Robust spectral diffusions for data applications

Code www.cs.purdue.edu/homes/dgleich/codes/l1pagerank

Joint work with Michael Mahoney @ **Berkeley** supported by NSF CAREER CCF-1149756

Simons

David Gleich · Purdue

Graph diffusions

resides in a low dimensional space—think of two or three dimensions. These physical

 $f =$ $\sum \alpha_k \mathbf{P}^k \mathbf{s}$ ∞ *k*=0

- A adjacency matrix
- **D** degree matrix
- **P** column stochastic operator
- s the "seed" (a sparse vector)
- f the diffusion result
- α_k the path weights

Graph diffusions help:

- 1. Attribute prediction
- 2. Community detection
- 3. "Ranking"
- 4. Find small conductance sets

David Gleich \cdot Purdue

Practical graph diffusions

resides in a low dimensional space—think of two or three dimensions. These physical

PageRank x = $(1 - \beta)$ \sum $\frac{\infty}{\sqrt{2}}$ *k*=0 β^k **P**^{k}S $(I - \beta P)x = (1 - \beta)s$

 $h = e^{-t} \sum$ $\sum_{k=1}^{\infty} t^k$ *k*=0 *k*! P^k **s** Heat kernel

 $h = e^{-t} \exp\{t\mathbf{P}\}\mathbf{s}$

David Gleich · Purdue $\qquad \qquad$ Simons $\qquad ^{\circ}$

Practical graph diffusions

resides in a low dimensional space—think of two or three dimensions. These physical

$$
π = (1 - β) ∑_{k=0}^{∞} βk Pk s
$$

(I – βP)x = (1 – β)s

Heat kernel

PageRank

$$
\mathbf{h} = e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbf{P}^k \mathbf{s}
$$

 $h = e^{-t} \exp\{t\mathbf{P}\}\mathbf{s}$

Simons

David Gleich · Purdue

Uniformly localized solutions in flickr

David Gleich · Purdue \overline{S} Simons \overline{S}

Simons

Our mission

Understand how localization can help make diffusions robust to graph constructions and label mistakes

(and make everything faster too!)

Two types of localization

Localized vectors are not sparse, but they can be approximated by sparse vectors.

Other work.

$$
\|\mathbf{x} - \mathbf{x}^*\|_1 \leq \varepsilon \qquad \qquad \|\|\mathbf{D}^{-1}\|
$$

Good global approximation using only a local region. "Hard" to prove. "Need" a graph property.

Uniform (Strong) \/ Entry-wise (Weak)

his talk.

$$
\|\mathbf{D}^{-1}(\mathbf{X}-\mathbf{X}^*)\|_{\infty}\leq \varepsilon
$$

 $\mathbf{x} \approx \mathbf{x}^*$

Good approximation for cuts and communities. "Easy" to prove. "Fast" algorithms

We have three main results

- 1. A new interpretation for the PageRank diffusion in relationship with a mincut problem.
- 2. A new understanding of the scalable, localized PageRank "push" method as a regularized diffusion
- 3. Insights on how this regularization and graph density helps to robustify diffusions.

Undirected graphs only

Entry-wise localization

The PageRank problem & the Laplacian on undirected graphs

The PageRank random surfer

- 1. With probability beta, follow a random-walk step
- 2. With probability (1-beta), jump randomly \sim dist. s.

Goal find the stationary dist. **x**

1.
$$
(I - \beta AD^{-1})x = (1 - \beta)s
$$
; $x = (1 - \beta) \sum_{k=0}^{\infty} \beta^k P^k s$
\n2. $[\alpha D + L]z = \alpha s$ where $\beta = 1/(1 + \alpha)$ and $x = Dz$.
\nCombinatorial Laplacian L = D - A

David Gleich \cdot Purdue

The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix
minimize
$$
||Bx||_{C,1} = \sum_{ij \in E} C_{i,j} |x_i - x_j|
$$

subject to $x_s = 1, x_t = 0, x \ge 0$.

1 $\left(3\right)$ 2 s 6 4 5 7 8 t 9 (10)

In the unweighted case, solve via max-flow.

In the weighted case, solve via network simplex or industrial LP.

David Gleich · Purdue

Simons

The localized cut graph

Connect *s* to vertices in S with weight $\alpha \cdot$ degree Connect *t* to vertices in \bar{S} with weight $\alpha \cdot$ degree

Related to a construction used in "FlowImprove" Andersen & Lang (2007); and Orecchia & Zhu (2014)

 $A_S =$ $\sqrt{2}$ 4 0 α **d**^{*T*}_S 0 α d_{*S*} **A** α d_{*S*} 0 α **d** $\frac{7}{5}$ 0 $\overline{1}$ $\mathbf{1}$

<u>|</u>

The localized cut graph

Connect *s* to vertices in S with weight $\alpha \cdot$ degree Connect *t* to vertices in \bar{S} with weight $\alpha \cdot$ degree

$$
\mathbf{B}_S = \begin{bmatrix} \mathbf{e} & -\mathbf{I}_S & 0 \\ 0 & \mathbf{B} & 0 \\ 0 & -\mathbf{I}_{\bar{S}} & \mathbf{e} \end{bmatrix}
$$

 $\text{minimize} \quad \|\mathbf{B}_{S}\mathbf{x}\|_{C(\alpha),1}$ subject to $x_s = 1$, $x_t = 0$ $x > 0$. Solve the s-t min-cut

David Gleich · Purdue

Simons

 $\frac{\Delta}{\Gamma}$

The localized cut graph

Connect *s* to vertices in S with weight $\alpha \cdot$ degree Connect *t* to vertices in \bar{S} with weight $\alpha \cdot$ degree

$$
\mathbf{B}_S = \begin{bmatrix} \mathbf{e} & -\mathbf{I}_S & 0 \\ 0 & \mathbf{B} & 0 \\ 0 & -\mathbf{I}_{\bar{S}} & \mathbf{e} \end{bmatrix}
$$

Solve the "electrical flow" s-t min-cut $\text{minimize} \quad \|\mathbf{B}_S \mathbf{x}\|_{C(\alpha),2}$ subject to $x_s = 1$, $x_t = 0$ <u>ო</u>

Simons

David Gleich · Purdue

s-t min-cut \rightarrow **PageRank** Proof

The PageRank vector **z** that solves

$$
(\alpha \mathbf{D} + \mathbf{L})\mathbf{Z} = \alpha \mathbf{S}
$$

Square and expand the objective into a Laplacian, then apply constraints.

with $\mathbf{s} = \mathbf{d}_S/\text{vol}(S)$ is a renormalized solution of the electrical cut computation:

 $\text{minimize} \quad \|\mathbf{B}_{S}\mathbf{x}\|_{C(\alpha),2}$ subject to $x_s = 1$, $x_t = 0$.

Specifically, if **x** is the solution, then

$$
\mathbf{x} = \begin{bmatrix} 1 \\ \text{vol}(S)\mathbf{z} \\ 0 \end{bmatrix}
$$

Simons

PageRank à **s-t min-cut**

That equivalence works if **s** is degree-weighted.

Insight 1

PageRank implicitly approximates the solution of these s-t mincut problems

David Gleich · Purdue

Insight 1'

This holds for a variety of diffusion methods for semi-supervised learning.

Seeds have weight 1.

Seeds have weight *di*

Simons

 $\overline{\mathsf{1}}$

 $\frac{1}{2}$ weight d_i .
 $\frac{1}{2}$ weight $\frac{1}{2}$ weight $\frac{1}{2}$ sink. ZGL pins them on a graph. The labeled nodes are indicated by the blue and reduction is to predict prediction is to predict of prediction in the set of prediction is to predict our prediction is to predict our prediction is to predict ou . Labeled nodes have edges to source/

the blue-class. Both Cheich and Gleich Purdue. Both Choice on the Show on the E \overline{C}

The Push Algorithm for PageRank

Proposed (in closest form) in Andersen, Chung, Lang (also by McSherry, Jeh & Widom, Berkhin) for fast approx. *PageRank*

Derived to show improved runtime for balanced solvers

- 1. Used for empirical studies of "communities"
- 2. Local Cheeger inequality.
- 3. Used for "fast Page-Rank approximation"
- 4. Works on massive graphs O(1 second) for 4 billion edge graph on a laptop.
- 5. It yields weakly *localized* PageRank approximations!

 $\varepsilon = 0.0316228$

Newman's netscience 379 vertices, 1828 nnz

Produce an ε-accurate entrywise localized PageRank vector in work $\sqrt{\varepsilon(1-\beta)}$ 1

 $\frac{8}{1}$

Gauss-Seidel and Gauss-Southwell

Methods to solve *A* **x = b**

Update
$$
\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho_j \mathbf{e}_j
$$
 such that
$$
[\mathbf{A} \mathbf{x}^{(k+1)}]_j = [\mathbf{b}]_j
$$

In words "Relax" or "free" the *j*th coordinate of your solution vector in order to satisfy the *j*th equation of your linear system.

Gauss-Seidel repeatedly cycle through $j = 1$ to n

Gauss-Southwell use the value of j that has the highest magnitude residual ${\bf r}^{(k)} = {\bf b} - {\bf A} {\bf x}^{(k)}$

PageRank Pull and Push for Gauss-Southwell/Seidel

David Gleich · Purdue Simons

Almost "the push" method

1.
$$
\mathbf{x}^{(1)} = 0
$$
, $\mathbf{r}^{(1)} = (1 - \beta)\mathbf{e}_i$, $k = 1$
\n2. while any $r_j > \varepsilon d_j$ (d_j is the degree of node j)
\n**The 3.** $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + (r_j - \varepsilon d_j \rho)\mathbf{e}_j$
\n**Push**
\n**Method** 4. $\mathbf{r}_i^{(k+1)} = \begin{cases} \varepsilon d_j \rho & j = j \\ r_i^{(k)} + \beta(r_j - \varepsilon d_j \rho)/d_j & j \sim j \\ r_i^{(k)} & \text{otherwise} \end{cases}$
\n5. $k \leftarrow k + 1$

Only push "some" of the residual – If we want tolerance "eps" then push to tolerance "eps" and no further

David Gleich · Purdue

<u>।</u>
ਹ

The push method revisited

Let **x** be the output from the push method with $0 < \beta < 1$, $v = d_S/vol(S)$, $\rho = 1$, and $\tau > 0$. Set $\alpha = \frac{1-\beta}{\beta}$, $\kappa = \tau$ vol(*S*)/ β , and let z_G solve: minimize $\frac{1}{2} \|\mathbf{B}_S \mathbf{z}\|_{C(\alpha),2}^2 + \kappa \|\mathbf{Dz}\|_1$ subject to $z_s = 1, z_t = 0, z > 0$ where **z** = $\lceil \frac{1}{2} \rceil$ **z***G* 0 $\overline{1}$. **Then** $x = Dz_G/vol(S)$ **. Proof** Write out KKT conditions Show that the push method solves them. Slackness was "tricky" **Regularization** for sparsity 2 Need for normalization

David Gleich · Purdue

Simons

Insight 2

The PageRank push method implicitly solves a 1-norm regularized 2-norm cut approximation.

Insight 2' We get 3-digits of accuracy on P and 16-digits of accuracy on P'.

24
24

Insight 2''

These regularized diffusions (via push) should be more robust in data applications (and faster)! Thoeo roquilarizod diffusione *lyin* with 0 *< <* 1, **v** = **d***S/*vol(*S*), applications (and laster)!

minimize
$$
\frac{1}{2} \|\mathbf{B}_S \mathbf{z}\|_{C(\alpha),2}^2 + \kappa \|\mathbf{D}\mathbf{z}\|_1
$$

subject to $z_s = 1, z_t = 0, \mathbf{z} \ge 0$

Semi-supervised & diffusion-based learning

Gleich & Mahoney, In prep.

Given a graph, and a few labeled nodes, predict the labels on the rest of the graph.

Algorithm

- 1. Run a diffusion for each label (possibly with neg. info from other classes)
- 2. Assign new labels based on the value of each diffusion

David Gleich · Purdue

Vanilla SSL algorithms have a problem

simple environment. With three labels, only Zhou et al.'s di↵usion has correct predictions, whereas

This problem is worse on real data

David Gleich · Purdue Simons

<u>88</u>

Unifying theory and practice

Insight 1'

 C Diffusions are all *approximations to cuts.*

In spectral theory

from approximate We "sweep" over cuts eigenvectors!

29
29

Simons

David Gleich \cdot Purdue

Without these insights, we'd draw the wrong conclusion.

Gleich & Mahoney, In prep.

One more step …

Given a graph, and a few labeled nodes, predict the labels on the rest of the graph.

Algorithm

- 1. Run a diffusion for each label (possibly with neg. info from other classes)
- 2. Assign new labels based on the value of each diffusion

Gleich & Mahoney, In prep.

One more step …

Given a graph, and a few labeled nodes, predict the labels on the rest of the graph. **data data points**

Algorithm **0. Create a graph from the data**

- 1. Run a diffusion for each label (possibly with neg. info from other classes)
- 2. Assign new labels based on the value of each diffusion

David Gleich · Purdue

Semi-supervised Learning on Graphs

Zhou et al. NIPS (2003)

Does regularization help with sparse or dense graphs?

We introduce a few labeling mistakes

(c) Median improvement to error rate with regularization for digit prediction; various σ and 20% label mistakes

How do sparsity, density, and regularization of a diffusion play into the results in a controlled setting?

Figure 2: We artificially densify this graph to A*^k* based on a construction in the text to compare sparse

and dense di↵usions and regularization. The color indicates the magnitude of the di↵usion from the

circled nodes. The unavoidable errors are caused by a mislabeled node. This example illustrates how

regularizing di↵usions on dense graphs produces only a small e↵ect (b vs. d), whereas it has a big

e↵ect on sparse graphs (a vs. c). Also, the regularization is more immune to density (c vs. d).

(a) K2 sparse (b) K2 dense (c) RK2 sparse (d) RK2 dense graph and make it $\sum_{\ell=1}^K A^{\ell}$ $\frac{1}{2}$ more dense? circled nodes. The unavoidable errors are caused by a mislabeled node. This example illustrates how the unavoi
This example is example in this example in this example illustrates how the unavoidable in this example is exa How do we take a

regularizing di↵usions on dense graphs produces only a small e↵ect (b vs. d), whereas it has a big

e↵ect on sparse graphs (a vs. c). Also, the regularization is more immune to density (c vs. d).

Summary of robust diffusions

- 1. Use rank-based rounding
- 2. Use denser graphs if there are errors (if you can afford it).

We are trying to get some theory to quantify this effect This makes computation expensive!

References

Gleich and Mahoney – Algorithmic Anti-differentiation, ICML 2014 Gleich and Mahoney – Regularized diffusions, In prep

www.cs.purdue.edu/homes/dgleich/codes/l1pagerank

