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 The graph expander problem: 
 Expander graphs are used to generate  good 

error correcting codes, and in cryptography.  
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 The Cheeger problem, normalized cut: 
  for effective segmentation of images. 
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Also called Conductance, when the underlying 
graph is directed and used to assess the 
convergence rate of Markov chain processes. 
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 The q-normalized cut of a graph:   
 Useful in clustering where qi is a 

“characteristic” (e.g. texture) of node i 
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 The graph expander problem 
 
 

 The Cheeger problem, Normalized cut, 
Conductance 

 
 The q-normalized cut of a graph 
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Find a cluster that combines two objectives: 
One, is to have large similarity within the cluster, and 
to have small similarity between the cluster its complement. 

The combination of the two objectives can be expressed as: 

We call this problem 
normalized-cut-prime, 
or NC’. 
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 Shi and Malik 2001: 
 

 
 Sharon et al. 2007 

called this problem 
normalized cut: 

( )
( )

( )
( )Sd

SSC
Sd
SSC

VS

,,min +
⊂

( )
( )SSC

SSC
VS ,

,min
⊂Normalized cut’: NP-hard? 

Normalized cut: NP-hard 
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Expander 
s-normalized S
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Two-terms forms of the problems: 
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    Expander ↔ S-normalized 

( ) ( )normalizedSExpandernormalizedS −≤≤−
2
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Cheeger ↔ Normalized Cut 
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Half-q-normalized ↔ q-normalized 
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A special case of this was shown by Shi and Malik, 
for q(S)=d(S).  

Lemma 1 
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The spectral continuous relaxation Combinatorial relaxation of Raleigh ratio Problem 
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Qyy λ=L
Where λ is the smallest non-zero eigenvalue  
(Fiedler Eigenvalue).  We solve for the eigenvector z: 

( ) zzQQ λ=−− 2121 L

and set zQy 21−= which solves the continuous relaxation. 

An optimal solution is achieved for  
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Lemma 2: 
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General technique for ratio 
Problems: The λ-question  
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can be solved if one can solve the following λ-question: 

( ) ( ) ?0<− xgxf λ

 The problem is a ratio problem 

*This λ is unrelated to an eigenvector –just a parameter 
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 The λ-question of whether the value of RRP is 
less than λ is equivalent to determining 
whether: 
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Theorem 
The source set of a minimum cut in the graph GST is an optimal 
solution to the linearized (RRP)  (here  
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 The problem is a parametric cut problem: This is a graph 
setup when source adjacent arcs are monotone 
nondecreasing and sink adjacent are monotone 
nonincreasing (for b<1) with the parameter. 

 A parametric cut problem can be solved in the complexity 
of a single minimum cut (plus finding the zero of n 
monotone functions) [GGT89], [H08]. 

  Here we let the parameter be β  
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 The cut problem in the graph Gst, as a 
function of β is parametric (the capacities are 
linear in the parameter on one side and 
independent of it on the other). 

 In a parametric graph the sequence of source 
sets of cuts for increasing source-adjacent 
capacities is nested. 

 There are no more than n breakpoints for β.  
 There are k≤n nested source sets of minimum 

cuts. 
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 For 
 
 
 

 Given the values of β at the breakpoints, we can generate, 
for each value of b, all the breakpoints.  

 Consequently, by solving once the parametric problem for 
β we obtain simultaneously, all the breakpoint solutions for 
all b, in the complexity of a single minimum cut. 

 To solve for the minimum ratio: For each b we find the last 
(largest value) breakpoint where the objective value <0. 
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Original Image Shi & Malik Algorithm Here 

41035 −⋅=NC 410702.1 −⋅=NC

Eigenvector result NC’ result Original image 
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Original Image Shi & Malik Algorithm Here 

410127 −⋅=NC 410466.1 −⋅=NC

Eigenvector result NC’ result Original image 
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 For normalized cut di is the sum of similarity 
weights. 

 For q-normalized cut, there are, in addition to 
similarity weights defining the Laplacian, also 
node weights determined by entropy. 

 Exponential similarity weights are applied. 
 Total of 20 cases tested. 
 Size of images is small due to spectral 

method software limitations. 
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 Normalized Cut 

Combinatorial 

Spectral 
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 Normalized Cut (cont.) 

Combinatorial 

Spectral 
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 q-Normalized Cut (Entropy) 

Combinatorial 

Spectral 
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 q-Normalized Cut (Entropy) (cont.) 

Combinatorial 

Spectral 
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 Normalized Cut 

Cut presenting  
subjectively better 
visual segmentation 

Cut minimizing  
objective function 
value  
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 Normalized Cut (cont.) 

Cut presenting  
subjectively better 
visual segmentation 

Cut minimizing  
objective function 
value  
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 q-Normalized Cut (Entropy) 

Cut presenting  
subjectively better 
visual segmentation 

Cut minimizing  
objective function 
value  
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 q-Normalized Cut (Entropy) (cont.) 

Cut presenting  
subjectively better 
visual segmentation 

Cut minimizing  
objective function 
value  
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Cut presenting  
subjectively best 
visual segmentation 
using q-normalized cut 

Cut presenting  
subjectively best 
visual segmentation 
using normalized cut 
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Cut presenting  
subjectively best 
visual segmentation 
using q-normalized cut 

Cut presenting  
subjectively best 
visual segmentation 
using normalized cut 
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 The combinatorial technique provides better visual 
results in image segmentation. 

 The combinatorial technique is faster than the spectral 
method (and requires substantially less storage) 

 The combinatorial technique gives, on average, better 
quality solutions to several clustering problems. 

 We used                                      for: gene expression; knee  
 
 

    cartilage volume computation (OA); pattern recognition; 
video tracking; enhancing nuclear detectors capabilities; 
drug efficacy studies, and general data mining. 
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