Robust spectral diffusions for data applications

Code www.cs.purdue.edu/homes/dgleich/codes/l1pagerank

Joint work with Michael Mahoney @ Berkeley supported by NSF CAREER CCF-1149756

Simons

Graph diffusions

 ∞ $\mathbf{f} = \sum \alpha_k \mathbf{P}^k \mathbf{s}$ *k*=0

- A adjacency matrix
- **D** degree matrix
- P column stochastic operator
- **s** the "seed" (a sparse vector)
- f the diffusion result
- α_k the path weights

Graph diffusions help:

- 1. Attribute prediction
- 2. Community detection
- 3. "Ranking"
- 4. Find small conductance sets

Practical graph diffusions

PageRank $\mathbf{x} = (1 - \beta) \sum_{k=0}^{\infty} \beta^k \mathbf{P}^k \mathbf{s}$ $(\mathbf{I} - \beta \mathbf{P})\mathbf{x} = (1 - \beta)\mathbf{s}$

Heat kernel $\mathbf{h} = e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbf{P}^k \mathbf{s}$

 $\mathbf{h} = e^{-t} \exp\{t\mathbf{P}\}\mathbf{s}$

David Gleich · Purdue

 \mathbf{m}

Practical graph diffusions

PageRank $\mathbf{x} = (1 - \beta) \sum_{k=0}^{\infty} \beta^k \mathbf{P}^k \mathbf{s}$ $(\mathbf{I} - \beta \mathbf{P})\mathbf{x} = (1 - \beta)\mathbf{s}$

Heat kernel

$$\mathbf{h} = e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbf{P}^k \mathbf{s}$$

 $\mathbf{h} = e^{-t} \exp\{t\mathbf{P}\}\mathbf{s}$

Simons

Uniformly localized solutions in flickr

Our mission

Understand how localization can help make diffusions robust to graph constructions and label mistakes

(and make everything faster too!)

Two types of localization

Localized vectors are not sparse, but they can be approximated by sparse vectors. Other work.

Uniform (Strong)

$$\|\mathbf{X} - \mathbf{X}^*\|_1 \le \varepsilon$$

Good global approximation using only a local region. "Hard" to prove. "Need" a graph property.

Entry-wise (Weak)

his talk.

$$\|\mathbf{D}^{-1}(\mathbf{x} - \mathbf{x}^*)\|_{\infty} \leq \varepsilon$$

Good approximation for cuts and communities. "Easy" to prove. "Fast" algorithms

We have three main results

- 1. A new interpretation for the PageRank diffusion in relationship with a mincut problem.
- 2. A new understanding of the scalable, localized PageRank "push" method as a regularized diffusion
- 3. Insights on how this regularization and graph density helps to robustify diffusions.

Undirected graphs only

Entry-wise localization

The PageRank problem & the Laplacian on undirected graphs

The PageRank random surfer

- 1. With probability beta, follow a random-walk step
- 2. With probability (1-beta), jump randomly ~ dist. s.

Goal find the stationary dist. **x**

1.
$$(\mathbf{I} - \beta \mathbf{A} \mathbf{D}^{-1})\mathbf{x} = (1 - \beta)\mathbf{s}; \ \mathbf{x} = (1 - \beta)\sum_{k=0}^{\infty} \beta^{k} \mathbf{P}^{k} \mathbf{s}$$

2. $[\alpha \mathbf{D} + \mathbf{L}]\mathbf{z} = \alpha \mathbf{s}$ where $\beta = 1/(1 + \alpha)$ and $\mathbf{x} = \mathbf{D}\mathbf{z}$.
Combinatorial Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$

The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix
minimize
$$\|\mathbf{Bx}\|_{C,1} = \sum_{ij \in E} C_{i,j} |x_i - x_j|$$

subject to $x_s = 1, x_t = 0, \mathbf{X} \ge 0.$

In the unweighted case, solve via max-flow.

In the weighted case, solve via network simplex or industrial LP.

David Gleich \cdot Purdue

The localized cut graph

Connect *s* to vertices in *S* with weight $\alpha \cdot \text{degree}$ Connect *t* to vertices in \overline{S} with weight $\alpha \cdot \text{degree}$

Related to a construction used in "FlowImprove" Andersen & Lang (2007); and Orecchia & Zhu (2014)

 $\mathbf{A}_{S} = \begin{bmatrix} \mathbf{0} & \alpha \mathbf{d}_{S}^{T} & \mathbf{0} \\ \alpha \mathbf{d}_{S} & \mathbf{A} & \alpha \mathbf{d}_{\bar{S}} \\ \mathbf{0} & \alpha \mathbf{d}_{\bar{S}}^{T} & \mathbf{0} \end{bmatrix}$

The localized cut graph

Connect *s* to vertices in *S* with weight $\alpha \cdot \text{degree}$ Connect *t* to vertices in \overline{S} with weight $\alpha \cdot \text{degree}$

$$\mathbf{B}_{S} = \begin{bmatrix} \mathbf{e} & -\mathbf{I}_{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_{\bar{S}} & \mathbf{e} \end{bmatrix}$$

Solve the s-t min-cut minimize $\|\mathbf{B}_{S}\mathbf{x}\|_{C(\alpha),1}$ subject to $x_{s} = 1, x_{t} = 0$ $\mathbf{x} \ge 0.$

The localized cut graph

Connect *s* to vertices in *S* with weight $\alpha \cdot \text{degree}$ Connect *t* to vertices in *S* with weight $\alpha \cdot \text{degree}$

$$\mathbf{B}_{S} = \begin{bmatrix} \mathbf{e} & -\mathbf{I}_{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_{\bar{S}} & \mathbf{e} \end{bmatrix}$$

Solve the "electrical flow" s-t min-cut minimize $\|\mathbf{B}_{S}\mathbf{x}\|_{C(\alpha),2}$ subject to $x_{s} = 1, x_{t} = 0$

s-t min-cut \rightarrow PageRank

The PageRank vector **z** that solves

$$(\alpha \mathbf{D} + \mathbf{L})\mathbf{z} = \alpha \mathbf{s}$$

Proof

Square and expand the objective into a Laplacian, then apply constraints.

with $\mathbf{s} = \mathbf{d}_S / \text{vol}(S)$ is a renormalized solution of the electrical cut computation:

minimize $\|\mathbf{B}_{S}\mathbf{x}\|_{C(\alpha),2}$ subject to $x_{s} = 1, x_{t} = 0.$

Specifically, if **x** is the solution, then

$$\mathbf{x} = \begin{bmatrix} 1 \\ \operatorname{vol}(S)\mathbf{z} \\ 0 \end{bmatrix}$$

PageRank \rightarrow s-t min-cut

That equivalence works if **s** is degree-weighted.

David Gleich · Purdue

Insight 1

PageRank implicitly approximates the solution of these s-t mincut problems

Insight l'

This holds for a variety of diffusion methods for semi-supervised learning.

Seeds have weight 1.

Simons

Labeled nodes have edges to source/ sink. ZGL pins them

The Push Algorithm for PageRank

Proposed (in closest form) in Andersen, Chung, Lang (also by McSherry, Jeh & Widom, Berkhin) for fast approx. *PageRank*

Derived to show improved runtime for balanced solvers

- 1. Used for empirical studies of "communities"
- 2. Local Cheeger inequality.
- 3. Used for "fast Page-Rank approximation"
- Works on massive graphs O(1 second) for 4 billion edge graph on a laptop.
- 5. It yields weakly *localized* PageRank approximations!

 $\epsilon = 0.0316228$

Newman's netscience 379 vertices, 1828 nnz

Produce an ε -accurate entrywise 1 localized PageRank vector in work $\varepsilon(1-\beta)$

Gauss-Seidel and Gauss-Southwell

Methods to solve **A x** = **b**

Update

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho_j \mathbf{e}_j$$

such that

 $[\mathbf{A}\mathbf{x}^{(k+1)}]_{i} = [\mathbf{b}]_{i}$

In words "Relax" or "free" the *j*th coordinate of your solution vector in order to satisfy the *j*th equation of your linear system.

Gauss-Seidel repeatedly cycle through j = 1 to n

Gauss-Southwell use the value of j that has the highest magnitude residual

$$\mathbf{r}^{(k)} = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$$

Simons

PageRank Pull and Push for Gauss-Southwell/Seidel

David Gleich · Purdue

Almost "the push" method

1.
$$\mathbf{x}^{(1)} = 0, \mathbf{r}^{(1)} = (1 - \beta)\mathbf{e}_i, k = 1$$

2. while any $r_j > \varepsilon d_j$ $(d_j \text{ is the degree of node } j)$
The 3. $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + (r_j - \varepsilon d_j \rho)\mathbf{e}_j$
Push
Method
 ε, ρ
4. $\mathbf{r}_i^{(k+1)} = \begin{cases} \varepsilon d_j \rho & i = j \\ r_i^{(k)} + \beta(r_j - \varepsilon d_j \rho)/d_j & i \sim j \\ r_i^{(k)} & \text{otherwise} \end{cases}$
5. $k \leftarrow k + 1$

Only push "some" of the residual – If we want tolerance "eps" then push to tolerance "eps" and no further

David Gleich · Purdue

The push method revisited

Let **x** be the output from the push method with $0 < \beta < 1$, $\mathbf{v} = \mathbf{d}_S / \text{vol}(S)$, $\rho = 1$, and $\tau > 0$. Set $\alpha = \frac{1-\beta}{\beta}$, $\kappa = \tau \text{vol}(S)/\beta$, and let \mathbf{z}_G solve: Need for minimize $\frac{1}{2} \| \mathbf{B}_{S} \mathbf{z} \|_{C(\alpha),2}^{2} \leftarrow \| \mathbf{D} \mathbf{z} \|_{1}$ normalization subject to $z_{s} = 1, z_{t} = 0, \mathbf{z} \ge 0$ Regularization normalization for sparsity where $\mathbf{z} = \begin{bmatrix} 1 \\ \mathbf{z}_G \\ 0 \end{bmatrix}$. **Proof** Write out KKT conditions Show that the push method Then $\mathbf{x} = \mathbf{D}\mathbf{z}_G/\mathrm{vol}(S)$. solves them. Slackness was "tricky"

David Gleich · Purdue

Insight 2

The PageRank push method implicitly solves a 1-norm regularized 2-norm cut approximation.

Insight 2' We get 3-digits of accuracy on P and 16-digits of accuracy on P'.

Insight 2"

These regularized diffusions (via push) should be more robust in data applications (and faster)!

minimize
$$\frac{1}{2} \| \mathbf{B}_{S} \mathbf{z} \|_{C(\alpha),2}^{2} + \kappa \| \mathbf{D} \mathbf{z} \|_{1}$$

subject to $z_{s} = 1, z_{t} = 0, \mathbf{z} \ge 0$

Semi-supervised & diffusion-based learning

Gleich & Mahoney, In prep.

Given a graph, and a few labeled nodes, predict the labels on the rest of the graph.

Algorithm

- Run a diffusion for each label (possibly with neg. info from other classes)
- Assign new labels based on the value of each diffusion

Vanilla SSL algorithms have a problem

This problem is worse on real data

David Gleich · Purdue

Unifying theory and practice

Insight 1'

Diffusions are all approximations to cuts.

In spectral theory

We "sweep" over cuts from approximate eigenvectors!

Simons

Without these insights, we'd draw the wrong conclusion.

Gleich & Mahoney, In prep.

One more step ...

Given a graph, and a few labeled nodes, predict the labels on the rest of the graph.

Algorithm

- Run a diffusion for each label (possibly with neg. info from other classes)
- Assign new labels based on the value of each diffusion

Gleich & Mahoney, In prep.

One more step

data points Given a graph, and a few labeled nodes, predict the labels on the rest of the graph. data

Algorithm O. Create a graph from the data

- 1. Run a diffusion for each label (possibly with neg. info from other classes)
- 2. Assign new labels based on the value of each diffusion

David Gleich \cdot Purdue

Semi-supervised Learning on Graphs

Zhou et al. NIPS (2003)

Does regularization help with sparse or dense graphs?

We introduce a few labeling mistakes

-	σ	Method	Average 2	training la 5	abels per o 7	class 10
Sparse	0.8 0.8	RK2 RK3	0.34% 0.5%	0.22% 0.39%	0.25% 1.1%	-0.02% 1.1%
	1.25 1.25	RK2 RK3	$0.34\% \\ 0.4\%$	0.41% 0.39%	0.24% 0.36%	$0.22\% \\ 0.42\%$
Dense	2.5 2.5	RK2 RK3	0% 0%	0% 0%	0% 0%	0% 0%

(c) Median improvement to error rate with regularization for digit prediction; various σ and 20% label mistakes

How do sparsity, density, and regularization of a diffusion play into the results in a controlled setting?

How do we take a graph and make it more dense?

Summary of robust diffusions

- 1. Use rank-based rounding
- 2. Use denser graphs if there are errors (if you can afford it).

We are trying to get some theory to quantify this effect This makes computation expensive!

References

Gleich and Mahoney – Algorithmic Anti-differentiation, ICML 2014 Gleich and Mahoney – Regularized diffusions, In prep

www.cs.purdue.edu/homes/dgleich/codes/l1pagerank

