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Clustering

Given n objects - divide (partition) them into k clusters. Each
cluster should consist of “similar” or “close-by” objects.

Often, each object is just a vector. [One component per “feature”.
Many features.]
Measure either “similarity” between objects (eg. dot product) or
distance (dissimilarity).
TCS, Th. OR Find an OPTIMAL k− clustering which

Minimize Σ (distance of data point to its cluster center).
OR Max sum of similarities within clusters.

k−means Problem Minimize Sum of (Dist)2 to cluster centers.
Many headaches of this talk (and the field) would be gone if we
can exactly optimize. Alas Exact Optimization is NP-Hard, so can
only approx optimize.
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Picture

5 clusters
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Ultimate Goal

Find the CORRECT clustering.

Differences of view:

TCS: The optimal Clustering is obviously the correct one. [Maybe
right, but can’t find THE optimal one.]
Statistics: The Correct clustering is the one used by the “invisible
hand” to generate the data in the first place. [Stochastic Model of
data - Prior.]
Practitioner: Give me your answer and I will tell you post facto
whether it is the correct clustering.

The Invisible Hand
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TCS: Approximations for k−means Clustering

Spectral Methods, yield solution with k−means at most constant
times optimal.
Theory at Work: Now ε OPT error algorithms available. Also
simpler.
Kumar, Sabharwal, Sen: ε approximation in linear time when k is
fixed. (Using ideas from Badiou, Har-Peled, Indyk; Inaba, Katoh,
Imai; Matrousek).
Starting Idea: To get the center of one cluster: Centroid of small
random sample from cluster is good enough.
Random sample (of all data) contains subset from largest cluster.

Try all subsets. Peel off cluster “close to” centroid of subset.
Repeat.

Cannot go beyond constant size subsets, so cannot beat constant
(small) factor error.
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Spectral Clustering

A1,A2, . . . ,An are the data points to be clustered.

k−means: Find k cluster centers. Set C1,C2, . . . ,Cn each to be
one of the k centers so as to minimize
Sum of Squared Distances to Ai to Ci .
Relax to rank(C) ≤ k instead of k distinct rows.
Then, space spanned by Ci is the least-squares-fit k−
dimensional space to A1,A2, . . . ,An. It can be found by Singular
Value Decomposition. Principal Component Analysis - PCA.

v
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PCA to Clustering

Instead of finding the k−cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k− dim’l
subspace minimizing the sum of distances squared.

Natural Next step - project to this sub-space and find
(approximately) optimal k−means clustering in subspace.
Folklore: Spectral Clustering. Does it work ?
yes, provably under stochastic models and more recently even
under no stochastic assumptions...
First: The glories of PCA.
There is also a different way to do spectral clustering- by
repeatedly using a 1-d projections, Fiedler; Shi, Malik; ... which
we do not discuss here.
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PCA and Noise

Suppose A︸︷︷︸
Given

= B︸︷︷︸
Noise

+ C︸︷︷︸
Data

, rank(C) = k .

Projection Ā of A to k−dim’l principal subspace is close to C
(Folklore).
For a moment, assume noise B1,B2, . . . ,Bn is “roughly equally
spread in all directions”.
Then, Error of PCA is at most 8k

d Total Noise.∑
i |Āi − Ci |2 ≤ 8k

d
∑

i |Bi |2.
Big gain if k << d .
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Denoising -formally

Often, denoising is formally stated and proved with a bunch of
stochastic assumptions. But really it is a simple lemma with no
assumptions with a 5 line proof. (An “exercise” to prove, but
perhaps took us long to formulate the clean, general statement.)

Achlioptas, McSherry,.....,Hopcroft, Kannan: Simple Denoising
Lemma A any matrix. Ā projection of A to k−dim principal
subspace. C any matrix of rank k .
||Ā− C||2F ≤ 8k ||A− C||22,
where, || · ||2F is sum of squares of all entries and ||X ||2 = Max|Xu|,
over all unit vectors u.
lhs: d−dim’s distances. rhs: 1-dim’s distances.
One Ā is close to EVERY C !!!
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||Ā− C||2F ≤ 8k ||A− C||22,
where, || · ||2F is sum of squares of all entries and ||X ||2 = Max|Xu|,
over all unit vectors u.
lhs: d−dim’s distances. rhs: 1-dim’s distances.

One Ā is close to EVERY C !!!
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Project and Cluster

Project data points to space spanned by top k singular vectors
(PCA).

Do an approximate clustering in the projection with thanks to TCS.
If data was generated by a mixture model (of spherical
gaussians), then this does the job.
Indeed, even if the data was not generated from a mixture model,
will see that this provides a good start for k−means (from which
we get rapid convergence).
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Algorithms for PCA - Theory to Practice

Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?

Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.
Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”
Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in A if k ∈ O(1).
Using Subspace Embeddings: If S is a r × n matrix (r << n) with
one ±1 entry per column chosen at random, then simultaneously
for all vectors x ,
|SAx | is within relative error ε of |Ax |

Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 11 / 27



Algorithms for PCA - Theory to Practice

Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?
Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.

Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”
Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in A if k ∈ O(1).
Using Subspace Embeddings: If S is a r × n matrix (r << n) with
one ±1 entry per column chosen at random, then simultaneously
for all vectors x ,
|SAx | is within relative error ε of |Ax |

Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 11 / 27



Algorithms for PCA - Theory to Practice

Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?
Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.
Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”
Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in A if k ∈ O(1).

Using Subspace Embeddings: If S is a r × n matrix (r << n) with
one ±1 entry per column chosen at random, then simultaneously
for all vectors x ,
|SAx | is within relative error ε of |Ax |

Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 11 / 27



Algorithms for PCA - Theory to Practice

Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?
Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.
Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”
Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in A if k ∈ O(1).
Using Subspace Embeddings: If S is a r × n matrix (r << n) with
one ±1 entry per column chosen at random, then simultaneously
for all vectors x ,
|SAx | is within relative error ε of |Ax |

Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 11 / 27



Mixture Models

Stochastic Model of data for clustering problems.
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Mixture Models-II

Probability Density F on d−space.

F is a mixture of k components.
F = w1F1 + w2F2 + · · ·+ wkFk ,
each Fi is a Gaussian, say and w1,w2, . . . ,wk nonnegative
summing to 1.
Data points are n i.i.d. samples, each drawn according to F .
Given data points, cluster them into k clusters corresponding to
F1,F2, . . . ,Fk . Then it is easy fit a Gaussian to each cluster.
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Two Gaussians of S.D. σ

√
dσ

O(σ)

√
dσ

Typical picture in d dimensions

Approx. Clustering can mis-cluster

Pts of Gaussian 1 Pts of Gaussian 2

MSD is O(dσ2)

Inter-center Sep is O(σ)

Error of εdσ2

Can mis-cluster many points !!
Correct Unit: σ
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Correct Units in space of centers

***PICTURE OF TWO GAUSSIANS WITH PROJECTION
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Inter-Center Distance and Clustering

In 1-dimension, if we have two Gaussians of standard deviation
(S.D.) 1 each:

If inter-center separation is at least 100 S.D.’s, we can tell them
apart.
If inter-center separation is less than 1/100, difficult to tell them
apart.

In d− dimensions, a similar result holds Vempala, Wang:

k = O(1) spherical gaussian components of S.D 1 each.
Inter-center separation of at least a constant∗.
We can correctly cluster EACH DATA POINT.
Use Singular Value Decomposition )(PCA) crucially. An elegant
argument.
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Theory explanation of practitioners’ happiness

Practitioners often solve NP-hard problems with heuristics and
seem quite happy. Why? Perhaps, when the solution is stable, it
is easy to find.

Bilu, Lineal: Optimal solution to Max-cut is stable if arbitrary
changes in edge weights each by factor ≤ ∆, leaves solution
optimal. Q: For what values of ∆ can we find stable solutions?
Known only for ∆ ≥

√
n

Balcan, Blum, Gupta Opt k−means clustering C∗ is stable if any
near optimal clustering differs from C∗ in a small fraction of
objects. Algorithms to find stable solutions.Daniely, Lineal, Saks
Related Definitions: Balcan, Blum, Vempala; Ostravsky, Rabani,
Schulman, Swamy; Awasthi, A. Blum, Sheffet : Optimal solution
for k− means is stable if it remains optimal even when we change
pairwise distances, each by at most a constant factor.
Promising approaches and many open questions. But for the
notorious two Gaussian picture, the correct solution is not stable!
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Stability in Pictures

Space of clusterings

K-means
value

Stable Solution

2-Gaussians. K-means value so large that mis-
clustering points costs (relatively) little. So 
many clusterings of roughly the same value. 

FUNNEL

plate
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A new notion of stable clustering

A k−clustering is proper

if its “variance” σ2 (Max. over all directions u of the Mean Squared
Distance of data points to their cluster centers in the direction u) is
least among all k clusterings. (Optimize σ)
and inter-cluster-center separation is at least cσ. [“Means are 6
S.D.’s apart”.]

Works for the two Gaussian picture.
Hopcroft, Kannan If there is a proper clustering C∗, then Project
and Cluster finds a clustering which has at most εn points
classified differently than C∗.
Mixture model→ proper clustering.
Harder Theorem: Kumar, Kannan: If there is a clustering C∗ such
that when data points are projected to space of centers, each
projected data point is closer to its own center than any other
center by at least Ω(σ(C∗)), then Project and Cluster followed by
Llyod’s algorithm converges exponentially fast to the centers of C∗.
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Lloyd’s Algorithm

Problem: Cluster data points in d space into k clusters.

Algorithm

Start with some k points as current cluster centers.
Partition data points into k clusters based on nearest cluster center.
Recompute cluster centers as centroids of new clusters.
Repeat...

Millions of happy users in ML,....
Few unhappy theoreticians (cannot prove a lot)
Mean Squared Distance of data point to its cluster center = MSD
(aka: k-means)

Lloyd’s improves MSD at each step (SIMPLE).
Thus converges (to something).
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Lloyd’s Algorithm-Pictures

41

Step of Lloyd’s Algorithm
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Pictures-II

Importance of a good start

Good 
start 

Bad 
Start
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More General Gaussians

Algorithm for fitting a general Mixture of k Gaussians

Start with a initial guess of k (general) Gaussians:
(µ1,Σ1), (µ2,Σ2), . . . , (µk ,Σk ).

For t = 1,2, . . . , k , make all data points whose (posterior) prob.
according to (µt ,Σt ) is highest into cluster Ct .
Reset (µt ,Σt ) to be the sample mean and covarince of Ct .
Repeat to heart’s content.

Any Provable Analysis (Besides just convergence to local opt. which
follows from monotonicity).
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Nearest Neighbor Search

Database of n points in d−dimensions. Preprocess at will.

Queries which are points in d−dim’s will then arrive. Must quickly
(logarithmic time) report the nearest (or approximately nearest)
database point.
One of the most widely used subroutines. High d is a handicap.
Important tool in the theoretician’s kit:
Johnson Lindenstrauss Random Projection Theorem: v a fixed
vector in Rd . V a random k dimensional subspace of Rd . Say v ′ is
projection of v onto V . With high probability,
|v ′| ≈

√
k√
d
|v |.

Failure Probability is low; so can preserve all pairwise distances
among n points in Rd with k only about ln n.
Kleinberg; Indyk, Motwani Project Data points into a random low
dimensional subspace and find NN to query point in the projection.
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Tale of two Dimension Reduction Methods

PCA projects high dim’l data to best-fit subspace. Used in practice
a lot. Clustering is one area where we have proofs of its efficacy.
Rather rare.

Random Projections used widely in theory with provable efficacy.
But for NNS, PCA is used as well in practice.
Prove that PCA does the job in NNS and other applications.
Difficulty: Whereas Random Projections preserve EVERY
(pairwise) distance, PCA does not. But surely, data independent
random projection just cannot always be that good?
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The correct clustering: Abstract View

Kleinberg: A Clustering criterion Γ (such as k−means) gives a
mapping
Distance Function d(x , y)→ (Optimal) Partition Γ(d) of data
points.

A System of “reasonable” axioms any clustering criterion ought to
satisfy:

Consistency: If we increase distances between points in different
clusters and decrease distances between points in same cluster,
the optimal clustering should still remain optimal. (Beware: Ties)
Scale Invariance Multiplying all distances by the same constant
leaves the optimal clustering still optimal.
Richness For any partition P of n data points, there is some
distance function d(x , y) on the points for which Γ(d) = P.

Theorem There is no clustering criterion satisfying all the axioms.
Oops???
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A Feasible set of Axioms

If we insist on points being in Euclidean space, there is a criterion
satisfying the axioms:

Consistency: If we move a point so that its distance to points in its
cluster decreases and to points in different clusters increases, the
optimal clustering should still remain optimal. (Beware: Ties)
Scale Invariance Multiplying all distances by the same constant
leaves the optimal clustering still optimal.
Richness For any set K of k points in space, there is some
placement of the n data points so that the clustering with K as
centers is optimal.

Hopcroft, Kannan: Theorem: Balanced k−means (Minimum sum
of dist squared to cluster centers among all partitions into k
clusters, each of size n/k ) satisfies all the axioms.
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