Blocklength Scaling of Polar Codes

David Burshtein Based on joint work with Dina Goldin

School of Electrical Engineering Tel Aviv University

February 2015

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-30-0) Workshop, Simons Institute 1 / 31

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

Problem Definition

- \blacktriangleright $W(\cdot \mid \cdot)$ DMC.
- \triangleright $C = I(W)$ symmetric capacity.
- ► Goal: Communicate at rate R with error probability $P_e \leq P_e^0$.
- ► Capacity achieving family of codes: For any $R < C$, can find code with rate R and blocklength $N,$ such that $P_e \leq P_e^0.$
- \blacktriangleright How does N scale with respect to $C R$?
- ► Without complexity considerations: $N = \beta/(C R)^2$ (best possible and is achievable).
- \triangleright What about finite length scaling of computationally efficient capacity achieving codes?

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 2 / 31

 Ω

イロト イ母 トイラト イラト・ラー

Blocklength Scaling of Binary Polar Codes

- ▶ Polar codes [\[Arikan, 2009\]](#page-28-0) are capacity achieving.
- ► Computational complexity is $O(N \log N)$.
- Blocklength scales polynomially: $N = \frac{\beta}{C}$ $\frac{(C-R)^{\mu}}{I}$ [\[Guruswami and Xia, 2013\]](#page-29-0), [\[Hassani et al., 2014\]](#page-29-1). How small can we set μ ?
	- ► 3.55 $\leq \mu \leq 6$ [\[Hassani et al., 2014\]](#page-29-1).
	- \blacktriangleright μ < 5.7 [\[Goldin and Burshtein, 2014\]](#page-28-1).
	- \blacktriangleright μ < 4.7 [\[Mondelli et al., 2015\]](#page-30-1).
- Similar scaling of N in lossy source coding, w.r.t. $R(D) R$ [\[Goldin and Burshtein, 2014\]](#page-28-1) and various problems in multiuser information theory.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 3 / 31

 Ω

イロト イ押 トイラ トイラ トーラ

How can we generalize / improve results?

- ► General polarization kernels, or nonbinary polar codes.
- Exect Recent result for q-ary polar codes when q is prime: N scales polynomially with respect to $\frac{1}{C-R}$: $N = \frac{\beta}{(C-R)}$ $(C-R)^{\mu}$ [\[Guruswami and Velingker, 2014\]](#page-29-2).
- \blacktriangleright However, in the proof, μ is very large. Can we do better?
- \blacktriangleright We show that for $q = 3$ much lower values of μ can be obtained [\[Goldin and Burshtein, 2015\]](#page-28-2).
- \blacktriangleright The technique can be applied to other values of prime q.

 Ω

イロト イ押 トイラ トイラト・ラ

Polarization

Proposed in [\[Arikan, 2009\]](#page-28-0)

- \blacktriangleright Blocklength $N = 2^n$
- ► *Generator matrix* G_N , size $N \times N$
- \blacktriangleright Message vector $\mathbf{u} = u_1^N$, $\mathbf{x} = x_1^N = \mathbf{u} G_N$
- \triangleright B-DMC channel $W : \mathcal{X} \to \mathcal{Y}, \mathcal{X} = \{0, 1\}$
- \blacktriangleright Channel output $\mathbf{y} = y_1^N$
- Probability distribution: $P(\mathbf{u}, \mathbf{x}, \mathbf{y}) = \frac{1}{2^N} 1\!\!1_{\{\mathbf{x} = \mathbf{u} G_N\}} \prod_{i=1}^N W(y_i | x_i)$
- ► For $i = 1, 2, ..., N$, define the N sub-channels

$$
W_N^{(i)}(\mathbf{y}, u_1^{i-1} | u_i) \stackrel{\Delta}{=} P(\mathbf{y}, u_1^{i-1} | u_i) = \frac{1}{2^{N-1}} \sum_{u_{i+1}^N} P(\mathbf{y} | \mathbf{u})
$$

 \blacktriangleright *Polarization*: Typically, either $I(W_N^{(i)})$ $I_N^{(i)}) \approx 1$ or $I(W_N^{(i)})$ $\binom{N}{N} \approx 0.$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 5 / 31

 Ω

Polar codes, Encoding

- \blacktriangleright Code rate $R < I(W)$.
- \blacktriangleright Let $Z(W) \triangleq \sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0)W(y \mid 1)}$.
- ► The frozen set F is the set of $N(1 R)$ sub-channels with highest $Z(W_N^{(i)}$ $\binom{u}{N}$.

Algorithm (Encoding)

- If $i \in F$, fix to frozen \mathbf{u}_F .
- If $i \in F^c$ use it for information.
- \blacktriangleright Transmit $\mathbf{x} = \mathbf{u}G_N$.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 6 / 31

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Polar codes, Decoding

Algorithm (Decoding)

For
$$
i = 1, 2, ..., N
$$
:
\n**1.** If $i \in F$, $\hat{u}_i = u_i$
\n**2.** If $i \in F^c$, $\hat{u}_i = \begin{cases} 0 & \text{if } L_N^{(i)} > 1 \\ 1 & \text{if } L_N^{(i)} \le 1 \end{cases}$ where $L_N^{(i)} = \frac{W_N^{(i)}(\mathbf{y}, \hat{u}_1^{i-1} | u_i = 0)}{W_N^{(i)}(\mathbf{y}, \hat{u}_1^{i-1} | u_i = 1)}$

 \blacktriangleright For $R < I(W)$, error probability, P_e , satisfies [\[Arikan and Telatar, 2009\]](#page-28-3):

$$
P_e = O\left(2^{-N^{\beta}}\right) \quad , \quad \text{ for any } \beta < 1/2
$$

Encoding and decoding complexity $O(N \log N)$.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 7 / 31

 Ω

イロト イ母 トイラ トイラトー

Analysis of Polarization

Sub-channels can be described using the following random process:

▶ B₁, B₂... i.i.d Pr {B_n = 0} = Pr {B_n = 1} = 1/2
\n▶ W₀ = W, W_{n+1} =
$$
\begin{cases} W_n^-, & \text{if } B_{n+1} = 0\\ W_n^+ & \text{if } B_{n+1} = 1. \end{cases}
$$
\n▶ W⁻ (y₁, y₂ | u) $\stackrel{\Delta}{=} (W \boxtimes W)(y_1, y_2 | u) \stackrel{\Delta}{=} \frac{1}{2} \sum_x W (y_1 | u \oplus x) W (y_2 | x)$
\n▶ W⁺(y₁, y₂, x | u) $\stackrel{\Delta}{=} (W \otimes W)(y_1, y_2, x | u) \stackrel{\Delta}{=} \frac{1}{2} W (y_1 | x \oplus u) W (y_2 | u)$
\n
$$
W^+(y_1, y_2, x | u)
$$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 8 / 31

 QQ

Analysis of Polarization (CONT'D)

- $\blacktriangleright\; W_n$ uniformly distributed over $\left\{W_N^{(i)}\right\}$ $\left\{\begin{matrix}i\\N\end{matrix}\right\}_{i=1}^N$ $i=1$
- Hence, for $Z_n = Z(W_n)$, $I_n = I(W_n)$,

$$
P[Z_n \in (a, b)] = \left| \left\{ i : Z\left(W_N^{(i)}\right) \in (a, b) \right\} \right| / N
$$

$$
P[I_n \in (a, b)] = \left| \left\{ i : I\left(W_N^{(i)}\right) \in (a, b) \right\} \right| / N
$$

It was shown [\[Arikan, 2009\]](#page-28-0), for any fixed small $\delta > 0$,

$$
\text{Lim}_{n\to\infty}\Pr(Z_n \le \delta) = I(W)
$$

$$
\text{lim}_{n \to \infty} \Pr(Z_n \ge 1 - \delta) = 1 - I(W)
$$

$$
\text{lim}_{n \to \infty} \Pr(I_n \le \delta) = 1 - I(W)
$$

$$
\text{lim}_{n \to \infty} \Pr(I_n \ge 1 - \delta) = I(W)
$$

 Ω

イロト イ押 トイラ トイラト・ラ

How can finite length scaling be derived?

Following [\[Hassani et al., 2014\]](#page-29-1) and the variations in [\[Goldin and Burshtein, 2014\]](#page-28-1):

 \blacktriangleright It is known that

$$
Z(W^+) = Z^2(W)
$$

$$
Z(W)\sqrt{2 - Z^2(W)} \le Z(W^-) \le 2Z(W) - Z^2(W)
$$

► For some $f_0(z) > 0$, $z \in (0, 1)$, $f_0(0) = f_0(1) = 0$, define $f_k(z)$ recursively:

$$
f_k(z) \stackrel{\Delta}{=} \sup_{y \in [z\sqrt{2-z^2}, z(2-z)]} \frac{f_{k-1}(z^2) + f_{k-1}(y)}{2}
$$

- Also define $L_k(z) \triangleq f_k(z)/f_0(z)$, $L_k \triangleq \sup_{z \in (0,1)} L_k(z)$.
- ► It can be shown that $\mathrm{E}[f_0(Z_n)] \leq A \cdot \left(\sqrt[k]{L_k}\right)^n \cdot f_0\left[Z(W)\right]$ for constant A. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$
-

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 10 / 31

 Ω

How can finite length scaling be shown? (CONT'D)

► Using appropriately chosen $f_0(z)$ it can now be shown:

$$
P(Z_n \in (\delta, 1 - \delta)) \le \frac{A}{\delta} \left(\sqrt[k]{L_k}\right)^n \le \frac{A}{\delta} 2^{-\rho n}
$$

for constant A and $\rho = 0.2127$.

 \blacktriangleright Proceed by showing, given m_0 , for constant \ddot{A} , that

$$
P(\omega \in \Omega : Z_n(\omega) \notin (\delta, 1 - \delta) \,\forall n \ge m_0) \ge 1 - \frac{A}{\delta} 2^{-\rho m_0}
$$

$$
P(\omega \in \Omega : Z_n(\omega) \le \delta \,\forall n \ge m_0) \ge I(W) - \frac{\tilde{A}}{\delta} 2^{-\rho m_0}
$$

KEL KALLA EL KEL EL YAN **D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 11 / 31**

 $\tilde{ }$

How can finite length scaling be shown? (CONT'D)

 \triangleright Following [\[Arikan, 2009\]](#page-28-0) it can now be shown that for

$$
R \le I(W) - \left(1 + \frac{A}{\delta}\right) \cdot 2^{-\alpha n}
$$

we have

$$
P_e = O\left(N^{-a}\right)
$$

where $a > 0$ for $\alpha = 1/(1 + 1/\rho) = 5.702^{-1}$.

 \triangleright This proves the following scaling result:

Theorem

For
$$
P_e \le P_e^0
$$
, sufficient to set $N = \beta / (I(W) - R)^{5.702}$.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 12 / 31

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

 Ω

Outline of analysis of q**-ary polarization**

- Instead of $Z(W_n)$ use $I(W_n)$.
- ► Given q-ary input channel W, $W^- = W \otimes W$ and $W^+ = W \otimes W$ obtain a bound

$$
I(W) - I(W^{-}) \ge \epsilon_l [I(W)]
$$

for some $\epsilon_{l}\left[I(W)\right]$.

For some $f_0(x) > 0$, $x \in (0,1)$, $f_0(0) = f_0(1) = 0$, define $f_k(x)$, for $k = 1, 2, \ldots$ recursively

$$
f_k(x) \triangleq \sup_{\epsilon_l(x) \leq \epsilon \leq \epsilon_h(x)} \frac{f_{k-1}(x+\epsilon) + f_{k-1}(x-\epsilon)}{2}
$$

for $\epsilon_h(x) \triangleq \min(x, 1-x)$.

 \triangleright The rest of the analysis is very similar to the binary case.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 13 / 31

 Ω

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Outline of analysis of q**-ary polarization (CONT'D)**

► In particular $L_k(x) \triangleq f_k(x)/f_0(x)$, $L_k \triangleq \sup_{x \in (0,1)} L_k(x)$.

Hence

$$
E[f_k(I_{n+1})]
$$

= $E\left[\frac{f_k(I_n^+) + f_k(I_n^-)}{2}\right]$
 $\leq E\left[\sup_{\epsilon_l(x) \leq \epsilon \leq \epsilon_h(x)} \frac{f_k(I_n + \epsilon) + f_k(I_n - \epsilon)}{2}\right]$
 $\leq E\left[f_{k+1}(I_n)\right]$

- ► Hence $E[f_0(I_n)] \leq E[f_k(I_{n-k})] \leq L_k E[f_0(I_{n-k})].$
- \blacktriangleright Hence $\text{E}[f_0(I_n)] \leq A \cdot \left(\sqrt[k]{L_k}\right)^n \cdot f_0\left[I(W)\right]$ for constant A .
- Rest is almost identical to the binary case when using Z_n .

 Ω

イロト イ押 トイラ トイラ トーラ

The main difficulty

- \blacktriangleright In the binary case $q=2,$ a tight bound $\epsilon_l\left[I(W)\right]$ such that $I(W) - I(W^-) \ge \epsilon_l \left[I(W) \right]$ is well known, e.g. [\[Richardson and Urbanke, 2008\]](#page-30-2).
- \blacktriangleright This is not the case for $q > 2$.
- \triangleright We show how good bounds can be obtained numerically.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 15 / 31

 Ω

イロト イ押 トイラ トイラ トーラ

Our approach to obtain $\epsilon_l(x)$

► Following notation in [\[Karzand and Telatar, 2010\]](#page-29-3), given q -ary channel $W(y|x)$

$$
W(y) \stackrel{\Delta}{=} (1/q) \sum_{x=0}^{q-1} W(y | x)
$$

$$
\mathbf{v}(y) \stackrel{\Delta}{=} [v_0(y), v_1(y), \dots, v_{q-1}(y)]^T
$$

$$
v_x(y) \stackrel{\Delta}{=} \frac{W(y | x)}{qW(y)}, \sum_{x=0}^{q-1} v_x(y) = 1
$$

► Then: $I(W) = \sum_y W(y) \left[1 - H\left[\mathbf{v}(y)\right]\right] = \sum_G \hat{W}(G) \cdot G$ where $\hat{W}(G) \triangleq \sum_{y \,:\, H[\mathbf{v}(y)] = 1-G} W(y)$

KORKARKIERK EI KOOG D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 16 / 31

Our approach to obtain $\epsilon_l(x)$ **(CONT'D)**

► Given two channels, W_a and W_b , let $W_{a \boxtimes b} \triangleq W_a \boxtimes W_b$, i.e.

$$
W_{a \boxplus b} (y_1, y_2 \mid u) \triangleq \frac{1}{q} \sum_{u'=0}^{q-1} W_b (y_2 \mid u') W_a (y_1 \mid u + u')
$$

► Hence
$$
W_{a \boxplus b}(y_1, y_2) = W_a(y_1) W_b(y_2)
$$
 and
[Karzand and Telatar, 2010]

$$
\mathbf{v}_{a \boxplus b} \left(y_1, y_2 \right) = \mathbf{v}_b \left(y_2 \right) \star \mathbf{v}_a \left(y_1 \right)
$$

where \star denotes q -circular cross-correlation.

 \blacktriangleright Also define

$$
g(G_1, G_2) \triangleq 1 - \min_{\substack{H[\mathbf{v}_a(y_1)]=1-G_1 \\ H[\mathbf{v}_b(y_2)]=1-G_2}} H[\mathbf{v}_b(y_2) \star \mathbf{v}_a(y_1)]
$$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 17 / 31

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Our approach to obtain $\epsilon_l(x)$ **(CONT'D)**

$$
I\left(W_{a \boxplus b}\right) = \sum_{y_1, y_2} W_{a \boxplus b}\left(y_1, y_2\right) \{1 - H\left[\mathbf{v}_{a \boxplus b}\left(y_1, y_2\right)\right]\}
$$

\n
$$
\leq \sum_{G_1, G_2} \sum_{\substack{y_1: H[\mathbf{v}_a(y_1)]=1-G_1 \\ y_2: H[\mathbf{v}_b(y_2)]=1-G_2}} W_a\left(y_1\right) W_b\left(y_2\right) g\left(G_1, G_2\right)
$$

\n
$$
= \sum_{G_1, G_2} \hat{W}_a\left(G_1\right) \hat{W}_b\left(G_2\right) g\left(G_1, G_2\right)
$$

If $g(G_1, G_2)$ concave (separately!) in G_1, G_2 (otherwise replace by concave upper bound)

$$
I\left(W_{a \boxplus b}\right) \le g \left[\sum_{G_1} \hat{W}_a\left(G_1\right) G_1, \sum_{G_2} \hat{W}_a\left(G_2\right) G_2\right] = g\left[I\left(W_a\right), I\left(W_b\right)\right]
$$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 18 / 31

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Our approach to obtain $\epsilon_l(x)$ **(CONT'D)**

- ► In our case $W^- = W \otimes W$. Hence $I(W^-) \leq g[I(W), I(W)]$.
- \blacktriangleright Hence $I(W) I(W^-) \ge I(W) g[I(W), I(W)] \triangleq \epsilon_l[I(W)].$
- \triangleright Recall

$$
g(G_1, G_2) \triangleq 1 - \min_{\substack{H[\mathbf{v}_a(y_1)]=1-G_1 \\ H[\mathbf{v}_b(y_2)]=1-G_2}} H[\mathbf{v}_b(y_2) \star \mathbf{v}_a(y_1)]
$$

- \triangleright At lease for $q = 3$, a *QSC* channel provides an excellent approximation to the solution!
- \triangleright A QSC with error prob. p:

$$
W(y \mid x) = \begin{cases} 1-p & y=x \\ p/(q-1) & y \neq x \end{cases}.
$$

 Ω

イロト イ母 トイラ トイラ トーラー

Properties of $q(G_1, G_2)$

$$
g(G_1, G_2) \triangleq 1 - \min_{\substack{H[\mathbf{v}_a(y_1)]=1-G_1 \\ H[\mathbf{v}_b(y_2)]=1-G_2}} H[\mathbf{v}_b(y_2) \star \mathbf{v}_a(y_1)]
$$

Lemma

If W_a and W_b are QSC, then $W_{a \boxplus b}$ is QSC, and $I(W_{a\boxplus b}) = q_{OSC}[I(W_a), I(W_b)].$

Lemma

Using QSC channels W^a *and* W^b *yields extreme point in Lagrangian of definition of* $q(G_1, G_2)$, $\forall G_1, G_2 > 0$.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 20 / 31

 Ω

イロト イ押 トイラ トイラト

Properties of $g(G_1, G_2)$ **(CONT'D)**

Lemma

$$
g(G_1, G_2) = 1 - \min_{\substack{H[\mathbf{v}_a(y_1)] \ge 1 - G_1 \\ H[\mathbf{v}_b(y_2)] \ge 1 - G_2}} H[\mathbf{v}_b(y_2) \star \mathbf{v}_a(y_1)]
$$

Lemma

Define
$$
f(\mathbf{u}) \triangleq \min_{H(\mathbf{v}) \ge 1-G} H(\mathbf{u} \star \mathbf{v})
$$
. Then, $f(\mathbf{u})$ is concave.

 $g(G_1, G_2)$ can be computed efficiently using algorithms for concave minimization over convex region.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 21 / 31

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Properties of $q(G_1, G_2)$ **(CONT'D)**

Lemma

- **1.** $q(G_1, G_2) = q(G_2, G_1)$
- **2.** $q(x_1, y_1) \leq q(x_2, y_2)$ for $x_1 \leq x_2$ and $y_1 \leq y_2$.
- **3.** $q(1, G_2) = G_2$
- **4.** $q(G_1, G_2) \leq \min(G_1, G_2)$.
- **5.** $\lim_{x\to 1} \frac{\partial g(x, G_2)}{\partial x} = 0$

Lemma

For sufficiently small G_1, G_2 *and* $q = 3$, $q(G_1, G_2) = \ln 3 \cdot G_1 G_2$.

Lemma

For G_1 , G_2 *sufficiently close to* 1*, and* $q = 3$, $q(G_1, G_2) = G_1 + G_2 - 1$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 22 / 31

 Ω

イロトス何 トスラ トスラメーラ

Numerical Results

 $g(G_1, G_2)$ for $q = 3$

$$
\frac{\partial g(G_1, G_2)}{\partial G_1}
$$
 for $q = 3$

Ξ **D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 23 / 31**

÷

 QQ

 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4

4 00 16

Numerical Results (CONT'D)

 $\partial^2 g(G_1,G_2)$ $rac{(G1,G2)}{\partial G_1^2}$ for $q=3$

We can find a concave upper bound on $g(G_1, G_2)$.

> \leftarrow \overline{m} \rightarrow \mathcal{A} 重き

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 24 / 31

 Ω

A concave upper bound on $q(G_1, G_2)$

► For a given G_2 , concave hull of $g(G_1, G_2)$ is obtained by passing a tangent line:

$$
\max_{x \in [G_1,1]} \frac{G_1}{x} g(x, G_2)
$$

In order to obtain upper bound on $g(G_1, G_2)$, concave in G_1 and G_2 (separately):

$$
g^*(G_1, G_2) = \max_{x_1 \in [G_1, 1], x_2 \in [G_2, 1]} \frac{G_1 G_2}{x_1 x_2} g(x_1, x_2)
$$

► We can also obtain closed form concave upper bound on $q(G_1, G_2)$ given by

$$
g_{QSC}^*(G_1, G_2) + 0.0104[G_1(1 - G_2) + G_2(1 - G_1)]
$$

However this solution produces a slightly worse bound on the scaling. $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 25 / 31

 Ω

 $\partial^2 g_{QSC}^*(G_1,G_2)$ $\frac{q_{G}(G_1, G_2)}{\partial G_1^2}$ for $q=3$

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 26 / 31

E

 299

Lower bound on $I(W) - I(W^-)$

Using this bound (with $g^*(G_1,G_2)$), can be shown that scaling of N is $N = \frac{\beta}{(I(W))}$ $\frac{\beta}{(I(W)-R)^{6.504}}$ (or better), $\beta = \beta(P_e^0)$.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 27 / 31

 Ω

イロト イ母 トイヨ トイヨ

Conclusion

- \triangleright The blocklength of polar codes scales polynomially with respect to the inverse gap between code rate and capacity.
- \triangleright For binary and ternary polar codes this polynomial has low degree.
- \blacktriangleright The numerical technique presented may also work for other nonbinary polar codes.
- \triangleright May be interesting to examine the dependence of the scaling parameter in the bound w.r.t. the alphabet size (q) . Does it decrease w.r.t. q ?

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 28 / 31

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

References I

Arikan, E. (2009).

Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels.

IEEE Transactions on Information Theory, 55(7):3051–3073.

Arikan, E. and Telatar, E. (2009).

On the rate of channel polarization.

In *Proc. IEEE International Symposium on Information Theory (ISIT)*, pages 1493–1495, Seoul, Korea.

Goldin, D. and Burshtein, D. (2014).

Improved bounds on the finite length scaling of polar codes.

IEEE Transactions on Information Theory, 60(11):6966–6978.

Goldin, D. and Burshtein, D. (2015).

On the finite length scaling of ternary polar codes. In *Proc. IEEE International Symposium on Information Theory (ISIT)*. submitted for presentation.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 29 / 31

医

 Ω

 $(1 + 4\sqrt{10}) + (1 + 4\sqrt{10}) + (1 + 4\sqrt{10})$

References II

An entropy sumset inequality and polynomially fast convergence to Shannon capacity over all alphabets.

arXiv preprint arXiv:1411.6993.

聶

Guruswami, V. and Xia, P. (2013).

Polar codes: speed of polarization and polynomial gap to capacity.

In *IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 310–319.

Hassani, S., Alishahi, K., and Urbanke, R. (2014).

Finite-length scaling for polar codes.

IEEE Transactions on Information Theory, 60(10):5875–5898.

Karzand, M. and Telatar, E. (2010).

Polar codes for q-ary source coding.

In *Proc. IEEE International Symposium on Information Theory (ISIT)*, pages 909–912, Austin, Texas.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 30 / 31

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

References III

Mondelli, M., Hassani, S. H., and Urbanke, R. (2015).

Unified scaling of polar codes: error exponent, scaling exponent, moderate deviations, and error floors.

arXiv preprint arXiv:1501.02444.

Richardson, T. and Urbanke, R. (2008).

Modern Coding Theory. Cambridge University Press, Cambridge, UK.

D. Goldin, D. Burshtein (TAU) [Blocklength Scaling of Polar Codes](#page-0-0) Workshop, Simons Institute 31 / 31

医

 Ω

 $(0.12 \times 10^{-14} \times 10^{-14})$