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damentally limited); the second type 
models a diffusion of a virtual good 
(think of sending links or a virus spread-
ing on a network), which can be copied 
infinitely often. Google’s celebrated 
PageRank model uses a conservative 
diffusion to determine importance of 
pages on the Web [4], whereas those 
studying when a virus will continue to 
propagate found the eigenvalues of the 
non-conservative diffusion determine 
the answer [5]. Thus, just as in scientific 
computing, marrying the method to 
the model is key for the best scientific 
computing on social networks. 

Ultimately, none of these steps dif-
fer from the practice of physical sci-
entific computing. The challenges in 
creating models, devising algorithms, 
validating results, and comparing 
models just take on different chal-
lenges when the problems come from 
social data instead of physical mod-
els. Thus, let us return to our starting 
question: What does the matrix have 
to do with the social network? Just as 
in scientific computing, many inter-
esting problems, models, and meth-
ods for social networks boil down to 
matrix computations. Yet, as in the 
expander example above, the types of 
matrix questions change dramatical-
ly in order to fit social network mod-
els. Let’s see what’s been done that’s 
enticingly and refreshingly different 
from the types of matrix computa-
tions encountered in physical scien-
tific computing.

EXPANDER GRAPHS AND  
PARALLEL COMPUTING 
Recently, a coalition of folks from aca-
demia, national labs, and industry set 
out to tackle the problems in parallel 
computing and expander graphs. They 
established the Graph 500 benchmark 
(http://www.graph500.org) to measure 
the performance of a parallel com-
puter on a standard graph computa-
tion with an expander graph. Over the 
past three years, they’ve seen perfor-
mance grow by more than 1,000-times 
through a combination of novel soft-
ware algorithms and higher perfor-
mance parallel computers. But, there 
is still work left in adapting the soft-
ware innovations for parallel comput-
ing back to matrix computations for 
social networks.

Figure 1. In a standard scientific computing problem, we find the steady state heat 
distribution of a plate with a heat-source in the middle. This scientific problem 
is solved via a linear system. In a social diffusion problem, we are trying to find 
people who like the movie (labeled in dark orange) instead of people who don’t  
like the movie (labeled in dark purple). By solving a different linear system, we can 
determine who is likely to enjoy the movie (light orange).
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Figure 2. The network, or mesh, from a typical problem in scientific computing 
resides in a low dimensional space—think of two or three dimensions. These physical 
spaces put limits on the size of the boundary or “surface area” of the space given its 
volume. No such limits exist in social networks and these two sets are usually about 
the same size. A network with this property is called an expander network.
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1.  Attribute prediction
2.  Community detection
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4.  Find small conductance sets
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PageRank model uses a conservative 
diffusion to determine importance of 
pages on the Web [4], whereas those 
studying when a virus will continue to 
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ly in order to fit social network mod-
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from the types of matrix computa-
tions encountered in physical scien-
tific computing.
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(http://www.graph500.org) to measure 
the performance of a parallel com-
puter on a standard graph computa-
tion with an expander graph. Over the 
past three years, they’ve seen perfor-
mance grow by more than 1,000-times 
through a combination of novel soft-
ware algorithms and higher perfor-
mance parallel computers. But, there 
is still work left in adapting the soft-
ware innovations for parallel comput-
ing back to matrix computations for 
social networks.
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ing on a network), which can be copied 
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PageRank model uses a conservative 
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pages on the Web [4], whereas those 
studying when a virus will continue to 
propagate found the eigenvalues of the 
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validating results, and comparing 
models just take on different chal-
lenges when the problems come from 
social data instead of physical mod-
els. Thus, let us return to our starting 
question: What does the matrix have 
to do with the social network? Just as 
in scientific computing, many inter-
esting problems, models, and meth-
ods for social networks boil down to 
matrix computations. Yet, as in the 
expander example above, the types of 
matrix questions change dramatical-
ly in order to fit social network mod-
els. Let’s see what’s been done that’s 
enticingly and refreshingly different 
from the types of matrix computa-
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through a combination of novel soft-
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is still work left in adapting the soft-
ware innovations for parallel comput-
ing back to matrix computations for 
social networks.
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Uniformly localized "
solutions in flickr

plot(x)
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Our mission!
Understand how localization can help 
make diffusions robust to graph 
constructions and label mistakes
(and make everything faster too!) 
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Two types of localization
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Uniform (Strong)! Entry-wise (Weak)!

Localized vectors are not sparse, but they 
can be approximated by sparse vectors. 

Good global approximation 
using only a local region.
“Hard” to prove.
“Need” a graph property.

Good approximation for 
cuts and communities.
“Easy” to prove.
“Fast” algorithms
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We have three main results

1.  A new interpretation for the PageRank 
diffusion in relationship with a mincut 
problem.

2.  A new understanding of the scalable, 
localized PageRank “push” method as a 
regularized diffusion

3.  Insights on how this regularization and 
graph density helps to robustify 
diffusions.
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The PageRank problem & "
the Laplacian on undirected graphs

Combinatorial Laplacian L = D - A!
David Gleich · Purdue 9


The PageRank random surfer
1.  With probability beta, follow a random-walk step
2.  With probability (1-beta), jump randomly ~ dist. s.
Goal find the stationary dist. x!

x = (1 � �)
1X

k=0

�k
P

k
s1. (I � �AD

�1)x = (1 � �)s;

2. [↵D + L]z = ↵s where � = 1/(1 + ↵) and x = Dz.
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The s-t min-cut problem
Unweighted incidence matrix

Diagonal capacity matrix
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solve via max-flow.
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solve via network simplex 
or industrial LP.

Simons



The localized cut graph



Related to a construction 
used in “FlowImprove” "
Andersen & Lang (2007); and 
Orecchia & Zhu (2014)
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The localized cut graph
Connect s to vertices

in S with weight ↵ · degree

Connect t to vertices
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¯S with weight ↵ · degree
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Solve the s-t min-cut
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The localized cut graph
Connect s to vertices

in S with weight ↵ · degree

Connect t to vertices

in

¯S with weight ↵ · degree
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Solve the “electrical flow”  
s-t min-cut
minimize kB

S

xk
C(↵),2

subject to x

s

= 1, x

t

= 0
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s-t min-cut à PageRank 
Proof

Square and expand

the objective into

a Laplacian, then

apply constraints.
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The PageRank vector z that solves

(↵D + L)z = ↵s

with s = d

S

/vol(S) is a renormalized

solution of the electrical cut computation:

minimize kB
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PageRank à s-t min-cut
That equivalence works if s is degree-weighted.
What if s is the uniform vector? 
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Insight 1!
PageRank implicitly approximates the 
solution of these s-t mincut problems
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Insight 1’
This holds for a variety of diffusion 
methods for semi-supervised learning.
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Figure 3: The s, t-cut graphs associated with four di↵erent constructions for semi-supervised learning
on a graph. The labeled nodes are indicated by the blue and red colors. This construction is to predict
the blue-class. Both Zhou et al. and the Andersen-Lang variation only model the e↵ect of the current
class.

B Discussion of rounding the di↵usion vectors to class labels

Here, we discuss in greater detail a very important technical issue having to do with rounding, i.e.,
converting or translating the (typically real-valued) di↵usion values in the matrix Y into (a typically
discrete set of) class level predictions.

Value rounding The majority of existing rounding schemes in machine learning directly use the
actual values in the di↵usion matrix Y. For example, since (all else being equal) large values of Yi, j
suggest that node i should belong in class j, perhaps the simplest such rule is that suggested by Zhou
et al. [4]:

yi = argmax j Yi, j,

where yi is the predicted class label for node i. For the two-class case, there are a variety of heuristic
approaches to refine this vanilla prediction in light of the expected di↵erence in class occurrences,
degree variability, etc.

Rank rounding Spectral relaxations of balanced cut problems such as normalized cuts and quotient
cut suggest an alternative to value-based rounding: namely, don’t use the actual values in the matrix
Y, but instead round to classes based on the rank of the item in a sorted list for each di↵usion. For
example, let Ri, j be the rank of item i in the sorted list for Y:, j where the sort is in descending order.
(Thus, we sort the columns of Y such that large elements in column j of Y have small ranks in column
j of R). Then,

yi = argmin j Ri, j

predicts the class labels by finding the class with the smallest rank. In contrast to value rounding, this
rank rounding strategy is well-grounded in spectral graph theory and the theory of `2 cut problems [17].
Recall, for instance, that the celebrated Cheeger inequality requires a sweep over all cuts induced
by the order of the Fiedler vector in order to produce a bounded approximation to the underlying
normalized cut.10 This suggests that rank-based rounding will be more robust than value-based
ranking; and this is exactly what we find in our empirical results.

B.1 Value rounding versus rank rounding for relatively “nice” data

Here, we illustrate some of the discussion on value rounding versus rank rounding from Section B,
illustrating some of the subtlties even for relatively “nice” data.

Consider a graph with the adjacency matrix that is shown in Figure 4(a). Clearly, there are three fairly
well separated classes with a relatively small amounts of noise between them. The overall matrix

10Of course, if the problem is extremely structured in terms of the eigenvalue localization or, relatedly, the
separation into classes, then the sweep cut is unnecessary and the zero-crossing of the vector that is obtained
from value rounding will nicely map to a near-exact solution.

11

Seeds have 
weight 1.

Seeds have 
weight di.

Labeled nodes have edges to source/
sink. ZGL pins them



The Push Algorithm for PageRank
Proposed (in closest form) in Andersen, 
Chung, Lang (also by McSherry, Jeh & 
Widom, Berkhin) for fast approx. 
PageRank
Derived to show improved runtime for 
balanced solvers
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1.  Used for empirical studies 
of “communities”

2.  Local Cheeger inequality.
3.  Used for “fast Page-Rank 

approximation” 
4.  Works on massive graphs 

O(1 second) for 4 billion 
edge graph on a laptop.

5.  It yields weakly localized 
PageRank approximations!

Newman’s netscience!
379 vertices, 1828 nnz
Produce an ε-accurate entrywise 

localized PageRank vector in work
1
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Gauss-Seidel and "
Gauss-Southwell

SimonsDavid Gleich · Purdue 19


Methods to solve A x = b

x

(k+1) = x

(k ) + ⇢jej [Ax

(k+1)]j = [b]jUpdate such that

In words “Relax” or “free” the jth coordinate of your solution vector in 
order to satisfy the jth equation of your linear system.

Gauss-Seidel  repeatedly cycle through j = 1 to n
Gauss-Southwell  use the value of j that has the highest magnitude residual 

r

(k ) = b � Ax

(k )



PageRank Pull and Push for 
Gauss-Southwell/Seidel
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w/ access to in-links & degs.
PageRankPull

w/ access to out-links
PageRankPush
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Almost “the push” method

The 
Push 

Method!
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Only push “some” of the residual – If we want tolerance “eps” then 
push to tolerance “eps” and no further



The push method revisited
Let x be the output from the push method

with 0 < � < 1, v = dS/vol(S),

⇢ = 1, and ⌧ > 0.

Set ↵ =

1��
� ,  = ⌧vol(S)/�, and let zG solve:

minimize

1

2

kBSzk2

C(↵),2

+ kDzk
1

subject to zs = 1, zt = 0, z � 0

,

where z =

h
1

zG
0

i
.

Then x = DzG/vol(S).

Proof Write out KKT conditions

Show that the push method

solves them. Slackness was “tricky”

Regularization 
for sparsity
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Need for 
normalization
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Insight 2!
The PageRank push method 
implicitly solves a 1-norm regularized 
2-norm cut approximation. 
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Insight 2’
We get 3-digits of accuracy on P and 
          16-digits of accuracy on P’.
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Insight 2’’!
These regularized diffusions (via 
push) should be more robust in data 
applications (and faster)!
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Let x be the output from the push method

with 0 < � < 1, v = dS/vol(S),

⇢ = 1, and ⌧ > 0.

Set ↵ =

1��
� ,  = ⌧vol(S)/�, and let zG solve:
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Semi-supervised & "
diffusion-based learning
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Gleich & Mahoney,
In prep.

Given a graph, and a few labeled nodes, 
predict the labels on the rest of the graph.

Simons

Algorithm


1.  Run a diffusion for 
each label (possibly 
with neg. info from 
other classes)

2.  Assign new labels 
based on the value of 
each diffusion



Vanilla SSL algorithms have a problem
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(b) Zhou (3 labels) (c) Andersen-Lang (3 labels) (d) Joachims (3 labels)
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(e) Zhou (15 labels) (f) Andersen-Lang (15 labels) (g) Joachims (15 labels)

Figure 4: A study of the paradoxical e↵ects of value-based rounding on di↵usion-based learning in a
simple environment. With three labels, only Zhou et al.’s di↵usion has correct predictions, whereas
with 15 labels, none of the methods correctly predict the three classes. See the text for more about
the nature of the plots.

has 60 nodes. Class 1 has 30 nodes, class 2 has 10 nodes, and class 3 has 20 nodes. Thus, each
prediction matrix Y has three columns corresponding to each of the three classes. The remaining
subfigures show the matrix Y from the di↵usion-based learning methods we study: Zhou et al. (b, e);
the Andersen-Lang weighting variation (c, f); and Joachims’s method (d, g). The top panel in each of
the remaining subfigures shows the case of 3 labeled nodes (b, c, d), while the bottom panel in each
of the remaining subfigures shows the case of 15 labeled nodes (e, f, g). In each figure, note that each
column of Y is displayed as a separate line, color-coded according to one of the three class label.

Let’s consider the top row with one labeled node from each class, i.e., that corresponding to using 3
labeled nodes. The spikes in each vector represent the e↵ect of the labeled node on each di↵usion,
while the values on the remaining nodes are the value of the di↵usion for that node. Note that
only Zhou’s di↵usion with three labels and value-based rounding will correctly classify this simple
example, agreeing with the simple intuition. The Andersen-Lang variation su↵ers from a degree-bias
(in this simple case, it just weights Zhou’s di↵usion with the degree of the labeled node). Joachims’s
di↵usion misclassifies class 3 as class 1 because the near-clique like structure in class 1 dominates the
di↵usion e↵ects and the negative labels in class three are not enough to recover. Thus, the negative
labels have the e↵ect of changing the weight of each di↵usion.

When we move to 15 labels, we label one node from each class as before and the remaining 12 labels
are chosen uniformly at random. None of the methods classify the examples correctly and they all
uniformly predict class 1. This occurs because there are more nodes randomly selected from class
1, and it receives a higher overall weight. We make two observations here. First, there are a variety
of very reasonable and well-motivated heuristic corrections that would eliminate these e↵ects and
restore the performance of value based rounding, and the introduction of these heuristics is common.
Second, the rank-based rounding has good performance in all these cases, regardless of the particular
di↵usion employed. To see this, look at the ranking (essentially, fix a color, and move along the Y
axis from the top, and observe which nodes are “hit”) on each color in the bottom panel of each of
these subfigures. All of the di↵usion show raised levels for the correct class, and these correct classes
are revealed by the rank-based rounding scheme, thus yielding far more robust predictions.

C USPS digits

Next, we move on to USPS digits example.
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subfigures show the matrix Y from the di↵usion-based learning methods we study: Zhou et al. (b, e);
the Andersen-Lang weighting variation (c, f); and Joachims’s method (d, g). The top panel in each of
the remaining subfigures shows the case of 3 labeled nodes (b, c, d), while the bottom panel in each
of the remaining subfigures shows the case of 15 labeled nodes (e, f, g). In each figure, note that each
column of Y is displayed as a separate line, color-coded according to one of the three class label.

Let’s consider the top row with one labeled node from each class, i.e., that corresponding to using 3
labeled nodes. The spikes in each vector represent the e↵ect of the labeled node on each di↵usion,
while the values on the remaining nodes are the value of the di↵usion for that node. Note that
only Zhou’s di↵usion with three labels and value-based rounding will correctly classify this simple
example, agreeing with the simple intuition. The Andersen-Lang variation su↵ers from a degree-bias
(in this simple case, it just weights Zhou’s di↵usion with the degree of the labeled node). Joachims’s
di↵usion misclassifies class 3 as class 1 because the near-clique like structure in class 1 dominates the
di↵usion e↵ects and the negative labels in class three are not enough to recover. Thus, the negative
labels have the e↵ect of changing the weight of each di↵usion.

When we move to 15 labels, we label one node from each class as before and the remaining 12 labels
are chosen uniformly at random. None of the methods classify the examples correctly and they all
uniformly predict class 1. This occurs because there are more nodes randomly selected from class
1, and it receives a higher overall weight. We make two observations here. First, there are a variety
of very reasonable and well-motivated heuristic corrections that would eliminate these e↵ects and
restore the performance of value based rounding, and the introduction of these heuristics is common.
Second, the rank-based rounding has good performance in all these cases, regardless of the particular
di↵usion employed. To see this, look at the ranking (essentially, fix a color, and move along the Y
axis from the top, and observe which nodes are “hit”) on each color in the bottom panel of each of
these subfigures. All of the di↵usion show raised levels for the correct class, and these correct classes
are revealed by the rank-based rounding scheme, thus yielding far more robust predictions.

C USPS digits

Next, we move on to USPS digits example.
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(b) � = 2.5, no errors,
rank rounding

� Method Average training labels per class
2 5 7 10

0.8 RK2 0.34% 0.22% 0.25% -0.02%
0.8 RK3 0.5% 0.39% 1.1% 1.1%

1.25 RK2 0.34% 0.41% 0.24% 0.22%
1.25 RK3 0.4% 0.39% 0.36% 0.42%

2.5 RK2 0% 0% 0% 0%
2.5 RK3 0% 0% 0% 0%

(c) Median improvement to error rate with regularization
for digit prediction; various � and 20% label mistakes

Figure 1: Results that show the di↵erence between value and rank based rounding (a) and (b) on
dense graphs, large �—there is less of an e↵ect with sparse graphs, small �—and how the robustness
from regularization decays as we increase �. We used 50 trials for the regions and statistics.

The problem setup we consider is the digit labeling task [4]. We construct a weighted graph between
images of the digits that depends on a radial basis function width �. (See the supplement for the
details.) Choosing � = 2.5 results in a dense graph, where each node has significant connections to
many other images, whereas � = 0.8 yields a much sparser graph with fewer significant connections.
We randomly pick labeled nodes in the input after picking one labeled node in each class; and we
consider four methods,8 where we used ↵ = 0.01/0.99 ⇡ 0.0101, as in the prior work [4]. The
four methods are: (K2) the Andersen-Lang weighting on Zhou’s di↵usion; (RK2) an ACL sparsity-
regularized version of K2 such that the final result has between 33% and 50% non-zeros; (K3) the
weighted version of Zhou’s di↵usion onA; and (RK3) an ACL sparsity-regularized version of K3 at
the same non-zero limit.9

5.1 Value rounding versus rank rounding

Figure 1(a) and (b) illustrate the e↵ect of rank vs. value rounding for this task in the case that no digits
have any labeling errors. For value-based rounding, the error rates without regularization are worse
than random guessing and the method basically predicts just one class. This is not a bug and there is
a simple illustration of this phenomenon in the supplementary materials. Rank-based rounding shows
that there is no real di↵erence between the regularized and non-regularized di↵usions. This shows
how we are able to make the method robust to di↵erences in graph construction – in the case � ⇡ 0.8,
then value-based rounding is slightly better than rank-based with many training samples (this is not
shown due to space). Hence, the datasets can be engineered through careful construction and cross
validation to perform well with value based rounding, but one needs to be thoughtful of a myriad of
perplexing e↵ects that rank-based rounding avoids.

5.2 The e↵ect of regularization

In the previous example, we saw that using the regularized di↵usions resulted in much better
predictions using value-based rounding, yet did not produce any di↵erence when using the rank-based
rounding. We found regularization to provide additional robustness when the graph was extremely
sparse � = 0.8 and when we also introduce mistakes in the given labels. We always ensure that there
is at least one correctly labeled node in each class. We study the relative change in error rate when
using a regularized di↵usion. The table in Figure 1(c) shows the median percent improvement in the
error rate as we vary the number of labels between 20 and 100. These results show a decaying benefit
to regularization as we increase �.

Why sparse graphs with errors? We found the case when regularization helps modestly surprising.
One of our initial intuitions was that regularization should help with large � and with mislabeled

8We only describe the results of Zhou et al.’s di↵usion-based methods since our preliminary study showed
they had better performance than the other methods.

9We implement a simple bisection search procedure to find a value of  that produces the required non-zeros.
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(a) K2 sparse (b) K2 dense (c) RK2 sparse (d) RK2 dense

Figure 2: We artificially densify this graph to Ak based on a construction in the text to compare sparse
and dense di↵usions and regularization. The color indicates the magnitude of the di↵usion from the
circled nodes. The unavoidable errors are caused by a mislabeled node. This example illustrates how
regularizing di↵usions on dense graphs produces only a small e↵ect (b vs. d), whereas it has a big
e↵ect on sparse graphs (a vs. c). Also, the regularization is more immune to density (c vs. d).

points. Yet our experiments showed no e↵ect for regularization. On reflection, however, this behavior
makes sense for two reasons. The first is intuitive. The second is a technical result about eigenvector
localization.

Intuitively, if the network is sparse, then most of our models assume the “label flow shoots through”
the network quickly due to both the electrical flow and the small value of ↵. Sparse networks allow
the signal to propagate too quickly, and thus, any mistake propagates throughout the network. In this
case, the regularized solutions exert a correcting weak e↵ect themselves by restricting the “electrical
flow.” If the network is dense, then regularization doesn’t significantly change the solution because if
the signal propagates anywhere, it propagates everywhere (think of an electrical flow or di↵usion
in a clique). And if the regularization does change the solution, then it regularizes the weak signal
away. (See the supplement). We confirm this intuition in Figure 2 on the sparse network representing
co-authorship in the network science community [18]. We create a dense version of this graph via
Ak =

Pk
`=0 A`, for k = 5. The figure shows that there is hardly any di↵erence between the regularized

di↵usions in either graph (compare (c) and (d)), yet the di↵usion on the dense graph (b) shows
relatively smaller values on the avoidable errors than the sparse graph (a). Thus, using a dense
graph construction has the e↵ect of naturally correcting mistakes, whereas these need to be explicitly
regularized away in sparse graphs.

Technically, sparse graphs exhibit both localized eigenvectors [11] and other localized rank struc-
ture [19]. When we regularize in the sparse case, we explicitly regularize and bias the results towards
the localization in the eigenvectors [10, 11]. Using dense versions of the graph exhibits an regular-
ization that biases the results towards this same eigenvector localization, but implicitly instead of
explicitly.

This case illustrates an interesting trade-o↵ between the graph construction and algorithmic properties.
Regularized spectral methods on sparse graph graphs are scalable techniques (using the ACL push
method) that detect the same structures and features in the data as typical dense constructions.

6 Discussion and conclusion

By extending a framework developed recently by Gleich and Mahoney [1] to understand the regular-
ization properties implicit in scalable worst-case approximation algorithms, we have examined the
robustness properties of several related di↵usion-based machine learning methods that have been pop-
ular in recent years. We have shown several examples of the subtleties involved in a vanilla application
of di↵usion-based machine learning methods. We have also shown that improved robustness can
be obtained in one or both or two ways: first, using the more principled rank-based rounding rather
than the more common value-based rounding; and second, by using the scalable “push procedure”
of Andersen, Chung, and Lang (ACL) [2]. The latter allows us to obtain improved scalability as
well as implicit sparsity-inducing regularization. Given the ubiquity of eigenvector-based and related
di↵usion-based algorithms, we expect that these ideas will have much broader applicability.
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(a) K2 sparse (b) K2 dense (c) RK2 sparse (d) RK2 dense

Figure 2: We artificially densify this graph to Ak based on a construction in the text to compare sparse
and dense di↵usions and regularization. The color indicates the magnitude of the di↵usion from the
circled nodes. The unavoidable errors are caused by a mislabeled node. This example illustrates how
regularizing di↵usions on dense graphs produces only a small e↵ect (b vs. d), whereas it has a big
e↵ect on sparse graphs (a vs. c). Also, the regularization is more immune to density (c vs. d).

points. Yet our experiments showed no e↵ect for regularization. On reflection, however, this behavior
makes sense for two reasons. The first is intuitive. The second is a technical result about eigenvector
localization.

Intuitively, if the network is sparse, then most of our models assume the “label flow shoots through”
the network quickly due to both the electrical flow and the small value of ↵. Sparse networks allow
the signal to propagate too quickly, and thus, any mistake propagates throughout the network. In this
case, the regularized solutions exert a correcting weak e↵ect themselves by restricting the “electrical
flow.” If the network is dense, then regularization doesn’t significantly change the solution because if
the signal propagates anywhere, it propagates everywhere (think of an electrical flow or di↵usion
in a clique). And if the regularization does change the solution, then it regularizes the weak signal
away. (See the supplement). We confirm this intuition in Figure 2 on the sparse network representing
co-authorship in the network science community [18]. We create a dense version of this graph via
Ak =

Pk
`=0 A`, for k = 5. The figure shows that there is hardly any di↵erence between the regularized

di↵usions in either graph (compare (c) and (d)), yet the di↵usion on the dense graph (b) shows
relatively smaller values on the avoidable errors than the sparse graph (a). Thus, using a dense
graph construction has the e↵ect of naturally correcting mistakes, whereas these need to be explicitly
regularized away in sparse graphs.

Technically, sparse graphs exhibit both localized eigenvectors [11] and other localized rank struc-
ture [19]. When we regularize in the sparse case, we explicitly regularize and bias the results towards
the localization in the eigenvectors [10, 11]. Using dense versions of the graph exhibits an regular-
ization that biases the results towards this same eigenvector localization, but implicitly instead of
explicitly.

This case illustrates an interesting trade-o↵ between the graph construction and algorithmic properties.
Regularized spectral methods on sparse graph graphs are scalable techniques (using the ACL push
method) that detect the same structures and features in the data as typical dense constructions.

6 Discussion and conclusion

By extending a framework developed recently by Gleich and Mahoney [1] to understand the regular-
ization properties implicit in scalable worst-case approximation algorithms, we have examined the
robustness properties of several related di↵usion-based machine learning methods that have been pop-
ular in recent years. We have shown several examples of the subtleties involved in a vanilla application
of di↵usion-based machine learning methods. We have also shown that improved robustness can
be obtained in one or both or two ways: first, using the more principled rank-based rounding rather
than the more common value-based rounding; and second, by using the scalable “push procedure”
of Andersen, Chung, and Lang (ACL) [2]. The latter allows us to obtain improved scalability as
well as implicit sparsity-inducing regularization. Given the ubiquity of eigenvector-based and related
di↵usion-based algorithms, we expect that these ideas will have much broader applicability.
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Figure 2: We artificially densify this graph to Ak based on a construction in the text to compare sparse
and dense di↵usions and regularization. The color indicates the magnitude of the di↵usion from the
circled nodes. The unavoidable errors are caused by a mislabeled node. This example illustrates how
regularizing di↵usions on dense graphs produces only a small e↵ect (b vs. d), whereas it has a big
e↵ect on sparse graphs (a vs. c). Also, the regularization is more immune to density (c vs. d).

points. Yet our experiments showed no e↵ect for regularization. On reflection, however, this behavior
makes sense for two reasons. The first is intuitive. The second is a technical result about eigenvector
localization.

Intuitively, if the network is sparse, then most of our models assume the “label flow shoots through”
the network quickly due to both the electrical flow and the small value of ↵. Sparse networks allow
the signal to propagate too quickly, and thus, any mistake propagates throughout the network. In this
case, the regularized solutions exert a correcting weak e↵ect themselves by restricting the “electrical
flow.” If the network is dense, then regularization doesn’t significantly change the solution because if
the signal propagates anywhere, it propagates everywhere (think of an electrical flow or di↵usion
in a clique). And if the regularization does change the solution, then it regularizes the weak signal
away. (See the supplement). We confirm this intuition in Figure 2 on the sparse network representing
co-authorship in the network science community [18]. We create a dense version of this graph via
Ak =

Pk
`=0 A`, for k = 5. The figure shows that there is hardly any di↵erence between the regularized

di↵usions in either graph (compare (c) and (d)), yet the di↵usion on the dense graph (b) shows
relatively smaller values on the avoidable errors than the sparse graph (a). Thus, using a dense
graph construction has the e↵ect of naturally correcting mistakes, whereas these need to be explicitly
regularized away in sparse graphs.

Technically, sparse graphs exhibit both localized eigenvectors [11] and other localized rank struc-
ture [19]. When we regularize in the sparse case, we explicitly regularize and bias the results towards
the localization in the eigenvectors [10, 11]. Using dense versions of the graph exhibits an regular-
ization that biases the results towards this same eigenvector localization, but implicitly instead of
explicitly.

This case illustrates an interesting trade-o↵ between the graph construction and algorithmic properties.
Regularized spectral methods on sparse graph graphs are scalable techniques (using the ACL push
method) that detect the same structures and features in the data as typical dense constructions.

6 Discussion and conclusion

By extending a framework developed recently by Gleich and Mahoney [1] to understand the regular-
ization properties implicit in scalable worst-case approximation algorithms, we have examined the
robustness properties of several related di↵usion-based machine learning methods that have been pop-
ular in recent years. We have shown several examples of the subtleties involved in a vanilla application
of di↵usion-based machine learning methods. We have also shown that improved robustness can
be obtained in one or both or two ways: first, using the more principled rank-based rounding rather
than the more common value-based rounding; and second, by using the scalable “push procedure”
of Andersen, Chung, and Lang (ACL) [2]. The latter allows us to obtain improved scalability as
well as implicit sparsity-inducing regularization. Given the ubiquity of eigenvector-based and related
di↵usion-based algorithms, we expect that these ideas will have much broader applicability.
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Summary of robust diffusions

1.  Use rank-based rounding
2.  Use denser graphs if there are errors (if you 

can afford it).
We are trying to get some theory to quantify this effect
This makes computation expensive! 
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