Siegel's Theorem, Edge Coloring, and a Holant Dichotomy

Jin-Yi Cai (University of Wisconsin-Madison)

Joint with: Heng Guo and Tyson Williams (University of Wisconsin-Madison)

Carl L. Siegel

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial $f(x, y) \in \mathbb{Z}[x, y]$ has only finitely many integer solutions.

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial $f(x, y) \in \mathbb{Z}[x, y]$ has only finitely many integer solutions.

Theorem (Faltings' Theorem–Mordell Conjecture)

Any smooth algebraic curve of genus g > 1 defined by a polynomial $f(x, y) \in \mathbb{Z}[x, y]$ has only finitely many rational solutions.

Pell's Equation (genus 0)

$$x^2 - 61y^2 = 1$$

Pell's Equation (genus 0)

$$x^2 - 61y^2 = 1$$

Smallest solution:

(1766319049, 226153980)

Pell's Equation (genus 0)

$$x^2 - 61y^2 = 1$$

Smallest solution:

(1766319049, 226153980)

$$x^2 - 991y^2 = 1$$

Pell's Equation (genus 0)

$$x^2 - 61y^2 = 1$$

Smallest solution:

(1766319049, 226153980)

$$x^2 - 991y^2 = 1$$

Smallest solution:

(379516400906811930638014896080, 12055735790331359447442538767)

Pell's Equation (genus 0)

$$x^2 - 61y^2 = 1$$

Smallest solution:

(1766319049, 226153980)

$$x^2 - 991y^2 = 1$$

Smallest solution:

(379516400906811930638014896080, 12055735790331359447442538767)

Next smallest solution:

(288065397114519999215772221121510725946342952839946398732799, 9150698914859994783783151874415159820056535806397752666720)

Theorem (Vizing's Theorem)

A proper edge coloring using $\Delta(G) + 1$ colors always exists.

Theorem (Vizing's Theorem)

A proper edge coloring using $\Delta(G) + 1$ colors always exists.

 $\Delta(G)$ is an obvious lower bound.

Tait (1880) showed that, for bridgeless 3-regular planar graphs, the statement that a proper 3-edge coloring always exists is equivalent to the Four Color (Conjecture) Theorem.

Tait (1880) showed that, for bridgeless 3-regular planar graphs, the statement that a proper 3-edge coloring always exists is equivalent to the Four Color (Conjecture) Theorem.

For 3-regular (non-planar) graphs, 3-edge coloring is NP-complete (Holyer (1981)).

Tait (1880) showed that, for bridgeless 3-regular planar graphs, the statement that a proper 3-edge coloring always exists is equivalent to the Four Color (Conjecture) Theorem.

For 3-regular (non-planar) graphs, 3-edge coloring is NP-complete (Holyer (1981)).

But this reduction is **not** parsimonious (see Welsh).

Problem $\#\kappa$ -EDGECOLORING:

Input: A graph G.

Output: The number of valid edge colorings of G, using κ colors.

Problem $\#\kappa$ -EDGECOLORING: Input: A graph *G*. Output: The number of valid edge colorings of *G*, using κ colors.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for $\kappa \ge r \ge 3$.

Problem $\#\kappa$ -EDGECOLORING: Input: A graph *G*. Output: The number of valid edge colorings of *G*, using κ colors.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for $\kappa \ge r \ge 3$.

- $\kappa = r$, and
- $\kappa > r$.

Problem $\#\kappa$ -EDGECOLORING: Input: A graph *G*. Output: The number of valid edge colorings of *G*, using κ colors.

Theorem

κ -EDGECOLORING is #P-hard over planar r-regular graphs for $\kappa \ge r \ge 3$.

- $\kappa = r$, and
- $\kappa > r$.

This is proved in the framework of complexity dichotomy theorems.

- Graph Homomorphisms
- Constraint Satisfaction Problems (CSP)
- Holant Problems

- Graph Homomorphisms
- Constraint Satisfaction Problems (CSP)
- Holant Problems

In each framework, there has been remarkable progress in the classification program of the complexity of counting problems.

- Graph Homomorphisms
- Constraint Satisfaction Problems (CSP)
- Holant Problems

In each framework, there has been remarkable progress in the classification program of the complexity of counting problems.

A signature grid $\Omega = (G, \mathcal{F}, \pi)$ consists of a graph G = (V, E), where π assigns a function $f_v \in \mathcal{F}$ to each $v \in V$.

A signature grid $\Omega = (G, \mathcal{F}, \pi)$ consists of a graph G = (V, E), where π assigns a function $f_v \in \mathcal{F}$ to each $v \in V$.

Over the Boolean domain $\{0,1\},$ the Holant problem on instance Ω is to evaluate

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{v \in V} f_v(\sigma \mid_{E(v)}),$$

a sum over all edge assignments $\sigma: E \to \{0, 1\}.$

A function f_v can be represented by listing its values in lexicographical order as in a truth table, which is a vector in \mathbb{C}^{2^n} , or as a tensor in $(\mathbb{C}^2)^{\otimes n}$.

A function f_v can be represented by listing its values in lexicographical order as in a truth table, which is a vector in \mathbb{C}^{2^n} , or as a tensor in $(\mathbb{C}^2)^{\otimes n}$.

Holographic Transformations can change one function to another. E.g. The *n*-ary EQUALITY function is

$$\begin{bmatrix} 1\\0 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 0\\1 \end{bmatrix}^{\otimes n}$$

A function f_v can be represented by listing its values in lexicographical order as in a truth table, which is a vector in \mathbb{C}^{2^n} , or as a tensor in $(\mathbb{C}^2)^{\otimes n}$.

Holographic Transformations can change one function to another. E.g. The *n*-ary EQUALITY function is

$$\begin{bmatrix} 1\\0 \end{bmatrix}^{\otimes n} + \begin{bmatrix} 0\\1 \end{bmatrix}^{\otimes n}$$

Under the Holographic Transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$,

$$H^{\otimes n}\left\{ \begin{bmatrix} 1\\0\end{bmatrix}^{\otimes n} + \begin{bmatrix} 0\\1\end{bmatrix}^{\otimes n} \right\} = \begin{bmatrix} 1\\1\end{bmatrix}^{\otimes n} + \begin{bmatrix} 1\\-1\end{bmatrix}^{\otimes n}$$

is a (constant multiple of) the Parity function.

Equivalence with $sl(2; \mathbb{C})$ representation

 $sl(2; \mathbb{C}) = su(2)_{\mathbb{C}}.$

There is a 1-1 correspondence between representations of $sl(2; \mathbb{C})$ and that of SU(2).

There is a 1-1 correspondence between representations of sl(2; $\mathbb{C})$ and that of SU(2).

Let f be a symmetric constraint function $[f_0, f_1, \ldots, f_n]$.

There is a 1-1 correspondence between representations of $sl(2; \mathbb{C})$ and that of SU(2).

Let f be a symmetric constraint function $[f_0, f_1, \ldots, f_n]$.

For any $U \in SU(2)$, $U^{\otimes n}f$ is also a symmetric constraint function

$$U^{\otimes n}f=[f_0',f_1',\ldots,f_n'].$$

There is a 1-1 correspondence between representations of $sl(2; \mathbb{C})$ and that of SU(2).

Let f be a symmetric constraint function $[f_0, f_1, \ldots, f_n]$.

For any $U \in SU(2)$, $U^{\otimes n}f$ is also a symmetric constraint function

$$U^{\otimes n}f=[f_0',f_1',\ldots,f_n'].$$

This gives a representation

$$\varphi_n: (f_0, f_1, \ldots, f_n) \mapsto (f'_0, f'_1, \ldots, f'_n).$$

Let
$$p_n(x, y) = \sum_{i=0}^n a_i {n \choose i} x^{n-i} y^i$$
. Then

$$q_n(x, y) = p_n((x, y)U) = \sum_{i=0}^n a'_i {n \choose i} x^{n-i} y^i.$$

This gives another representation

$$\psi_n: (a_0, a_1, \ldots, a_n) \mapsto (a'_0, a'_1, \ldots, a'_n).$$

Let
$$p_n(x, y) = \sum_{i=0}^n a_i {n \choose i} x^{n-i} y^i$$
. Then

$$q_n(x, y) = p_n((x, y)U) = \sum_{i=0}^n a'_i {n \choose i} x^{n-i} y^i.$$

This gives another representation

$$\psi_n: (a_0, a_1, \ldots, a_n) \mapsto (a'_0, a'_1, \ldots, a'_n).$$

Theorem

The two representations φ_n and ψ_n are the same.

Consider a 3-regular graph G.

Let AD_3 denote the following local constraint function

$$\mathsf{AD}_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are all distinct} \\ 0 & \text{otherwise} \end{cases}$$

Consider a 3-regular graph G.

Let AD_3 denote the following local constraint function

$$AD_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are all distinct} \\ 0 & \text{otherwise} \end{cases}$$

Now place AD₃ at each vertex v, with incident edges x, y, z. Then we evaluate the sum of product

$$\mathsf{Holant}(G;\mathsf{AD}_3) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} \mathsf{AD}_3(\sigma \mid_{E(v)}).$$
Consider a 3-regular graph G.

Let AD_3 denote the following local constraint function

$$AD_3(x, y, z) = \begin{cases} 1 & \text{if } x, y, z \in [\kappa] \text{ are all distinct} \\ 0 & \text{otherwise} \end{cases}$$

Now place AD₃ at each vertex v, with incident edges x, y, z. Then we evaluate the sum of product

$$\mathsf{Holant}(G;\mathsf{AD}_3) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{\nu \in V(G)} \mathsf{AD}_3(\sigma \mid_{E(\nu)}).$$

Clearly Holant(G; AD₃) computes $\#\kappa$ -EDGECOLORING.

In general, we consider all local constraint functions

$$f(x, y, z) = \begin{cases} a & \text{if } x = y = z \in [\kappa] \\ b & \text{if } |\{x, y, z\}| = 2 \\ c & \text{if } |\{x, y, z\}| = 3 \end{cases}$$

And the Holant problem is to compute

$$Holant(G; f) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{\nu \in V(G)} f(\sigma \mid_{E(\nu)}).$$

In general, we consider all local constraint functions

$$f(x, y, z) = \begin{cases} a & \text{if } x = y = z \in [\kappa] \\ b & \text{if } |\{x, y, z\}| = 2 \\ c & \text{if } |\{x, y, z\}| = 3 \end{cases}$$

And the Holant problem is to compute

$$Holant(G; f) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} f(\sigma |_{E(v)}).$$

Succinct signatures $f = \langle a, b, c \rangle$, where $a, b, c \in \mathbb{C}$.

In general, we consider all local constraint functions

$$f(x, y, z) = \begin{cases} a & \text{if } x = y = z \in [\kappa] \\ b & \text{if } |\{x, y, z\}| = 2 \\ c & \text{if } |\{x, y, z\}| = 3 \end{cases}$$

And the Holant problem is to compute

$$Holant(G; f) = \sum_{\sigma: E(G) \to [\kappa]} \prod_{v \in V(G)} f(\sigma |_{E(v)}).$$

Succinct signatures $f = \langle a, b, c \rangle$, where $a, b, c \in \mathbb{C}$. Thus $AD_3 = \langle 0, 0, 1 \rangle$.

L. Lovász:

Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

L. Lovász:

Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Let $\mathbf{A} = (A_{i,j}) \in \mathbb{C}^{\kappa \times \kappa}$ be a symmetric complex matrix.

The graph homomorphism problem is: INPUT: An undirected graph G = (V, E). OUTPUT:

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [\kappa]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}.$$

Let

$$\bm{\mathsf{A}} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

then $Z_{\mathbf{A}}(G)$ counts the number of VERTEX COVERS in G.

Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

then $Z_{\mathbf{A}}(G)$ counts the number of VERTEX COVERS in G.

Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{pmatrix}$$

then $Z_{\mathbf{A}}(G)$ counts the number of vertex κ -COLORINGS in G.

Theorem (C., Xi Chen and Pinyan Lu)

There is a complexity dichotomy for $Z_{\mathbf{A}}(\cdot)$: For any symmetric complex valued matrix $\mathbf{A} \in \mathbb{C}^{\kappa \times \kappa}$, the problem of computing $Z_{\mathbf{A}}(G)$, for any input G, is either in P or #P-hard. Given \mathbf{A} , whether $Z_{\mathbf{A}}(\cdot)$ is in P or #P-hard can be decided in polynomial time in the size of \mathbf{A} .

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Theorem (C., Xi Chen and Pinyan Lu)

There is a complexity dichotomy for $Z_{\mathbf{A}}(\cdot)$: For any symmetric complex valued matrix $\mathbf{A} \in \mathbb{C}^{\kappa \times \kappa}$, the problem of computing $Z_{\mathbf{A}}(G)$, for any input G, is either in P or #P-hard. Given \mathbf{A} , whether $Z_{\mathbf{A}}(\cdot)$ is in P or #P-hard can be decided in polynomial time in the size of \mathbf{A} .

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Further generalized to all counting CSP.

Theorem (C., Xi Chen)

Every finite set \mathcal{F} of complex valued constraint functions on any finite domain set [κ] defines a counting CSP problem $\#CSP(\mathcal{F})$ that is either computable in P or #P-hard.

The decision version of this is open (Feder-Vardi Dichotomy Conjecture).

Theorem (Main Theorem)

For any κ , any 3-regular graph G and any $f = \langle a, b, c \rangle$, the problem Holant(G; f) is either computable in polynomial time or is #P-hard.

Theorem (Main Theorem)

For any κ , any 3-regular graph G and any $f = \langle a, b, c \rangle$, the problem Holant(G; f) is either computable in polynomial time or is #P-hard.

 $\#\kappa$ -EDGECOLORING is the special case for $f = \langle 0, 0, 1 \rangle$.

• On domain size $\kappa = 3$, Holant(G; (5, 2, -4)) is computable in P.

• On domain size $\kappa = 3$, Holant(G; (5, 2, -4)) is computable in P.

 $f = \langle 5, 2, -4 \rangle = \frac{1}{3} \left[(-1, 2, 2)^{\otimes 3} + (2, -1, 2)^{\otimes 3} + (2, 2, -1)^{\otimes 3} \right].$ Holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}.$ • On domain size $\kappa = 3$, Holant(G; $\langle 5, 2, -4 \rangle$) is computable in P.

 $f = \langle 5, 2, -4 \rangle = \frac{1}{3} \left[(-1, 2, 2)^{\otimes 3} + (2, -1, 2)^{\otimes 3} + (2, 2, -1)^{\otimes 3} \right].$ Holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}.$

• In general Holant(G; $\langle \kappa^2 - 6\kappa + 4, -2(\kappa - 2), 4 \rangle$) is computable in P.

• On domain size $\kappa = 3$, Holant(G; $\langle 5, 2, -4 \rangle$) is computable in P.

 $f = \langle 5, 2, -4 \rangle = \frac{1}{3} \left[(-1, 2, 2)^{\otimes 3} + (2, -1, 2)^{\otimes 3} + (2, 2, -1)^{\otimes 3} \right].$ Holographic transformation by the orthogonal matrix $T = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}.$

- In general Holant(G; $\langle \kappa^2 6\kappa + 4, -2(\kappa 2), 4 \rangle$) is computable in P.
- Suppose $\kappa = 4$. For any $\lambda \in \mathbb{C}$,

Holant(G;
$$\lambda \langle -3 - 4i, 1, -1 + 2i \rangle$$
)

is computable in P.

Definition

For an undirected graph G = (V, E), the Tutte polynomial of G is

$$T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{\kappa(A) - \kappa(E)} (y - 1)^{\kappa(A) + |A| - |V|}$$

where $\kappa(A)$ denotes the number of connected components of the spanning subgraph (V, A).

Definition

For an undirected graph G = (V, E), the Tutte polynomial of G is

$$T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{\kappa(A) - \kappa(E)} (y - 1)^{\kappa(A) + |A| - |V|}$$

where $\kappa(A)$ denotes the number of connected components of the spanning subgraph (V, A).

The chromatic polynomial is

$$\chi(G;\lambda) = (-1)^{|V|-k(G)} \lambda^{k(G)} \mathsf{T}(G;1-\lambda,0), \tag{1}$$

Definition

For an undirected graph G = (V, E), the Tutte polynomial of G is

$$T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{\kappa(A) - \kappa(E)} (y - 1)^{\kappa(A) + |A| - |V|}$$

where $\kappa(A)$ denotes the number of connected components of the spanning subgraph (V, A).

The chromatic polynomial is

$$\chi(G;\lambda) = (-1)^{|V| - k(G)} \lambda^{k(G)} \mathsf{T}(G; 1 - \lambda, 0),$$
(1)

Theorem (Vertigan)

For any $x, y \in \mathbb{C}$, the problem of computing the Tutte polynomial at (x, y) over planar graphs is #P-hard unless $(x - 1)(y - 1) \in \{1, 2\}$ or $(x, y) \in \{(1, 1), (-1, -1), (\omega, \omega^2), (\omega^2, \omega)\}$, where $\omega = e^{2\pi i/3}$. In each of these exceptional cases, the computation can be done in polynomial time.

A plane graph (a), its medial graph (c), and the two graphs superimposed (b).

Directed Medial Graph

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

A directed graph is Eulerian if $\deg_{in}(v) = \deg_{out}(v)$, at every vertex v.

A directed graph is Eulerian if $\deg_{in}(v) = \deg_{out}(v)$, at every vertex v.

We don't require connectedness.

A directed graph is Eulerian if $\deg_{in}(v) = \deg_{out}(v)$, at every vertex v.

We don't require connectedness.

Suppose G is a connected plane graph and \vec{G}_m its directed medial graph. For any κ , the Eulerian partitions $\pi(\vec{G}_m)$ are κ -labelings of edges of \vec{G}_m , such that each color set forms an Eulerian digraph.

Theorem (Ellis-Monaghan)

$$\kappa \operatorname{\mathsf{T}}(G; \kappa+1, \kappa+1) = \sum_{c \in \pi(\vec{G}_m)} 2^{\mu(c)},$$

where $\mu(c)$ is the number of monochromatic vertices in the coloring c.

Directed Medial Graph Local Configuration

Eulerian Local Configuration

Directed Medial Graph Local Configuration

Directed Medial Graph Local Configuration

The Eulerian Signature

The sum $\sum_{c \in \pi(\vec{G}_m)} 2^{\mu(c)}$ can be expressed as a Holant problem:

$$\mathcal{E}\begin{pmatrix} w & z \\ x & y \end{pmatrix} = \begin{cases} 2 & \text{if } w = x = y = z \in [\kappa] \\ 1 & \text{if } w = x \neq y = z \in [\kappa] \\ 0 & \text{if } w = y \neq x = z \in [\kappa] \\ 1 & \text{if } w = z \neq x = y \in [\kappa] \\ 0 & \text{all other cases.} \end{cases}$$

Denote by $\mathcal{E} = \langle 2, 1, 0, 1, 0 \rangle$.

The Eulerian Signature

The sum $\sum_{c \in \pi(\vec{G}_m)} 2^{\mu(c)}$ can be expressed as a Holant problem:

$$\mathcal{E}\begin{pmatrix} w & z \\ x & y \end{pmatrix} = \begin{cases} 2 & \text{if } w = x = y = z \in [\kappa] \\ 1 & \text{if } w = x \neq y = z \in [\kappa] \\ 0 & \text{if } w = y \neq x = z \in [\kappa] \\ 1 & \text{if } w = z \neq x = y \in [\kappa] \\ 0 & \text{all other cases.} \end{cases}$$

Denote by $\mathcal{E} = \langle 2, 1, 0, 1, 0 \rangle$.

To be Eulerian, at every vertex $v \in V(G)$, either it is monochromatic, or RRBB cyclically, since the local orientation in \vec{G}_m is "in, out, in, out". Then

$$\sum_{c \in \pi(\vec{G}_m)} 2^{\mu(c)} = \mathsf{Holant}_{G_m}(\langle 2, 1, 0, 1, 0 \rangle)$$

Quaternary gadget f. All vertices are assigned the AD_{κ} signature.

Think of $\kappa = 3$.

$$f\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 0 & \text{if } w = x = y = z \in [\kappa] \\ 1 & \text{if } w = x \neq y = z \in [\kappa] \\ 1 & \text{if } w = y \neq x = z \in [\kappa] \\ 0 & \text{if } w = z \neq x = y \in [\kappa] \\ 0 & \text{all other cases.} \end{cases}$$

Denote by $f = \langle 0, 1, 1, 0, 0 \rangle$.

A gadget with two parallel edges

Again think of $\kappa = 3$.

$$f_0\left(\begin{smallmatrix}w&z\\x&y\end{smallmatrix}\right) = \begin{cases} 1 & \text{if } w = x = y = z \in [\kappa] \\ 0 & \text{if } w = x \neq y = z \in [\kappa] \\ 0 & \text{if } w = y \neq x = z \in [\kappa] \\ 1 & \text{if } w = z \neq x = y \in [\kappa] \\ 0 & \text{all other cases.} \end{cases}$$

Denote by $f_0 = \langle 1, 0, 0, 1, 0 \rangle$.

Theorem

 $\#\kappa$ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

Theorem

 $\#\kappa$ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

We reduce PI-Holant((2, 1, 0, 1, 0)) to PI-Holant(AD₃).

Theorem

κ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

We reduce PI-Holant((2, 1, 0, 1, 0)) to PI-Holant(AD_3).

Let f_s be the signature for the sth gadget. Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & \kappa - 1 & 0 & 0 & 0 \\ 1 & \kappa - 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{\mathrm{T}}.$$
Theorem

κ -EDGECOLORING is #P-hard over planar κ -regular graphs for $\kappa \geq 3$.

We reduce PI-Holant((2, 1, 0, 1, 0)) to PI-Holant(AD_3).

Let f_s be the signature for the sth gadget. Then $f_s = M^s f_0$, where

$$M = \begin{bmatrix} 0 & \kappa - 1 & 0 & 0 & 0 \\ 1 & \kappa - 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and $f_0 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}}$. One can easily verify that $f_1 = f$.

Eigenvalues and Eigenvectors

By the spectural decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

.

Eigenvalues and Eigenvectors

By the spectural decomposition $M = P\Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $x = (\kappa - 1)^{2s}$, then

$$f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} x & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{x-1}{\kappa} + 1\\ \frac{x-1}{\kappa}\\ 0\\ 1\\ 0 \end{bmatrix}$$

٠

.

Eigenvalues and Eigenvectors

By the spectural decomposition $M = P \Lambda P^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 - \kappa & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} \kappa - 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $x = (\kappa - 1)^{2s}$, then

$$f_{2s} = P\Lambda^{2s}P^{-1}f_0 = P\begin{bmatrix} x & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} P^{-1}f_0 = \begin{bmatrix} \frac{x-1}{\kappa} + 1\\ \frac{x-1}{\kappa}\\ 0\\ 1\\ 0 \end{bmatrix}$$

Note that if $x = 1 + \kappa$, then it is the Eulerian Signature $\mathcal{E} = \langle 2, 1, 0, 1, 0 \rangle$.

٠

Consider an instance Ω of PI-Holant((2, 1, 0, 1, 0)) on domain size κ .

Consider an instance Ω of PI-Holant($\langle 2, 1, 0, 1, 0 \rangle$) on domain size κ . Suppose $\langle 2, 1, 0, 1, 0 \rangle$ appears *n* times in Ω . Consider an instance Ω of PI-Holant((2, 1, 0, 1, 0)) on domain size κ .

Suppose $\langle 2, 1, 0, 1, 0 \rangle$ appears *n* times in Ω .

We construct from Ω a sequence of instances Ω_{2s} of Pl-Holant(AD_{κ}) indexed by $s \ge 0$, by replacing each occurrence of $\langle 2, 1, 0, 1, 0 \rangle$ with the gadget f_{2s} .

Consider an instance Ω of PI-Holant($\langle 2, 1, 0, 1, 0 \rangle$) on domain size κ .

Suppose (2, 1, 0, 1, 0) appears *n* times in Ω .

We construct from Ω a sequence of instances Ω_{2s} of Pl-Holant(AD_{κ}) indexed by $s \ge 0$, by replacing each occurrence of $\langle 2, 1, 0, 1, 0 \rangle$ with the gadget f_{2s} .

As a polynomial in $x = (\kappa - 1)^{2s}$, Pl-Holant_{Ω_{2s}} is independent of s and has degree at most n with integer coefficients.

Consider an instance Ω of PI-Holant($\langle 2, 1, 0, 1, 0 \rangle$) on domain size κ .

Suppose (2, 1, 0, 1, 0) appears *n* times in Ω .

We construct from Ω a sequence of instances Ω_{2s} of Pl-Holant(AD_{κ}) indexed by $s \ge 0$, by replacing each occurrence of $\langle 2, 1, 0, 1, 0 \rangle$ with the gadget f_{2s} .

As a polynomial in $x = (\kappa - 1)^{2s}$, Pl-Holant_{Ω_{2s}} is independent of s and has degree at most n with integer coefficients.

Using our oracle for Pl-Holant(AD_{κ}), we can evaluate this polynomial at n + 1 distinct points $x = (\kappa - 1)^{2s}$ for $0 \le s \le n$. Then via polynomial interpolation, we can recover the coefficients of this polynomial efficiently.

Consider an instance Ω of PI-Holant($\langle 2, 1, 0, 1, 0 \rangle$) on domain size κ .

Suppose (2, 1, 0, 1, 0) appears *n* times in Ω .

We construct from Ω a sequence of instances Ω_{2s} of Pl-Holant(AD_{κ}) indexed by $s \ge 0$, by replacing each occurrence of $\langle 2, 1, 0, 1, 0 \rangle$ with the gadget f_{2s} .

As a polynomial in $x = (\kappa - 1)^{2s}$, Pl-Holant_{Ω_{2s}} is independent of s and has degree at most n with integer coefficients.

Using our oracle for PI-Holant(AD_{κ}), we can evaluate this polynomial at n + 1 distinct points $x = (\kappa - 1)^{2s}$ for $0 \le s \le n$. Then via polynomial interpolation, we can recover the coefficients of this polynomial efficiently.

Evaluating this polynomial at $x = 1 + \kappa$ gives the value of PI-Holant_{Ω}.

We try to prove for every $f = \langle a, b, c \rangle$, Holant(G; f) is either tractable or #P-hard.

We try to prove for every $f = \langle a, b, c \rangle$, Holant(G; f) is either tractable or #P-hard.

- **(**) We construct a special unary signature from the given $\langle a, b, c \rangle$.
- We interpolate all binary succinct signatures of a certain type, assuming that we have special unary signature.
- We utilize all these binary signatures to obtain a signature that we show is #P-hard.

We try to prove for every $f = \langle a, b, c \rangle$, Holant(G; f) is either tractable or #P-hard.

- **()** We construct a special unary signature from the given $\langle a, b, c \rangle$.
- We interpolate all binary succinct signatures of a certain type, assuming that we have special unary signature.
- We utilize all these binary signatures to obtain a signature that we show is #P-hard.

Along the way, we may find certain $\langle a, b, c \rangle$ does not allow us to achieve these steps.

We try to prove for every $f = \langle a, b, c \rangle$, Holant(G; f) is either tractable or #P-hard.

- **(**) We construct a special unary signature from the given $\langle a, b, c \rangle$.
- We interpolate all binary succinct signatures of a certain type, assuming that we have special unary signature.
- We utilize all these binary signatures to obtain a signature that we show is #P-hard.

Along the way, we may find certain $\langle a, b, c \rangle$ does not allow us to achieve these steps.

Instead, in those cases, we can directly prove that these problems are either in P or #P-hard (without the help of additional signtuares).

Definition

We say that $\lambda_1, \lambda_2, \ldots, \lambda_\ell \in \mathbb{C} - \{0\}$ satisfy the lattice condition if for all $x \in \mathbb{Z}^{\ell} - \{\mathbf{0}\}$ with $\sum_{i=1}^{\ell} x_i = 0$, we have

$$\prod_{i=1}^{\ell} \lambda_i^{\mathbf{x}_i} \neq 1.$$

Definition

We say that $\lambda_1, \lambda_2, \dots, \lambda_\ell \in \mathbb{C} - \{0\}$ satisfy the lattice condition if for all $x \in \mathbb{Z}^\ell - \{\mathbf{0}\}$ with $\sum_{i=1}^\ell x_i = 0$, we have $\prod_{i=1}^\ell \lambda_i^{x_i} \neq 1.$

Taking the logarithms, this is really a condition about linear independence $\{\log \lambda_i\}$ over \mathbb{Q} .

Theorem

If there exists an infinite sequence of planar \mathcal{F} -gates defined by an initial signature $s \in \mathbb{C}^{n \times 1}$ and a recurrence matrix $M \in \mathbb{C}^{n \times n}$ satisfying the following conditions,

- M is diagonalizable with n linearly independent eigenvectors;
- s is not orthogonal to exactly *l* of these linearly independent row eigenvectors of M with eigenvalues λ₁,..., λ_l;
- $\lambda_1, \ldots, \lambda_\ell$ satisfy the lattice condition;

then

```
\mathsf{Pl}\operatorname{-Holant}(\mathcal{F} \cup \{f\}) \leq_{\mathcal{T}} \mathsf{Pl}\operatorname{-Holant}(\mathcal{F})
```

for any signature f that is orthogonal to the $n - \ell$ of these linearly independent eigenvectors of M to which s is also orthogonal.

Theorem

If there exists an infinite sequence of planar \mathcal{F} -gates defined by an initial signature $s \in \mathbb{C}^{n \times 1}$ and a recurrence matrix $M \in \mathbb{C}^{n \times n}$ satisfying the following conditions,

- M is diagonalizable with n linearly independent eigenvectors;
- s is not orthogonal to exactly *l* of these linearly independent row eigenvectors of M with eigenvalues λ₁,..., λ_l;
- $\lambda_1, \ldots, \lambda_\ell$ satisfy the lattice condition;

then

```
\mathsf{Pl}\operatorname{-Holant}(\mathcal{F} \cup \{f\}) \leq_{\mathcal{T}} \mathsf{Pl}\operatorname{-Holant}(\mathcal{F})
```

for any signature f that is orthogonal to the $n - \ell$ of these linearly independent eigenvectors of M to which s is also orthogonal.

To prove our dichotomy we use a combinatorial construction with n = 9 and $\ell = 5$.

Γ	$(\kappa - 1)(\kappa^2 + 9\kappa - 9)$	$12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^{2}(\kappa-2)(\kappa-1)$	$(\kappa - 1)(2\kappa - 3)(4\kappa - 3)$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
	$3(\kappa - 3)(\kappa - 1)$	$3\kappa^3 - 28\kappa^2 + 60\kappa - 36$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 2)(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
	$(2\kappa - 3)(4\kappa - 3)$	$12(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$9\kappa^3 - 26\kappa^2 + 27\kappa - 9$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa - 3)^3(\kappa - 2)(\kappa - 1)$
	$3(\kappa - 3)(\kappa - 1)$	$2(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)(\kappa^3 - 12\kappa^2 + 22\kappa - 12)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
	$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(K-3)(K-2)	$\kappa^3 + 3\kappa - 9$	6(K-3)(K-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
	$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
	$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
1	$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
L	$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$(2\kappa-3)(2\kappa^2-9\kappa+18)$

$\left[(\kappa - 1) (\kappa^2 + 9\kappa - 1) (\kappa^2 + 1) (\kappa^2 + 9\kappa - 1$	-9) $12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^{2}(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 1)(2\kappa - 3)(4\kappa - 3)$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
3(K-3)(K-1)	$3\kappa^3 - 28\kappa^2 + 60\kappa - 36$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 2)(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
(2k-3)(4k-3) $12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$9\kappa^3 - 26\kappa^2 + 27\kappa - 9$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa - 3)^3(\kappa - 2)(\kappa - 1)$
3(K-3)(K-1)	$2(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)(\kappa^3 - 12\kappa^2 + 22\kappa - 12)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>κ</i> -3)	6(K-3)(K-2)	$\kappa^3 + 3\kappa - 9$	6(K-3)(K-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(κ-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(κ-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>k</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$(2\kappa-3)(2\kappa^2-9\kappa+18)$

The characteristic polynomial of M is $\lambda_M(x,\kappa) = (x - \kappa^3)^4 f(x,\kappa)$, where $f(x,\kappa) = x^5 - \kappa^6 (2\kappa - 1)x^3 - \kappa^9 (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)\kappa^{12}x + (\kappa - 1)^3 \kappa^{15}$.

$\left[(\kappa - 1) (\kappa^2 + 9\kappa - 1) (\kappa^2 + 1) (\kappa^2 + 9\kappa - 1$	-9) $12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^{2}(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 1)(2\kappa - 3)(4\kappa - 3)$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
3(K-3)(K-1)	$3\kappa^3 - 28\kappa^2 + 60\kappa - 36$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 2)(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
(2k-3)(4k-3) $12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^{2}(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$9\kappa^3 - 26\kappa^2 + 27\kappa - 9$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa - 3)^3(\kappa - 2)(\kappa - 1)$
3(K-3)(K-1)	$2(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)(\kappa^3 - 12\kappa^2 + 22\kappa - 12)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>κ</i> -3)	6(K-3)(K-2)	$\kappa^3 + 3\kappa - 9$	6(K-3)(K-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(κ-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(κ-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>k</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$(2\kappa-3)(2\kappa^2-9\kappa+18)$

The characteristic polynomial of M is $\lambda_M(x,\kappa) = (x-\kappa^3)^4 f(x,\kappa)$, where $f(x,\kappa) = x^5 - \kappa^6 (2\kappa - 1)x^3 - \kappa^9 (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)\kappa^{12}x + (\kappa - 1)^3\kappa^{15}$.

After setting

$$\tilde{f}(x,\kappa) = \frac{1}{\kappa^{15}} f(\kappa^3 x,\kappa) = x^5 - (2\kappa - 1)x^3 - (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)x + (\kappa - 1)^3$$

$(\kappa-1)(\kappa^2+9\kappa-9)$	$12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$(\kappa - 1)(2\kappa - 3)(4\kappa - 3)$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
$3(\kappa - 3)(\kappa - 1)$	$3\kappa^3 - 28\kappa^2 + 60\kappa - 36$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 2)(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
$(2\kappa - 3)(4\kappa - 3)$	$12(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$9\kappa^3 - 26\kappa^2 + 27\kappa - 9$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
3(k-3)(k-1)	$2(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)(\kappa^3 - 12\kappa^2 + 22\kappa - 12)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^{2}(\kappa - 2)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$(2\kappa-3)(2\kappa^2-9\kappa+18)$

The characteristic polynomial of M is $\lambda_M(x,\kappa) = (x-\kappa^3)^4 f(x,\kappa)$, where $f(x,\kappa) = x^5 - \kappa^6 (2\kappa - 1)x^3 - \kappa^9 (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)\kappa^{12}x + (\kappa - 1)^3\kappa^{15}$.

After setting

$$\tilde{f}(x,\kappa) = \frac{1}{\kappa^{15}} f(\kappa^3 x,\kappa) = x^5 - (2\kappa - 1)x^3 - (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)x + (\kappa - 1)^3$$

and replacing κ by y + 1 we get

$$p(x, y) = x^{5} - (2y + 1)x^{3} - (y^{2} + 2)x^{2} + (y - 1)yx + y^{3}.$$

$(\kappa-1)(\kappa^2+9\kappa-9)$	$12(\kappa-3)(\kappa-1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 1)(2\kappa - 3)(4\kappa - 3)$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
$3(\kappa - 3)(\kappa - 1)$	$3\kappa^3 - 28\kappa^2 + 60\kappa - 36$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 2)(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
$(2\kappa - 3)(4\kappa - 3)$	$12(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa-3)^2(\kappa-2)(\kappa-1)$	$(\kappa - 3)^2(\kappa - 1)$	$2(\kappa - 3)^2(\kappa - 2)(\kappa - 1)$	$9\kappa^3 - 26\kappa^2 + 27\kappa - 9$	$6(\kappa-3)(\kappa-2)(\kappa-1)^2$	$(\kappa-3)^{3}(\kappa-2)(\kappa-1)$
3(k-3)(k-1)	$2(\kappa^3 - 14\kappa^2 + 30\kappa - 18)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$-(\kappa - 3)(2\kappa - 3)$	$-2(\kappa - 3)(\kappa - 2)(2\kappa - 3)$	$3(\kappa - 3)(\kappa - 1)^2$	$(\kappa - 3)(\kappa^3 - 12\kappa^2 + 22\kappa - 12)$	$-(\kappa-3)^2(\kappa-2)(2\kappa-3)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
$(\kappa - 3)^2$	$-4(\kappa - 3)(2\kappa - 3)$	$\kappa^3 + 3\kappa - 9$	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	$\kappa^{3}+6\kappa^{2}-30\kappa+36$	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$3(\kappa - 3)^2(\kappa - 2)$
(K-3) ²	$-4(\kappa - 3)(2\kappa - 3)$	3(<i>k</i> -3)	6(k-3)(k-2)	3(<i>κ</i> -3)	6(k-3)(k-2)	$(\kappa - 3)^2(\kappa - 1)$	$-2(\kappa-3)(\kappa-2)(2\kappa-3)$	$(2\kappa-3)(2\kappa^2-9\kappa+18)$

The characteristic polynomial of M is $\lambda_M(x,\kappa) = (x-\kappa^3)^4 f(x,\kappa)$, where $f(x,\kappa) = x^5 - \kappa^6 (2\kappa - 1)x^3 - \kappa^9 (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)\kappa^{12}x + (\kappa - 1)^3\kappa^{15}$.

After setting

$$\tilde{f}(x,\kappa) = \frac{1}{\kappa^{15}} f(\kappa^3 x,\kappa) = x^5 - (2\kappa - 1)x^3 - (\kappa^2 - 2\kappa + 3)x^2 + (\kappa - 2)(\kappa - 1)x + (\kappa - 1)^3$$

and replacing κ by y + 1 we get

$$p(x,y) = x^5 - (2y+1)x^3 - (y^2+2)x^2 + (y-1)yx + y^3.$$

We want to prove that for all integer $y \ge 4$, the roots of p(x, y) satisfy the lattice condition.

We suspect that for any integer $y \ge 4$, p(x, y) is in fact irreducible in $\mathbb{Q}[x]$.

We suspect that for any integer $y \ge 4$, p(x, y) is in fact irreducible in $\mathbb{Q}[x]$. Can't prove that. We suspect that for any integer $y \ge 4$, p(x, y) is in fact irreducible in $\mathbb{Q}[x]$. Can't prove that.

We know five integer solutions $(x, y) \in \mathbb{Z}^2$, so for these five values of $y \in \mathbb{Z}$, p(x, y) is reducible as a polynomial in x:

$$p(x,y) = \begin{cases} (x-1)(x^4 + x^3 + 2x^2 - x + 1) & y = -1 \\ x^2(x^3 - x - 2) & y = 0 \\ (x+1)(x^4 - x^3 - 2x^2 - x + 1) & y = 1 \\ (x-1)(x^2 - x - 4)(x^2 + 2x + 2) & y = 2 \\ (x-3)(x^4 + 3x^3 + 2x^2 - 5x - 9) & y = 3. \end{cases}$$

This means, for all integer $y \ge 4$, p(x, y) is either irreducible or is a product of two irreducible polynomials of degree 2 and 3 respectively.

This means, for all integer $y \ge 4$, p(x, y) is either irreducible or is a product of two irreducible polynomials of degree 2 and 3 respectively.

Note that, by Gauss Lemma, for any integer y, the monic polynomial p(x, y) in x is irreducible over \mathbb{Z} iff it is irreducible over \mathbb{Q} .

This means, for all integer $y \ge 4$, p(x, y) is either irreducible or is a product of two irreducible polynomials of degree 2 and 3 respectively.

Note that, by Gauss Lemma, for any integer y, the monic polynomial p(x, y) in x is irreducible over \mathbb{Z} iff it is irreducible over \mathbb{Q} .

Lemma

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n \ge 2$. If the Galois group of f over \mathbb{Q} is S_n or A_n and the roots of f do not all have the same complex norm, then the roots of f satisfy the lattice condition.

Lemma

For any integer $y \ge 1$, the polynomial p(x, y) has three distinct real roots and two nonreal complex conjugate roots in x.

Proof by discriminant.

Lemma

For any integer $y \ge 1$, the polynomial p(x, y) has three distinct real roots and two nonreal complex conjugate roots in x.

Proof by discriminant.

Lemma

For any integer $y \ge 4$, if p(x, y) is irreducible in $\mathbb{Q}[x]$, then the roots of p(x, y) satisfy the lattice condition.

Proof.

Three distinct real roots do not have the same complex norm. An irreducible polynomial of prime degree n with exactly two nonreal roots has S_n as its Galois group over \mathbb{Q} . Hence they satisfy the lattice condition. Some more Galois Theory is needed if it is a product of two irreducible polynomials of degree 2 and 3.

Some more Galois Theory is needed if it is a product of two irreducible polynomials of degree 2 and 3.

They still satisfy the lattice condition.

Lemma

The only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), and (3, 3).$$
The only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), and (3, 3).$$

Let p(a, b) = 0 with $a \neq 0$.

The only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), and (3, 3).$$

Let
$$p(a, b) = 0$$
 with $a \neq 0$.
 $p(x, y) = x^5 - (2y + 1)x^3 - (y^2 + 2)x^2 + (y - 1)yx + y^3$.

The only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), and (3, 3).$$

Let
$$p(a, b) = 0$$
 with $a \neq 0$.
 $p(x, y) = x^5 - (2y + 1)x^3 - (y^2 + 2)x^2 + (y - 1)yx + y^3$.
One can show that $a|b^2$.

The only integer solutions to p(x, y) = 0 are

$$(1, -1), (0, 0), (-1, 1), (1, 2), and (3, 3).$$

Let
$$p(a, b) = 0$$
 with $a \neq 0$.
 $p(x, y) = x^5 - (2y + 1)x^3 - (y^2 + 2)x^2 + (y - 1)yx + y^3$.
One can show that $a|b^2$.

Consider

$$g_1(x,y) = y - x^2$$
 and $g_2(x,y) = \frac{y^2}{x} + y - x^2 + 1.$

(This particular choice is due to Aaron Levin.) Whenever p(a, b) = 0 with $a \neq 0$, $g_1(a, b)$ and $g_2(a, b)$ are integers. However, we show that if $a \leq -3$ or $a \geq 17$, then either $g_1(a, b)$ or $g_2(a, b)$ is not an integer.

The Puiseux series expansions for p(x, y) are

$$y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6})$$

$$y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

$$y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

The Puiseux series expansions for p(x, y) are

$$y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6})$$

$$y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

$$y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

If we substitute say $y_2(x)$ in $g_2(x, y_2(x))$, we get $O(x^{-1/2})$, where the multiplier in the *O*-notation is bounded both above and below by a nonzero constant in absolute value.

The Puiseux series expansions for p(x, y) are

$$y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6})$$

$$y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

$$y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

If we substitute say $y_2(x)$ in $g_2(x, y_2(x))$, we get $O(x^{-1/2})$, where the multiplier in the *O*-notation is bounded both above and below by a nonzero constant in absolute value.

So for large x, it is non-zero and non-integral.

The Puiseux series expansions for p(x, y) are

$$y_1(x) = x^2 + 2x^{-1} + 2x^{-2} - 6x^{-4} - 18x^{-5} + O(x^{-6})$$

$$y_2(x) = x^{3/2} - \frac{1}{2}x + \frac{1}{8}x^{1/2} - \frac{65}{128}x^{-1/2} - x^{-1} - \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

$$y_3(x) = -x^{3/2} - \frac{1}{2}x - \frac{1}{8}x^{1/2} + \frac{65}{128}x^{-1/2} - x^{-1} + \frac{1471}{1024}x^{-3/2} - x^{-2} + O(x^{-5/2})$$

If we substitute say $y_2(x)$ in $g_2(x, y_2(x))$, we get $O(x^{-1/2})$, where the multiplier in the *O*-notation is bounded both above and below by a nonzero constant in absolute value.

So for large x, it is non-zero and non-integral.

Hence there are no large integral solutions.

Some papers can be found on my web site http://www.cs.wisc.edu/~jyc

THANK YOU!