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Theorem (Siegel’s Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial
f (x , y) ∈ Z[x , y ] has only finitely many integer solutions.

Theorem (Faltings’ Theorem–Mordell Conjecture)

Any smooth algebraic curve of genus g > 1 defined by a polynomial
f (x , y) ∈ Z[x , y ] has only finitely many rational solutions.
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Diophantine Equations with Enormous Solutions

Pell’s Equation (genus 0)
x2 − 61y 2 = 1

Smallest solution:
(1766319049, 226153980)

x2 − 991y 2 = 1

Smallest solution:

(379516400906811930638014896080, 12055735790331359447442538767)

Next smallest solution:

(288065397114519999215772221121510725946342952839946398732799,

9150698914859994783783151874415159820056535806397752666720)
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Edge Coloring
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Edge Coloring–Decision Problem

Theorem (Vizing’s Theorem)

A proper edge coloring using ∆(G ) + 1 colors always exists.

∆(G ) is an obvious lower bound.
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Edge Coloring–Decision Problem

Tait (1880) showed that, for bridgeless 3-regular planar graphs, the
statement that a proper 3-edge coloring always exists is equivalent to the
Four Color (Conjecture) Theorem.

For 3-regular (non-planar) graphs, 3-edge coloring is NP-complete
(Holyer (1981)).

But this reduction is not parsimonious (see Welsh).
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Edge Coloring–Counting Problem

Problem #κ-EdgeColoring:
Input: A graph G .
Output: The number of valid edge colorings of G , using κ colors.

Theorem

#κ-EdgeColoring is #P-hard over planar r -regular graphs
for κ ≥ r ≥ 3.

κ = r , and

κ > r .

This is proved in the framework of complexity dichotomy theorems.
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Three Frameworks for Counting Problems

1 Graph Homomorphisms

2 Constraint Satisfaction Problems (CSP)

3 Holant Problems

In each framework, there has been remarkable progress in the classification
program of the complexity of counting problems.
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Holant Problems

A signature grid Ω = (G ,F , π) consists of a graph G = (V ,E ), where π
assigns a function fv ∈ F to each v ∈ V .

Over the Boolean domain {0, 1}, the Holant problem on instance Ω is to
evaluate

HolantΩ =
∑
σ

∏
v∈V

fv (σ |E(v)),

a sum over all edge assignments σ : E → {0, 1}.
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Constraint Functions

A function fv can be represented by listing its values in lexicographical
order as in a truth table, which is a vector in C2n , or as a tensor in (C2)⊗n.

Holographic Transformations can change one function to another.
E.g. The n-ary Equality function is[

1
0

]⊗n
+

[
0
1

]⊗n
.

Under the Holographic Transformation by H =
[

1 1
1 −1

]
,

H⊗n

{[
1
0

]⊗n
+

[
0
1

]⊗n}
=

[
1
1

]⊗n
+

[
1
−1

]⊗n
is a (constant multiple of) the Parity function.
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Equivalence with sl(2;C) representation

sl(2;C) =su(2)C.

There is a 1-1 correspondence between representations of sl(2;C) and that
of SU(2).

Let f be a symmetric constraint function [f0, f1, . . . , fn].

For any U ∈ SU(2), U⊗nf is also a symmetric constraint function

U⊗nf = [f ′0 , f
′

1 , . . . , f
′
n].

This gives a representation

ϕn : (f0, f1, . . . , fn) 7→ (f ′0 , f
′

1 , . . . , f
′
n).
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Another representation

Let pn(x , y) =
∑n

i=0 ai
(n
i

)
xn−iy i . Then

qn(x , y) = pn((x , y)U) =
n∑

i=0

a′i

(
n

i

)
xn−iy i .

This gives another representation

ψn : (a0, a1, . . . , an) 7→ (a′0, a
′
1, . . . , a

′
n).

Theorem

The two representations ϕn and ψn are the same.
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#κ-EdgeColoring as a Holant Problem

Consider a 3-regular graph G .
Let AD3 denote the following local constraint function

AD3(x , y , z) =

{
1 if x , y , z ∈ [κ] are all distinct
0 otherwise

Now place AD3 at each vertex v , with incident edges x , y , z .
Then we evaluate the sum of product

Holant(G ; AD3) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

AD3

(
σ |E(v)

)
.

Clearly Holant(G ; AD3) computes #κ-EdgeColoring.
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Holant Problems

In general, we consider all local constraint functions

f (x , y , z) =


a if x = y = z ∈ [κ]
b if |{x , y , z}| = 2
c if |{x , y , z}| = 3

And the Holant problem is to compute

Holant(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Succinct signatures f = 〈a, b, c〉, where a, b, c ∈ C.
Thus AD3 = 〈0, 0, 1〉.

38 / 117



Holant Problems

In general, we consider all local constraint functions

f (x , y , z) =


a if x = y = z ∈ [κ]
b if |{x , y , z}| = 2
c if |{x , y , z}| = 3

And the Holant problem is to compute

Holant(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Succinct signatures f = 〈a, b, c〉, where a, b, c ∈ C.

Thus AD3 = 〈0, 0, 1〉.

39 / 117



Holant Problems

In general, we consider all local constraint functions

f (x , y , z) =


a if x = y = z ∈ [κ]
b if |{x , y , z}| = 2
c if |{x , y , z}| = 3

And the Holant problem is to compute

Holant(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Succinct signatures f = 〈a, b, c〉, where a, b, c ∈ C.
Thus AD3 = 〈0, 0, 1〉.

40 / 117



Graph Homomorphism

L. Lovász:
Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Let A = (Ai ,j) ∈ Cκ×κ be a symmetric complex matrix.

The graph homomorphism problem is:
Input: An undirected graph G = (V ,E ).
Output:

ZA(G ) =
∑

ξ:V→[κ]

∏
(u,v)∈E

Aξ(u),ξ(v).
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Examples of Graph Homomorphism

Let

A =

(
0 1
1 1

)
then ZA(G ) counts the number of Vertex Covers in G .

Let

A =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


then ZA(G ) counts the number of vertex κ-Colorings in G .

43 / 117



Examples of Graph Homomorphism

Let

A =

(
0 1
1 1

)
then ZA(G ) counts the number of Vertex Covers in G .

Let

A =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0


then ZA(G ) counts the number of vertex κ-Colorings in G .

44 / 117



Dichotomy Theorem for Graph Homomorphism

Theorem (C., Xi Chen and Pinyan Lu)

There is a complexity dichotomy for ZA(·):
For any symmetric complex valued matrix A ∈ Cκ×κ, the problem of
computing ZA(G ), for any input G , is either in P or #P-hard.
Given A, whether ZA(·) is in P or #P-hard can be decided in polynomial
time in the size of A.

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Further generalized to all counting CSP.

Theorem (C., Xi Chen)

Every finite set F of complex valued constraint functions on any finite
domain set [κ] defines a counting CSP problem #CSP(F) that is either
computable in P or #P-hard.

The decision version of this is open (Feder-Vardi Dichotomy Conjecture).
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Dichotomy Theorem for Holant(G ; f )

Theorem (Main Theorem)

For any κ, any 3-regular graph G and any f = 〈a, b, c〉, the problem
Holant(G ; f ) is either computable in polynomial time or is #P-hard.

#κ-EdgeColoring is the special case for f = 〈0, 0, 1〉.
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Non-trivial Examples of Tractable Holant Problems

• On domain size κ = 3, Holant(G ; 〈5, 2,−4〉) is computable in P.

f = 〈5, 2,−4〉 = 1
3

[
(−1, 2, 2)⊗3 + (2,−1, 2)⊗3 + (2, 2,−1)⊗3

]
.

Holographic transformation by the orthogonal matrix T = 1
3

[−1 2 2
2 −1 2
2 2 −1

]
.

• In general Holant(G ; 〈κ2 − 6κ+ 4,−2(κ− 2), 4〉) is computable in P.

• Suppose κ = 4. For any λ ∈ C,

Holant(G ;λ〈−3− 4i , 1,−1 + 2i〉)

is computable in P.
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Tutte Polynomial

Definition

For an undirected graph G = (V ,E ), the Tutte polynomial of G is

T (G ; x , y) =
∑
A⊆E

(x − 1)κ(A)−κ(E)(y − 1)κ(A)+|A|−|V |,

where κ(A) denotes the number of connected components of the spanning
subgraph (V ,A).

The chromatic polynomial is

χ(G ;λ) = (−1)|V |−k(G)λk(G) T(G ; 1− λ, 0), (1)

Theorem (Vertigan)

For any x , y ∈ C, the problem of computing the Tutte polynomial at (x , y)
over planar graphs is #P-hard unless (x − 1)(y − 1) ∈ {1, 2} or
(x , y) ∈ {(1, 1), (−1,−1), (ω, ω2), (ω2, ω)}, where ω = e2πi/3. In each of
these exceptional cases, the computation can be done in polynomial time.
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(x , y) ∈ {(1, 1), (−1,−1), (ω, ω2), (ω2, ω)}, where ω = e2πi/3. In each of
these exceptional cases, the computation can be done in polynomial time.
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Medial Graph

(a) (b) (c)

A plane graph (a), its medial graph (c), and the two graphs superimposed (b).
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Directed Medial Graph

(a) (b) (c)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).
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Eulerian Subgraphs

A graph is Eulerian if every vertex has an even degree.

A directed graph is Eulerian if degin(v) = degout(v), at every vertex v .

We don’t require connectedness.

Suppose G is a connected plane graph and ~Gm its directed medial graph.
For any κ, the Eulerian partitions π(~Gm) are κ-labelings of edges of ~Gm,
such that each color set forms an Eulerian digraph.

Theorem (Ellis-Monaghan)

κT(G ;κ+ 1, κ+ 1) =
∑

c ∈ π(~Gm)

2µ(c),

where µ(c) is the number of monochromatic vertices in the coloring c.
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Directed Medial Graph Local Configuration
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Eulerian Local Configuration
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Directed Medial Graph Local Configuration
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Directed Medial Graph Local Configuration
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The Eulerian Signature

The sum
∑

c ∈ π(~Gm)
2µ(c) can be expressed as a Holant problem:

E( w z
x y ) =


2 if w = x = y = z ∈ [κ]
1 if w = x 6= y = z ∈ [κ]
0 if w = y 6= x = z ∈ [κ]
1 if w = z 6= x = y ∈ [κ]
0 all other cases.

Denote by E = 〈2, 1, 0, 1, 0〉.

To be Eulerian, at every vertex v ∈ V (G ), either it is monochromatic, or
RRBB cyclically, since the local orientation in ~Gm is “in, out, in, out”.
Then ∑

c ∈ π(~Gm)

2µ(c) = HolantGm(〈2, 1, 0, 1, 0〉)
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An Arity 4 Gadget

w

x

z

y

Quaternary gadget f . All vertices are assigned the ADκ signature.

Think of κ = 3.

f ( w z
x y ) =


0 if w = x = y = z ∈ [κ]
1 if w = x 6= y = z ∈ [κ]
1 if w = y 6= x = z ∈ [κ]
0 if w = z 6= x = y ∈ [κ]
0 all other cases.

Denote by f = 〈0, 1, 1, 0, 0〉.
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A Gadget with Two Parallel Edges

w

x

z

y

A gadget with two parallel edges

Again think of κ = 3.

f0( w z
x y ) =


1 if w = x = y = z ∈ [κ]
0 if w = x 6= y = z ∈ [κ]
0 if w = y 6= x = z ∈ [κ]
1 if w = z 6= x = y ∈ [κ]
0 all other cases.

Denote by f0 = 〈1, 0, 0, 1, 0〉.
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#P-hardness of #κ-EdgeColoring

Theorem

#κ-EdgeColoring is #P-hard over planar κ-regular graphs for κ ≥ 3.

We reduce Pl-Holant(〈2, 1, 0, 1, 0〉) to Pl-Holant(AD3).

N1 N2

Ns

Ns+1

Let fs be the signature for the sth gadget. Then fs = Ms f0, where

M =


0 κ− 1 0 0 0
1 κ− 2 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1


and f0 =

[
1 0 0 1 0

]T
. One can easily verify that f1 = f .
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Eigenvalues and Eigenvectors

By the spectural decomposition M = PΛP−1, where

P =


1 1− κ 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


κ− 1 0 0 0 0

0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = (κ− 1)2s , then

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1f0 =


x−1
κ + 1
x−1
κ
0
1
0

 .

Note that if x = 1 + κ, then it is the Eulerian Signature E = 〈2, 1, 0, 1, 0〉.
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An Interpolation

Consider an instance Ω of Pl-Holant(〈2, 1, 0, 1, 0〉) on domain size κ.

Suppose 〈2, 1, 0, 1, 0〉 appears n times in Ω.

We construct from Ω a sequence of instances Ω2s of Pl-Holant(ADκ)
indexed by s ≥ 0, by replacing each occurrence of 〈2, 1, 0, 1, 0〉 with the
gadget f2s .

As a polynomial in x = (κ− 1)2s , Pl-HolantΩ2s is independent of s and
has degree at most n with integer coefficients.

Using our oracle for Pl-Holant(ADκ), we can evaluate this polynomial at
n + 1 distinct points x = (κ− 1)2s for 0 ≤ s ≤ n. Then via polynomial
interpolation, we can recover the coefficients of this polynomial efficiently.

Evaluating this polynomial at x = 1 + κ gives the value of Pl-HolantΩ.
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Overview of Proof of Dichotomy Holant(G ; f )

We try to prove for every f = 〈a, b, c〉, Holant(G ; f ) is either tractable or
#P-hard.

1 We construct a special unary signature from the given 〈a, b, c〉.
2 We interpolate all binary succinct signatures of a certain type,

assuming that we have special unary signature.

3 We utilize all these binary signatures to obtain a signature that we
show is #P-hard.

Along the way, we may find certain 〈a, b, c〉 does not allow us to achieve
these steps.

Instead, in those cases, we can directly prove that these problems are
either in P or #P-hard (without the help of additional signtuares).
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edge coloring k=r

edge coloring k>r hard major interpolate results

constrcut unary

interpolate all binary

ternary and quaternary resutls

planar Tutte dichotomy

planar Eulerian partition hard (tau_color)

planar vertex coloring hard

directed medial graph

Tutte diagonal as state sum

state sum as Holant problem

parity condition

edge coloring k=r hard

planar Eulerian partition hard (tau_4)construct <1> in two cases

generalized edge coloring hard

binary interpolation eigenvalues

interpolate all binaries generic generalized anti-gadget interpolation

generic binary interpolation

special binary interpolation

obtain =_4

4th special case

arity reduction

local holographic transformation

Bobby Fischer gadget

edge coloring k>r hard

planar pairing

everything hard

check orthogonality condition

<3(k-1),k-3,-3> hard for k>3

lattice condition (LC)

LC charcterization for cubic polys LC satisfied by Sn or An Galois Gps any arity interpolation

reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3

extra special cases

1st special case 2nd special case3rd special case 5th special case

<6,0,-3> hard

<(k-1)(k-2),2-k,2> hard

<a,b,c> dichotomy

a+(k-3)b-(k-2)c=0 dichotomy

1st distinct norms 2nd distinct norms

typical case

binary interpolation summary

eigenvalue shifted triple (EST)

EST distinct norms

local holographic transformation

obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0 obtain any a+(k-3)b-(k-2)c=0

Triangle gadget

obtain <3(k-1),k-3,-3>

3R & 2C roots in x for p(x,y)

p(x,y) satisfies LC for y=>3

Puiseux series

only 5 soultions in Z for p(x,y)Dedkind's Theorem

p(x,3) satisfies LC

condition for Galois gp Sncondition from same norm roots

<3(k-1),k-3,-3> hard for k=>3
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Lattice Condition

Definition

We say that λ1, λ2, . . . , λ` ∈ C− {0} satisfy the lattice condition if for all
x ∈ Z` − {0} with

∑`
i=1 xi = 0, we have

∏̀
i=1

λxii 6= 1.

Taking the logarithms, this is really a condition about linear independence
{log λi} over Q.
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Theorem

If there exists an infinite sequence of planar F-gates defined by an initial
signature s ∈ Cn×1 and a recurrence matrix M ∈ Cn×n satisfying the
following conditions,

1 M is diagonalizable with n linearly independent eigenvectors;

2 s is not orthogonal to exactly ` of these linearly independent row
eigenvectors of M with eigenvalues λ1, . . . , λ`;

3 λ1, . . . , λ` satisfy the lattice condition;

then
Pl-Holant(F ∪ {f }) ≤T Pl-Holant(F)

for any signature f that is orthogonal to the n − ` of these linearly
independent eigenvectors of M to which s is also orthogonal.

To prove our dichotomy we use a combinatorial construction with n = 9
and ` = 5.
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The characteristic polynomial of M is λM(x , κ) = (x − κ3)4f (x , κ), where

f (x , κ) = x5−κ6(2κ−1)x3−κ9(κ2−2κ+3)x2 +(κ−2)(κ−1)κ12x +(κ−1)3κ15.

After setting

f̃ (x , κ) =
1

κ15
f (κ3x , κ) = x5−(2κ−1)x3−(κ2−2κ+3)x2+(κ−2)(κ−1)x+(κ−1)3

and replacing κ by y + 1 we get

p(x , y) = x5 − (2y + 1)x3 − (y 2 + 2)x2 + (y − 1)yx + y 3.

We want to prove that for all integer y ≥ 4, the roots of p(x , y) satisfy
the lattice condition.
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(κ−1)(κ2+9κ−9) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−1)(2κ−3)(4κ−3) 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 3κ3−28κ2+60κ−36 −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−2)(κ3−14κ2+30κ−18) −(κ−3)2(κ−2)(2κ−3)

(2κ−3)(4κ−3) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) 9κ3−26κ2+27κ−9 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 2(κ3−14κ2+30κ−18) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−3)(κ3−12κ2+22κ−12) −(κ−3)2(κ−2)(2κ−3)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) κ3+3κ−9 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) κ3+6κ2−30κ+36 (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) κ3+3κ−9 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) κ3+6κ2−30κ+36 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) (2κ−3)(2κ2−9κ+18)
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(κ−1)(κ2+9κ−9) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−1)(2κ−3)(4κ−3) 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 3κ3−28κ2+60κ−36 −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−2)(κ3−14κ2+30κ−18) −(κ−3)2(κ−2)(2κ−3)

(2κ−3)(4κ−3) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) 9κ3−26κ2+27κ−9 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 2(κ3−14κ2+30κ−18) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−3)(κ3−12κ2+22κ−12) −(κ−3)2(κ−2)(2κ−3)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) κ3+3κ−9 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) κ3+6κ2−30κ+36 (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)
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(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) κ3+6κ2−30κ+36 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)
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and replacing κ by y + 1 we get

p(x , y) = x5 − (2y + 1)x3 − (y 2 + 2)x2 + (y − 1)yx + y 3.

We want to prove that for all integer y ≥ 4, the roots of p(x , y) satisfy
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(κ−1)(κ2+9κ−9) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−1)(2κ−3)(4κ−3) 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 3κ3−28κ2+60κ−36 −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−2)(κ3−14κ2+30κ−18) −(κ−3)2(κ−2)(2κ−3)

(2κ−3)(4κ−3) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) 9κ3−26κ2+27κ−9 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 2(κ3−14κ2+30κ−18) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−3)(κ3−12κ2+22κ−12) −(κ−3)2(κ−2)(2κ−3)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) κ3+3κ−9 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) κ3+6κ2−30κ+36 (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) κ3+3κ−9 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) κ3+6κ2−30κ+36 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) (2κ−3)(2κ2−9κ+18)
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1
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f (κ3x , κ) = x5−(2κ−1)x3−(κ2−2κ+3)x2+(κ−2)(κ−1)x+(κ−1)3

and replacing κ by y + 1 we get

p(x , y) = x5 − (2y + 1)x3 − (y 2 + 2)x2 + (y − 1)yx + y 3.

We want to prove that for all integer y ≥ 4, the roots of p(x , y) satisfy
the lattice condition.
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(κ−1)(κ2+9κ−9) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−1)(2κ−3)(4κ−3) 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 3κ3−28κ2+60κ−36 −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−2)(κ3−14κ2+30κ−18) −(κ−3)2(κ−2)(2κ−3)

(2κ−3)(4κ−3) 12(κ−3)(κ−1)2 (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) (κ−3)2(κ−1) 2(κ−3)2(κ−2)(κ−1) 9κ3−26κ2+27κ−9 6(κ−3)(κ−2)(κ−1)2 (κ−3)3(κ−2)(κ−1)

3(κ−3)(κ−1) 2(κ3−14κ2+30κ−18) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) −(κ−3)(2κ−3) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)(κ−1)2 (κ−3)(κ3−12κ2+22κ−12) −(κ−3)2(κ−2)(2κ−3)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) κ3+3κ−9 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) κ3+6κ2−30κ+36 (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) κ3+3κ−9 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) κ3+6κ2−30κ+36 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) 3(κ−3)2(κ−2)

(κ−3)2 −4(κ−3)(2κ−3) 3(κ−3) 6(κ−3)(κ−2) 3(κ−3) 6(κ−3)(κ−2) (κ−3)2(κ−1) −2(κ−3)(κ−2)(2κ−3) (2κ−3)(2κ2−9κ+18)



The characteristic polynomial of M is λM(x , κ) = (x − κ3)4f (x , κ), where

f (x , κ) = x5−κ6(2κ−1)x3−κ9(κ2−2κ+3)x2 +(κ−2)(κ−1)κ12x +(κ−1)3κ15.

After setting

f̃ (x , κ) =
1

κ15
f (κ3x , κ) = x5−(2κ−1)x3−(κ2−2κ+3)x2+(κ−2)(κ−1)x+(κ−1)3

and replacing κ by y + 1 we get

p(x , y) = x5 − (2y + 1)x3 − (y 2 + 2)x2 + (y − 1)yx + y 3.

We want to prove that for all integer y ≥ 4, the roots of p(x , y) satisfy
the lattice condition.
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Irreducible over Q[x ]?

We suspect that for any integer y ≥ 4, p(x , y) is in fact irreducible in Q[x ].

Can’t prove that.

We know five integer solutions (x , y) ∈ Z2, so for these five values of
y ∈ Z, p(x , y) is reducible as a polynomial in x :

p(x , y) =



(x − 1)(x4 + x3 + 2x2 − x + 1) y = −1

x2(x3 − x − 2) y = 0

(x + 1)(x4 − x3 − 2x2 − x + 1) y = 1

(x − 1)(x2 − x − 4)(x2 + 2x + 2) y = 2

(x − 3)(x4 + 3x3 + 2x2 − 5x − 9) y = 3.
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Effective Siegel’s Theorem?

We will show there are no other integer solutions (x , y) ∈ Z2.

This means, for all integer y ≥ 4, p(x , y) is either irreducible or is a
product of two irreducible polynomials of degree 2 and 3 respectively.

Note that, by Gauss Lemma, for any integer y , the monic polynomial
p(x , y) in x is irreducible over Z iff it is irreducible over Q.

Lemma

Let f (x) ∈ Q[x ] be a polynomial of degree n ≥ 2. If the Galois group of f
over Q is Sn or An and the roots of f do not all have the same complex
norm, then the roots of f satisfy the lattice condition.
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Irreducible Quintic

Lemma

For any integer y ≥ 1, the polynomial p(x , y) has three distinct real roots
and two nonreal complex conjugate roots in x.

Proof by discriminant.

Lemma

For any integer y ≥ 4, if p(x , y) is irreducible in Q[x ], then the roots of
p(x , y) satisfy the lattice condition.

Proof.

Three distinct real roots do not have the same complex norm.
An irreducible polynomial of prime degree n with exactly two nonreal roots
has Sn as its Galois group over Q.
Hence they satisfy the lattice condition.
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What if it is Reducible?

Some more Galois Theory is needed if it is a product of two irreducible
polynomials of degree 2 and 3.

They still satisfy the lattice condition.

106 / 117



What if it is Reducible?

Some more Galois Theory is needed if it is a product of two irreducible
polynomials of degree 2 and 3.

They still satisfy the lattice condition.

107 / 117



But Why No Other Integer Solutions?

Lemma

The only integer solutions to p(x , y) = 0 are

(1,−1), (0, 0), (−1, 1), (1, 2), and (3, 3).

Let p(a, b) = 0 with a 6= 0.

p(x , y) = x5 − (2y + 1)x3 − (y 2 + 2)x2 + (y − 1)yx + y 3.

One can show that a|b2.

Consider

g1(x , y) = y − x2 and g2(x , y) =
y 2

x
+ y − x2 + 1.

(This particular choice is due to Aaron Levin.) Whenever p(a, b) = 0 with
a 6= 0, g1(a, b) and g2(a, b) are integers. However, we show that if a ≤ −3
or a ≥ 17, then either g1(a, b) or g2(a, b) is not an integer.
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(This particular choice is due to Aaron Levin.) Whenever p(a, b) = 0 with
a 6= 0, g1(a, b) and g2(a, b) are integers. However, we show that if a ≤ −3
or a ≥ 17, then either g1(a, b) or g2(a, b) is not an integer.
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Puiseux Series

The Puiseux series expansions for p(x , y) are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6) for x ∈ R,

y2(x) = x3/2 − 1

2
x +

1

8
x1/2 − 65

128
x−1/2 − x−1 − 1471

1024
x−3/2 − x−2 + O(x−5/2) for x > 0, and

y3(x) = −x3/2 − 1

2
x − 1

8
x1/2 +

65

128
x−1/2 − x−1 +

1471

1024
x−3/2 − x−2 + O(x−5/2) for x > 0.

If we substitute say y2(x) in g2(x , y2(x)), we get O(x−1/2), where the
multiplier in the O-notation is bounded both above and below by a
nonzero constant in absolute value.

So for large x , it is non-zero and non-integral.

Hence there are no large integral solutions.
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Some papers can be found on my web site
http://www.cs.wisc.edu/~jyc

THANK YOU!
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