Comparing the Theory and Practice of Spectral Algorithms to Combinatoria Algorithms for Expander Ratio, Normalized Cut, Clustering and Conductance

Dorit S. Hochbaum University of California, Berkeley

Notations and Preliminaries

An undirected graph G=(V,E)
$$n = |V|$$
 $m = |E|$
Edges' weights w_{ij} $\forall [i, j] \in E$
Nodes' weights q_i $\forall i \in V$
Capacity of a Cut $C(A,B) = \sum_{i \in A, j \in B} w_{ij}$
Weighted degree $d_i = \sum_{j \mid (i,j) \in E} w_{ij}$
Degree Volume $d(A) = \sum_{i \in A} d_i = 2C(A,A) + C(A,\overline{A})$
Node Volume $p_{\text{Dorit Hochbaum UC Berkeley}} = \sum_{i \in A} q_i$

2

The graph expander problem

 The graph expander problem: Expander graphs are used to generate good error correcting codes, and in cryptography.

$$\min_{|S| \le \frac{n}{2}} \frac{C(S,\overline{S})}{|S|} = \min_{S \subset V} \frac{C(S,\overline{S})}{\min\{S|,|\overline{S}|\}}$$

The Cheeger problem

The Cheeger problem, normalized cut: for effective segmentation of images.

$$\min_{d(S) \le \frac{d(V)}{2}} \frac{C(S,\overline{S})}{d(S)} = \min_{S \subset V} \frac{C(S,\overline{S})}{\min\{d(S), d(\overline{S})\}}$$

Also called Conductance, when the underlying graph is directed and used to assess the convergence rate of Markov chain processes.

A generalization: quantity normalized cut

 The q-normalized cut of a graph: Useful in clustering where q_i is a "characteristic" (e.g. texture) of node i

$$\min_{q(S) \le \frac{q(V)}{2}} \frac{C(S,\overline{S})}{q(S)} = \min_{S \subset V} \frac{C(S,\overline{S})}{\min\{q(S), q(\overline{S})\}}$$

Formulations summary

The graph expander problem $\min_{|S| \le \frac{n}{2}} \frac{C(S, \overline{S})}{|S|}$ The Cheeger problem, Normalized cut, Conductance $h_G = \min_{d(S) \le \frac{d(V)}{2}} \frac{C(S,S)}{d(S)}$ The q-normalized cut of a graph $\min_{q(S) \le \frac{q(V)}{2}} \frac{C(S,\overline{S})}{q(S)}$

An intuitive clustering criterion

Find a cluster that combines two objectives: One, is to have large similarity within the cluster, and to have small similarity between the cluster its complement.

The combination of the two objectives can be expressed as:

$$\min_{S \subset V} \frac{C(S, \bar{S})}{C(S, S)} \quad \text{or}$$
$$\min_{S \subset V} C(S, \bar{S}) - \lambda C(S, S) \quad \text{or}$$

We call this problem **normalized-cut-prime**, or **NC**'.

$$\min_{S \subset V} C_1(S, \bar{S}) - \lambda C_2(S, S)$$

Normalized Cut and NC'

Shi and Malik 2001:

Normalized cut: NP-hard

 Sharon et al. 2007 called this problem normalized cut:

Normalized cut': NP-hard?

 $\min_{S \subset V} \frac{C(S,\overline{S})}{d(S)} + \frac{C(S,\overline{S})}{d(\overline{S})}$

How do NC and NC' compare [H10]

Matrix Representation

The Laplacian Matrix UC Berkele $\mathcal{L} = D - W$

Two-terms forms of the problems:

Expander s-normalized

Cheeger constant Normalized Cut

Half-q-normalized q-normalized

Single and two-term forms are within a factor of 2:

Expander \leftrightarrow S-normalized $\frac{1}{2}(S - normalized) \le Expander \le (S - normalized)$

Cheeger
$$\leftrightarrow$$
 Normalized Cut
 $\frac{1}{2}(NC) \leq Cheeger \leq (NC)$

Half-q-normalized \leftrightarrow q-normalized

1

$$\frac{1}{2}(q - normalized) \le half - q - normalized \le (q - normalized)$$

Two terms expressions and the Rayleigh ratio (Lemma 3.1, [H13])

A special case of this was shown by Shi and Malik, for q(S)=d(S).

The combinatorial versus the spectral continuous relaxations

Combinatorial relaxation of Raleigh ratio Problem

The spectral method

An optimal solution is achieved for $\mathcal{L}y = \lambda Qy$

Where λ is the smallest non-zero eigenvalue (Fiedler Eigenvalue). We solve for the eigenvector z: $(Q^{-1/2} \mathcal{L}Q^{-1/2})z = \lambda z$

and set $y = Q^{-1/2}z$ which solves the continuous relaxation.

Solving the combinatorial relaxation

$y_i = \begin{cases} 1 & i \in S \\ -b & otherwise \end{cases}$

The combinatorial relaxation Rayleigh problem

Lemma 2: $\alpha(b) = \min_{y \in \{-b,1\}} \frac{y^T (D - W) y}{y^T Q y} = \min_{\emptyset \neq S \subset V} \frac{(1+b)^2 C(S,\overline{S})}{q(S) + b^2 q(\overline{S})}$ For all b, Two - term $\ge \alpha(b)$ Single - term $\ge \frac{\alpha(b)}{2}$ $(S - normalized), (NC), (q - normalized) \ge \alpha(b)$ $Expander, Cheeger, half - q - normalized \ge \frac{\alpha(b)}{2}$

Recall Lemma 1:

$$\min_{\substack{y^T Q \bar{1} = 0, \\ y \in \{-b,1\}}} \frac{y^T (D - W) y}{y^T Q y} = \min_{\emptyset \neq S \subset V} \frac{C(S, \overline{S})}{q(S)} + \frac{C(S, \overline{S})}{q(\overline{S})}$$

Dorit Hochbaum UC Berkeley

Solving the combinatorial Rayleigh problem optimally

The problem is a ratio problem

General technique for ratio Problems: The λ -question

$$\min_{x\in F}\frac{f(x)}{g(x)} < \lambda ?$$

can be solved if one can solve the following λ -question:

$$f(x) - \lambda g(x) < 0?$$

*This λ is unrelated to an eigenvector –just a parameter

Solving the λ -question

• The λ -question of whether the value of RRP is less than λ is equivalent to determining whether: $\min_{v_i \in \{-b,1\}} y^T (D-W) y - \lambda y^T Q y < 0?$

 \Downarrow OR (from Lemma 1) \Downarrow

Linearized Rayleigh ratio problem (RRP)

$$\left\{\min_{S\subset V}(1+b)^2 C(S,\overline{S}) - \lambda \left[q(S) + b^2 q(\overline{S})\right]\right\} < 0?$$

The graph G_{st} for testing the λ -question (looks arbitrary, but not to worry - it works, as shown next)

Dorit Hochbaum UC Berkeley

It works because the problem can be formulated as "monotone integer program"

Theorem

The source set of a minimum cut in the graph G_{ST} is an optimal solution to the linearized (RRP) (here $T = \overline{S}$)

Proof
$$C(S \cup \{s\}, T \cup \{t\}) = \lambda q(T) + \lambda b^2 q(S) + C(S, T) =$$

 $= \lambda (1 + b^2) q(V) - \lambda q(S) - \lambda b^2 q(T) + C(S, T) =$
 $= \operatorname{const} - \lambda q(S) - \lambda b^2 q(T) + C(S, T) =$
 $= \operatorname{const} + C(S, T) - \lambda [q(S) + b^2 q(T)] =$
 $= \operatorname{const} + (RRP)$
 $= \operatorname{const} + (RRP)$

Simplifying the graph

Scaling arcs weights

Scaling arcs weights

The Simplified equivalent graph

Solving the parametric min st cut

- The problem is a *parametric* cut problem: This is a graph setup when source adjacent arcs are monotone nondecreasing and sink adjacent are monotone nonincreasing (for b<1) with the parameter.
- A parametric cut problem can be solved in the complexity of a single minimum cut (plus finding the zero of n monotone functions) [GGT89], [Ho8].
- Here we let the parameter be β

In G_{st}

- The cut problem in the graph G_{st}, as a function of β is parametric (the capacities are linear in the parameter on one side and independent of it on the other).
- In a parametric graph the sequence of source sets of cuts for increasing source-adjacent capacities is *nested*.
- There are no more than n breakpoints for β.
 There are k≤n nested source sets of minimum cuts.

Solving for all values of b efficiently

For

$$\beta = \begin{cases} \lambda \frac{1-b}{1+b} & b < 1 \\ \lambda \frac{b-1}{1+b} & b \ge 1 \end{cases}$$

- Given the values of β at the breakpoints, we can generate, for each value of b, *all* the breakpoints.
- Consequently, by solving once the parametric problem for β we obtain simultaneously, *all the breakpoint solutions for all b*, in the complexity of a single minimum cut.
- To solve for the minimum ratio: For each b we find the last (largest value) breakpoint where the objective value <o.

Recall problem NC'

It has the same solution as

Comparison between NC' and the spectral method

$$NC = 35 \cdot 10^{-4}$$
 $NC = 1.702 \cdot 10^{-4}$

Original image

Eigenvector result

NC' result

Another comparison

 $NC = 1.466 \cdot 10^{-4}$ $NC = 127 \cdot 10^{-4}$

Original image

Eigenvector result

NC' result

Empirical testing for the general problems

- For normalized cut di is the sum of similarity weights.
- For q-normalized cut, there are, in addition to similarity weights defining the Laplacian, also node weights determined by entropy.
- Exponential similarity weights are applied.
- Total of 20 cases tested.
- Size of images is small due to spectral method software limitations.

The 20 images

Scalability of NC' versus the spectral algorithm (Shi)

A comparison of NC values of NC' with the spectral algorithm

A comparison of NC values of NC' with the sweep spectral algorithm

The performance for spectral sweep [H,Cheng, Bertelli13]

For h_G the Cheeger Constant, λ_1 the Fielder eigenvalue,

$$\frac{\lambda_1}{2} \le h_G \le \sqrt{2\lambda_1}.\tag{1}$$

The proof of the second inequality of the above bound, introduces a bipartition generated by applying the spectral sweep technique to the Fiedler eigenvector to find a lowest value bipartition for the Cheeger constant's objective. Let the Cheeger constant objective value for this bipartition be denoted by h_{SWEEP} , then at best the sweep solution has the same upper bound as the optimal solution:

$$h_G \le h_{SWEEP} \le \sqrt{2\lambda_1} \le 2\sqrt{h_G}.$$
(2)

For NC_{SWEEP} be the lowest value of a bipartition for the normalized cut objective, generated by the spectral sweep technique on the Fiedler eigenvector in the spectral method. (Note: NC_{SWEEP} and h_{SWEEP} may not correspond to the same bipartition.) Let $NC(h_{SWEEP})$ be the objective value of normalized cut for the bipartition that generates the value of h_{SWEEP} , then the following inequality holds

$$NC_{SWEEP} \leq NC(h_{SWEEP}) \leq 2h_{SWEEP}, \quad (3)$$

Combining $h_{SWEEP} \leq 2\sqrt{h_G}$ from (2) with (3),

 $NC_{SWEEP} \le 2h_{SWEEP} \le 4\sqrt{h_G} \le 4\sqrt{NC_G} \le 4\sqrt{NC_{NC'}}.$

Subjective Visual Segmentation Quality Comparison

Normalized Cut

Combinatorial

Spectral

Subjective Visual Segmentation Quality Comparison (cont.)

Normalized Cut (cont.)

Combinatorial

Dorit Hochbaum UC Berkeley

Spectral

Subjective Visual Segmentation Quality Comparison (cont.)

q-Normalized Cut (Entropy)

120

Combinatorial

Spectral

Subjective Visual Segmentation Quality Comparison (cont.)

q-Normalized Cut (Entropy) (cont.)

Combinatorial

The benefit of nested cuts in providing better segmentation quality

Normalized Cut

Cut presenting subjectively better visual segmentation

Cut minimizing objective function value

The benefit of nested cuts in providing better segmentation quality (cont.)

Normalized Cut (cont.)

Cut presenting subjectively better visual segmentation

120

Cut minimizing objective function value

The benefit of nested cuts in providing better segmentation quality (cont.)

q-Normalized Cut (Entropy)

Cut presenting subjectively better visual segmentation

Cut minimizing objective function value

The benefit of nested cut in providing better segmentation quality (cont.)

q-Normalized Cut (Entropy) (cont.)

Cut presenting subjectively better visual segmentation

Cut minimizing objective function value

The benefit of defining node weights as entropy

Cut presenting subjectively best visual segmentation using q-normalized cut 100 120 140 160 120

Cut presenting subjectively best visual segmentation using normalized cut

Dorit Hochbaum UC Berkeley

The benefit of defining node weights as entropy (cont.)

Cut presenting subjectively best visual segmentation using q-normalized cut

Cut presenting subjectively best visual segmentation using normalized cut

Conclusions

- The combinatorial technique provides better visual results in image segmentation.
- The combinatorial technique is faster than the spectral method (and requires substantially less storage)
- The combinatorial technique gives, on average, better quality solutions to several clustering problems.
- We used $\min_{S \subset V} \frac{C_1(S, \overline{S})}{C_2(S, S)}$

for: gene expression; knee

cartilage volume computation (OA); pattern recognition; video tracking; enhancing nuclear detectors capabilities; drug efficacy studies, and general data mining. 63

References

1. Dorit S. Hochbaum.

Polynomial time algorithms for ratio regions and a variant of normalized cut.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (5), pp. 889-898, May 2010.

2. Dorit S. Hochbaum.

A polynomial time algorithm for Rayleigh ratio on discrete variables:

Replacing spectral techniques for expander ratio, normalized cut and Cheeger constant.

Operations Research, Vol. 61, No. 1, January-February 2013, pp. 184-198.

3. Dorit S. Hochbaum, Cheng Lu, Erik Bertelli.

Evaluating Performance of Image Segmentation Criteria and Techniques.

EURO Journal on Computational Optimization, Vol 1:1-2, May 2013, pp. 155-180.

Questions

Prof. Dorit S. Hochbaum <u>hochbaum@ieor.berkeley.edu</u> <u>http://www.ieor.berkeley.edu/~hochbaum/</u>

Lemma 1's Proof

• Proof:

$$y_{i} = \begin{cases} 1 & \text{if } i \in S \\ -b & \text{if } i \in T = \overline{S} \end{cases}$$

$$y^{T}Qy = q(S) + b^{2}q(T) \qquad y^{T}Q\mathbf{1} = 0 \Leftrightarrow b = \frac{q(S)}{q(T)}$$

$$y^{T}\mathcal{L}y = y^{T}Dy - y^{T}Wy$$

$$= \sum_{i \in S} d_{i} + b^{2}\sum_{i \in \overline{S}} d_{i} - [C(S,S) - 2bC(S,\overline{S}) + b^{2}C(\overline{S},\overline{S})]$$

$$= C(S,S) + C(S,\overline{S}) + b^{2}C(S,\overline{S}) + b^{2}C(\overline{S},\overline{S})$$

$$-[C(S,S) - 2bC(S,\overline{S}) + b^{2}C(\overline{S},\overline{S})]$$

$$= (1 + b^{2} + 2b)C(S,\overline{S}) = (1 + b^{2} + 2b)C(S,\overline{S})$$

Lemma 1's Proof

72

Lemma 1's proof

$$\min_{\substack{y^T Q \overline{1} = 0 \\ y \in \{-b,1\}}} \frac{y^T \mathcal{L} y}{y^T Q y} = \min_{S \subset V} C(S, \overline{S}) \left[\frac{1}{q(S)} + \frac{1}{q(\overline{S})}\right]$$