
∆
=

W (y | x)
qW (y)

,

q−1
∑

x=0

vx(y) = 1

◮ Then: I(W ) =
∑

y W (y) [1−H [v(y)]] =
∑

G Ŵ (G) ·G where

Ŵ (G)
∆
=

∑

y :H[v(y)]=1−G W (y)
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Generalizing to q-ary polarization

Our approach to obtain ǫl(x) (CONT’D)

◮ Given two channels, Wa and Wb, let Wa�b
∆
=Wa � Wb, i.e.

Wa�b (y1, y2 | u) ∆
=

1

q

q−1
∑

u′=0

Wb

(

y2 | u′
)

Wa

(

y1 | u+ u′
)

◮ Hence Wa�b (y1, y2) = Wa (y1)Wb (y2) and

[Karzand and Telatar, 2010]

va�b (y1, y2) = vb (y2) ⋆ va (y1)

where ⋆ denotes q-circular cross-correlation.

◮ Also define

g (G1, G2) , 1− min
H[va(y1)]=1−G1

H[vb(y2)]=1−G2

H [vb (y2) ⋆ va (y1)]
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Generalizing to q-ary polarization

Our approach to obtain ǫl(x) (CONT’D)

I (Wa�b) =
∑

y1,y2

Wa�b (y1, y2) {1−H [va�b (y1, y2)]}

≤
∑

G1,G2

∑

y1:H[va(y1)]=1−G1

y2:H[vb(y2)]=1−G2

Wa (y1)Wb (y2) g (G1, G2)

=
∑

G1,G2

Ŵa (G1) Ŵb (G2) g (G1, G2)

If g (G1, G2) concave (separately!) in G1, G2 (otherwise replace by

concave upper bound)

I (Wa�b) ≤ g





∑

G1

Ŵa (G1)G1,
∑

G2

Ŵa (G2)G2



 = g [I (Wa) , I (Wb)]
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Generalizing to q-ary polarization

Our approach to obtain ǫl(x) (CONT’D)

◮ In our case W− = W � W . Hence I (W−) ≤ g [I(W ), I(W )].

◮ Hence I(W )− I(W−) ≥ I(W )− g [I(W ), I(W )]
∆
= ǫl [I(W )].

◮ Recall

g (G1, G2) , 1− min
H[va(y1)]=1−G1

H[vb(y2)]=1−G2

H [vb (y2) ⋆ va (y1)]

◮ At lease for q = 3, a QSC channel provides an excellent

approximation to the solution!

◮ A QSC with error prob. p:

W (y | x) =
{

1− p y = x
p/(q − 1) y 6= x .
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Generalizing to q-ary polarization

Properties of g(G1, G2)

g (G1, G2) , 1− min
H[va(y1)]=1−G1

H[vb(y2)]=1−G2

H [vb (y2) ⋆ va (y1)]

Lemma

If Wa and Wb are QSC, then Wa�b is QSC, and

I (Wa�b) = gQSC [I (Wa) , I (Wb)].

Lemma

Using QSC channels Wa and Wb yields extreme point in Lagrangian of

definition of g(G1, G2), ∀G1, G2 > 0.
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Generalizing to q-ary polarization

Properties of g(G1, G2) (CONT’D)

Lemma

g (G1, G2) = 1− min
H[va(y1)]≥1−G1

H[vb(y2)]≥1−G2

H [vb (y2) ⋆ va (y1)]

Lemma

Define f (u)
∆
= minH(v)≥1−GH (u ⋆ v). Then, f (u) is concave.

g(G1, G2) can be computed efficiently using algorithms for concave

minimization over convex region.
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Generalizing to q-ary polarization

Properties of g(G1, G2) (CONT’D)

Lemma

1. g(G1, G2) = g(G2, G1)

2. g (x1, y1) ≤ g (x2, y2) for x1 ≤ x2 and y1 ≤ y2.

3. g (1, G2) = G2

4. g (G1, G2) ≤ min (G1, G2).

5. limx→1
∂g(x,G2)

∂x
= 0

Lemma

For sufficiently small G1, G2 and q = 3, g (G1, G2) = ln 3 ·G1G2.

Lemma

For G1, G2 sufficiently close to 1, and q = 3, g(G1, G2) = G1 +G2 − 1
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Generalizing to q-ary polarization

Numerical Results

g (G1, G2) for q = 3

G
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G
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Generalizing to q-ary polarization

Numerical Results (CONT’D)

∂2g(G1,G2)
∂G2

1
for q = 3

G
2

G
1
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We can find a concave upper

bound on g(G1, G2).
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Generalizing to q-ary polarization

A concave upper bound on g(G1, G2)
◮ For a given G2, concave hull of g(G1, G2) is obtained by passing a

tangent line:

max
x∈[G1,1]

G1

x
g(x,G2)

◮ In order to obtain upper bound on g(G1, G2), concave in G1 and

G2 (separately):

g∗(G1, G2) = max
x1∈[G1,1],x2∈[G2,1]

G1G2

x1x2
g(x1, x2)

◮ We can also obtain closed form concave upper bound on

g(G1, G2) given by

g∗QSC(G1, G2) + 0.0104[G1(1−G2) +G2(1−G1)]

However this solution produces a slightly worse bound on the

scaling.
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Generalizing to q-ary polarization

∂2g∗QSC(G1,G2)

∂G2
1

for q = 3

G
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Generalizing to q-ary polarization

Lower bound on I (W )− I (W−)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

I(W)

 

 

q=2

q=3 QSC

q=3

Using this bound (with g∗(G1, G2)), can be shown that scaling of N is

N = β

(I(W )−R)6.504
(or better), β = β(P 0

e ).
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Generalizing to q-ary polarization

Conclusion

◮ The blocklength of polar codes scales polynomially with respect to

the inverse gap between code rate and capacity.

◮ For binary and ternary polar codes this polynomial has low

degree.

◮ The numerical technique presented may also work for other

nonbinary polar codes.

◮ May be interesting to examine the dependence of the scaling

parameter in the bound w.r.t. the alphabet size (q). Does it

decrease w.r.t. q?
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