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Clustering

@ Given n objects - divide (partition) them into k clusters. Each
cluster should consist of “similar” or “close-by” objects.
@ Often, each object is just a vector. [One component per “feature”.
Many features.]
@ Measure either “similarity” between objects (eg. dot product) or
distance (dissimilarity).
@ TCS, Th. OR Find an OPTIMAL k— clustering which
e Minimize X (distance of data point to its cluster center).
o OR Max sum of similarities within clusters.
@ k—means Problem Minimize Sum of (Dist)? to cluster centers.
@ Many headaches of this talk (and the field) would be gone if we
can exactly optimize. Alas Exact Optimization is NP-Hard, so can
only approx optimize.
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Picture

5 clusters
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Ultimate Goal

@ Find the CORRECT clustering.
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Ultimate Goal

@ Find the CORRECT clustering.
@ Differences of view:

e TCS: The optimal Clustering is obviously the correct one. [Maybe
right, but can’t find THE optimal one.]

e Statistics: The Correct clustering is the one used by the “invisible
hand” to generate the data in the first place. [Stochastic Model of
data - Prior.]

e Practitioner: Give me your answer and | will tell you post facto
whether it is the correct clustering.

The Invisible Hancll

<
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TCS: Approximations for k—means Clustering

@ Spectral Methods, yield solution with k—means at most constant
times optimal.

@ Theory at Work: Now ¢ OPT error algorithms available. Also
simpler.

@ Kumar, Sabharwal, Sen: ¢ approximation in linear time when k is
fixed. (Using ideas from Badiou, Har-Peled, Indyk; Inaba, Katoh,
Imai; Matrousek).

@ Starting Idea: To get the center of one cluster: Centroid of small
random sample from cluster is good enough.

@ Random sample (of all data) contains subset from largest cluster.

o Try all subsets. Peel off cluster “close to” centroid of subset.
Repeat.

@ Cannot go beyond constant size subsets, so cannot beat constant
(small) factor error.
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Spectral Clustering

@ Ay, Ay, ..., A, are the data points to be clustered.
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Spectral Clustering

@ Ay, Ay, ..., A, are the data points to be clustered.

@ k—means: Find k cluster centers. Set Cy, Co, ..., C, each to be
one of the k centers so as to minimize
Sum of Squared Distances to A; to C;.

@ Relax to rank(C) < k instead of k distinct rows.

@ Then, space spanned by C; is the least-squares-fit k—
dimensional space to Aq, Ao, ..., An. It can be found by Singular
Value Decomposition. Principal Component Analysis - PCA.
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PCA to Clustering

@ Instead of finding the k—cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k— dim’l
subspace minimizing the sum of distances squared.

Clustering Data: Does Theory Help? December 10, 2013 7127



-]
PCA to Clustering

@ Instead of finding the k—cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k— dim’l
subspace minimizing the sum of distances squared.

@ Natural Next step - project to this sub-space and find
(approximately) optimal k—means clustering in subspace.
Folklore: Spectral Clustering. Does it work ?

Clustering Data: Does Theory Help? December 10, 2013 7127



-]
PCA to Clustering

@ Instead of finding the k—cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k— dim’l
subspace minimizing the sum of distances squared.

@ Natural Next step - project to this sub-space and find
(approximately) optimal k—means clustering in subspace.
Folklore: Spectral Clustering. Does it work ?

@ yes, provably under stochastic models and more recently even
under no stochastic assumptions...

Clustering Data: Does Theory Help? December 10, 2013 7127



-]
PCA to Clustering

@ Instead of finding the k—cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k— dim’l
subspace minimizing the sum of distances squared.

@ Natural Next step - project to this sub-space and find
(approximately) optimal k—means clustering in subspace.
Folklore: Spectral Clustering. Does it work ?

@ yes, provably under stochastic models and more recently even
under no stochastic assumptions...

@ First: The glories of PCA.

Clustering Data: Does Theory Help? December 10, 2013 7127



-]
PCA to Clustering

@ Instead of finding the k—cluster centers minimizing sum of
distance squared to cluster centers, PCA found for us the k— dim’l
subspace minimizing the sum of distances squared.

@ Natural Next step - project to this sub-space and find
(approximately) optimal k—means clustering in subspace.
Folklore: Spectral Clustering. Does it work ?

@ yes, provably under stochastic models and more recently even
under no stochastic assumptions...

@ First: The glories of PCA.

@ There is also a different way to do spectral clustering- by
repeatedly using a 1-d projections, Fiedler; Shi, Malik; ... which
we do not discuss here.
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@ Suppose A = B + C ,rank(C)
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N
PCA and Noise

@ Suppose A = B + C ,rank(C) = k.
Given  Noise Data

@ Projection A of Ato k—dim’| principal subspace is close to C
(Folklore).

@ For a moment, assume noise By, Bo, . .., By is “roughly equally
spread in all directions”.

@ Then, Error of PCA is at most % Total Noise.
° Y |A—C2< &3 |B%.
@ Biggainif k << d.
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Denoising -formally

@ Often, denoising is formally stated and proved with a bunch of
stochastic assumptions. But really it is a simple lemma with no
assumptions with a 5 line proof. (An “exercise” to prove, but
perhaps took us long to formulate the clean, general statement.)
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@ Often, denoising is formally stated and proved with a bunch of
stochastic assumptions. But really it is a simple lemma with no
assumptions with a 5 line proof. (An “exercise” to prove, but
perhaps took us long to formulate the clean, general statement.)

@ Achlioptas, McSherry,.....,Hopcroft, Kannan: Simple Denoising
Lemma A any matrix. A projection of A to k—dim principal
subspace. C any matrix of rank k.

IA—C|2 < 8k||A- Cl
where, || - ||2 is sum of squares of all entries and || X||» = Max|Xul,
over all unit vectors u.
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Denoising -formally

@ Often, denoising is formally stated and proved with a bunch of
stochastic assumptions. But really it is a simple lemma with no
assumptions with a 5 line proof. (An “exercise” to prove, but
perhaps took us long to formulate the clean, general statement.)

@ Achlioptas, McSherry,.....,Hopcroft, Kannan: Simple Denoising
Lemma A any matrix. A projection of A to k—dim principal
subspace. C any matrix of rank k.
IA— Cl2 < 8klA - CI,
where, || - ||2 is sum of squares of all entries and || X||» = Max|Xul,
over all unit vectors u.

@ |hs: d—dim’s distances. rhs: 1-dim’s distances.

@ One Ais close to EVERY C !l

Clustering Data: Does Theory Help? December 10, 2013 9/27



Project and Cluster

@ Project data points to space spanned by top k singular vectors
(PCA).
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Project and Cluster

@ Project data points to space spanned by top k singular vectors
(PCA).

@ Do an approximate clustering in the projection with thanks to TCS.

@ If data was generated by a mixture model (of spherical
gaussians), then this does the job.

@ Indeed, even if the data was not generated from a mixture model,
will see that this provides a good start for k—means (from which
we get rapid convergence).
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-]
Algorithms for PCA - Theory to Practice

@ Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?

Clustering Data: Does Theory Help? December 10, 2013 11/27



-]
Algorithms for PCA - Theory to Practice

@ Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?

@ Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.

Clustering Data: Does Theory Help? December 10, 2013 11/27



-]
Algorithms for PCA - Theory to Practice

@ Can we sub-sample a large matrix to pick a few rows/columns of
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whole matrix?

@ Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.

@ Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”

@ Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in Aif k € O(1).
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Algorithms for PCA - Theory to Practice

Can we sub-sample a large matrix to pick a few rows/columns of
it, do PCA on the sub-matrix and infer anything about PCA on the
whole matrix?

Frieze, Kannan, Vempala (1995): Yes if we pick rows/columns with
probability proportional to squared length. But not practical.

Decade of development by Drineas, Mahoney, many others...
Presented in Workshops this semester. “Sampling based methods
are now a crucial ingredient of computing with large matrices.”

Clarkson, Woodruff Nearly best rank k approx to A can be found
in time linear in the number of non-zero entries in Aif k € O(1).

Using Subspace Embeddings: If Siis a r x n matrix (r << n) with
one +1 entry per column chosen at random, then simultaneously
for all vectors x,

|SAx| is within relative error ¢ of |Ax|
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Mixture Models

Stochastic Model of data for clustering problems.

Th——,

Clustering Data: Does Theory Help? December 10, 2013 12/27



.
Mixture Models-II

@ Probability Density F on d—space.
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Mixture Models-II

@ Probability Density F on d—space.

@ Fis a mixture of k components.
F=wFi+waFo+ -+ wiFy,
each F; is a Gaussian, say and wy, Wo, . .., W, nonnegative
summing to 1.

@ Data points are ni.i.d. samples, each drawn according to F.

@ Given data points, cluster them into k clusters corresponding to
Fi,Fo, ..., Fc. Thenitis easy fit a Gaussian to each cluster.
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Two Gaussians of S.D. o

MSD is O(do?)
Inter-center Sep is O(o)

Error of edo?
Can mis-cluster many points !!

Correct Unit: o

Pts of Gaussian 1 < Pts of Gaussian 2

Typical picture in d dimensions
Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 14/27



Correct Units in space of centers

**PICTURE OF TWO GAUSSIANS WITH PROJECTION
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Inter-Center Distance and Clustering

° 1-dimension, if we have two Gaussians of standard deviation

In
(S.D.) 1 each:
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@ In 1-dimension, if we have two Gaussians of standard deviation
(S.D.) 1 each:

o If inter-center separation is at least 100 S.D.s, we can tell them
apart.
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Inter-Center Distance and Clustering

@ In 1-dimension, if we have two Gaussians of standard deviation
(S.D.) 1 each:
o If inter-center separation is at least 100 S.D.s, we can tell them

apart.
o If inter-center separation is less than 1/100, difficult to tell them

apart.
@ In d— dimensions, a similar result holds Vempala, Wang:
e k = O(1) spherical gaussian components of S.D 1 each.
Inter-center separation of at least a constant*.
@ We can correctly cluster EACH DATA POINT.
o Use Singular Value Decomposition )(PCA) crucially. An elegant
argument.
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Theory explanation of practitioners’ happiness
@ Practitioners often solve NP-hard problems with heuristics and

seem quite happy. Why? Perhaps, when the solution is stable, it
is easy to find.

Clustering Data: Does Theory Help? December 10, 2013 17/27



Theory explanation of practitioners’ happiness

@ Practitioners often solve NP-hard problems with heuristics and
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@ Bilu, Lineal: Optimal solution to Max-cut is stable if arbitrary
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optimal. Q: For what values of A can we find stable solutions?
Known only for A > +/n
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Theory explanation of practitioners’ happiness

@ Practitioners often solve NP-hard problems with heuristics and
seem quite happy. Why? Perhaps, when the solution is stable, it
is easy to find.

@ Bilu, Lineal: Optimal solution to Max-cut is stable if arbitrary
changes in edge weights each by factor < A, leaves solution
optimal. Q: For what values of A can we find stable solutions?
Known only for A > +/n

@ Balcan, Blum, Gupta Opt k—means clustering C* is stable if any
near optimal clustering differs from C* in a small fraction of
objects. Algorithms to find stable solutions.Daniely, Lineal, Saks

@ Related Definitions: Balcan, Blum, Vempala; Ostravsky, Rabani,
Schulman, Swamy; Awasthi, A. Blum, Sheffet : Optimal solution
for k— means is stable if it remains optimal even when we change
pairwise distances, each by at most a constant factor.
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optimal. Q: For what values of A can we find stable solutions?
Known only for A > +/n

@ Balcan, Blum, Gupta Opt k—means clustering C* is stable if any
near optimal clustering differs from C* in a small fraction of
objects. Algorithms to find stable solutions.Daniely, Lineal, Saks

@ Related Definitions: Balcan, Blum, Vempala; Ostravsky, Rabani,
Schulman, Swamy; Awasthi, A. Blum, Sheffet : Optimal solution
for k— means is stable if it remains optimal even when we change
pairwise distances, each by at most a constant factor.

@ Promising approaches and many open questions. But for the

notorious two Gaussian picture, the correct solution is not stable!
Ravi Kannan Clustering Data: Does Theory Help? December 10, 2013 17/27
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‘ 2-Gaussians. K-means value so large that mis-
Stable Solution clustering points costs (relatively) little. So
many clusterings of roughly the same value.
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A new notion of stable clustering

@ A k—clustering is proper
e if its “variance” o (Max. over all directions u of the Mean Squared
Distance of data points to their cluster centers in the direction u) is
least among all k clusterings. (Optimize o)
e and inter-cluster-center separation is at least co. [“Means are 6
S.D’s apart”.]

@ Works for the two Gaussian picture.

@ Hopcroft, Kannan If there is a proper clustering C*, then Project
and Cluster finds a clustering which has at most n points
classified differently than C*.

@ Mixture model — proper clustering.

@ Harder Theorem: Kumar, Kannan: If there is a clustering C* such
that when data points are projected to space of centers, each
projected data point is closer to its own center than any other
center by at least Q(o(C*)), then Project and Cluster followed by
Llyod’s algorithm converges exponentially fast to the centers of C*.
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Lloyd’s Algorithm

@ Problem: Cluster data points in d space into k clusters.
@ Algorithm

e Start with some k points as current cluster centers.

Partition data points into k clusters based on nearest cluster center.
Recompute cluster centers as centroids of new clusters.

Repeat...
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Lloyd’s Algorithm

@ Problem: Cluster data points in d space into k clusters.
@ Algorithm

e Start with some k points as current cluster centers.

e Partition data points into k clusters based on nearest cluster center.
o Recompute cluster centers as centroids of new clusters.

o Repeat...

@ Millions of happy users in ML,....

@ Few unhappy theoreticians (cannot prove a lot)

@ Mean Squared Distance of data point to its cluster center = MSD
(aka: k-means)

@ Lloyd’s improves MSD at each step (SIMPLE).
e Thus converges (to something).
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More General Gaussians

Algorithm for fitting a general Mixture of kK Gaussians

@ Start with a initial guess of k (general) Gaussians:
(111, Z1), (p2, Z2), - - -5 (ks Zk)-

Any Provable Analysis (Besides just convergence to local opt. which
follows from monotonicity).
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More General Gaussians

Algorithm for fitting a general Mixture of kK Gaussians

@ Start with a initial guess of k (general) Gaussians:
(111, Z1), (p2, Z2), - - -5 (ks Zk)-

@ Fort=1,2,..., k, make all data points whose (posterior) prob.
according to (i, Xt) is highest into cluster C;.

@ Reset (i, Xt) to be the sample mean and covarince of C;.
@ Repeat to heart’s content.

Any Provable Analysis (Besides just convergence to local opt. which
follows from monotonicity).

Clustering Data: Does Theory Help? December 10, 2013 23/27



Nearest Neighbor Search

@ Database of n points in d—dimensions. Preprocess at will.
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Nearest Neighbor Search

@ Database of n points in d—dimensions. Preprocess at will.

@ Queries which are points in d—dim’s will then arrive. Must quickly
(logarithmic time) report the nearest (or approximately nearest)
database point.

@ One of the most widely used subroutines. High d is a handicap.

@ Important tool in the theoretician’s kit:

Johnson Lindenstrauss Random Projection Theorem: v a fixed
vector in RY. V a random k dimensional subspace of RY. Say V' is
projection of v onto V. With high probability,

V| ~ %M.
@ Failure Probability is low; so can preserve all pairwise distances
among n points in R? with k only about In n.

@ Kleinberg; Indyk, Motwani Project Data points into a random low
dimensional subspace and find NN to query point in the projection.
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Tale of two Dimension Reduction Methods

@ PCA projects high dim’l data to best-fit subspace. Used in practice
a lot. Clustering is one area where we have proofs of its efficacy.
Rather rare.
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Tale of two Dimension Reduction Methods

@ PCA projects high dim’l data to best-fit subspace. Used in practice
a lot. Clustering is one area where we have proofs of its efficacy.
Rather rare.

@ Random Projections used widely in theory with provable efficacy.
But for NNS, PCA is used as well in practice.

@ Prove that PCA does the job in NNS and other applications.

@ Difficulty: Whereas Random Projections preserve EVERY
(pairwise) distance, PCA does not. But surely, data independent
random projection just cannot always be that good?
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The correct clustering: Abstract View

@ Kleinberg: A Clustering criterion I (such as k—means) gives a
mapping
Distance Function d(x, y) — (Optimal) Partition '(d) of data
points.
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The correct clustering: Abstract View

@ Kleinberg: A Clustering criterion I (such as k—means) gives a
mapping
Distance Function d(x, y) — (Optimal) Partition '(d) of data
points.

@ A System of “reasonable” axioms any clustering criterion ought to
satisfy:

e Consistency: If we increase distances between points in different
clusters and decrease distances between points in same cluster,
the optimal clustering should still remain optimal. (Beware: Ties)

e Scale Invariance Multiplying all distances by the same constant
leaves the optimal clustering still optimal.

e Richness For any partition P of n data points, there is some
distance function d(x, y) on the points for which I'(d) = P.

@ Theorem There is no clustering criterion satisfying all the axioms.

@ Oops???
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A Feasible set of Axioms

@ If we insist on points being in Euclidean space, there is a criterion
satisfying the axioms:
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A Feasible set of Axioms

@ If we insist on points being in Euclidean space, there is a criterion
satisfying the axioms:

e Consistency: If we move a point so that its distance to points in its
cluster decreases and to points in different clusters increases, the
optimal clustering should still remain optimal. (Beware: Ties)

e Scale Invariance Multiplying all distances by the same constant
leaves the optimal clustering still optimal.

e Richness For any set K of k points in space, there is some
placement of the n data points so that the clustering with K as
centers is optimal.

@ Hopcroft, Kannan: Theorem: Balanced k—means (Minimum sum
of dist squared to cluster centers among all partitions into k
clusters, each of size n/k) satisfies all the axioms.
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